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Statistical complexity of potential energy landscape as a dynamic signature of the glass transition
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Dynamic heterogeneity is an intrinsic characteristic of amorphous materials that is closely related to the
mysterious glass transition. However, there is seldom an intuitive physical parameter characterizing the degree
of dynamic heterogeneity and linking it quantitatively to the dynamic arrest phenomenon at the glass transition.
Here, we propose a general theoretical protocol to explain the glass transition via a statistical parameter
quantifying the dynamic heterogeneity of glass-forming systems. The parameter can be calculated using
the concept of the Shannon information entropy associated with the variation in the activation barriers to
local structural excitations on the underlying potential energy landscape, which can be explored extensively
using the recently developed activation-relaxation technique in inherent structures spanning a wide range of
configurational space. The concept is demonstrated successfully in a model of a prototypical glass-forming
system Cu50Zr50. The Shannon entropy and statistical variation in the activation barriers are found to change
dramatically at the glass-to-liquid transition and, therefore, can be treated as a novel signature of the
glass transition, beyond the conventional thermodynamic indicators, such as the volume, potential energy,
enthalpy, and heat capacity. The temperature-dependent Shannon entropy coincides with the evolution of the
experimentally available stretching exponent during the glass-to-liquid transition and provides an intuitive
explanation for the obscure decrease in dynamic heterogeneity from a metastable glass to an equilibrium
liquid. Finally, possible relationships among structures, thermodynamics, and dynamics are discussed in terms
of quantitative correlations among the structural Shannon entropy, excess total entropy, and dynamic Shannon
entropy, respectively.
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I. INTRODUCTION

The glass transition is a ubiquitous phenomenon in nature
in which a liquid falls out of equilibrium as it is rapidly
quenched to low temperatures at a sufficiently high cool-
ing rate [1–4]. This phenomenon yields a disordered solid
structure instead of the conventional crystals, which, in turn,
leads to unique physical and mechanical functions [5,6].
Although the dynamics starts to slow at glass formation in
the entire sample [7,8], the atomic structure is quite spa-
tially inhomogeneous; both solidlike and liquidlike regimes
are present [9–11] and have different mobilities where the
viscosity spans timescales covering many orders of magni-
tude [12–14]. This is why appreciable dynamic heterogeneity
is frequently observed in the relaxation, aging, and elastoplas-
tic deformation of amorphous solids [14–18]. The well-known
non-Arrhenius relaxation of highly viscous liquids and the
underlying mechanism of the strong-to-fragile transition are
also based on dynamic heterogeneity [12,13].

An empirical stretched exponential function in the form
of the Kohlrausch-Williams-Watts (KWW) expression f (t ) ∼
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exp[−(t/τ0)βKWW ] is typically used to define the dynamic
heterogeneity of a glass-forming system [14,18–23]. The
system is usually investigated by tracing the temporal evo-
lution of a specific response function f (t ) involving, e.g.,
the stress, mean-squared displacement, and intermediate scat-
tering function [19–21,24–26]. Here, τ0 is a characteristic
mean-field relaxation time. βKWW is a stretching exponent
that empirically quantifies the degree of nonexponentiality
of a dynamic process, which can also serve as a qualitative
indicator of the degree of dynamic heterogeneity. For a unique
relaxation mechanism without any dynamic heterogeneity,
βKWW = 1. This is usually the case for the dynamics of an
equilibrium liquid at high temperatures or plastic deformation
of crystals, which is accommodated by a specific thermally
activated microscopic mechanism, for instance, diffusion and
dislocation motion [27,28]. However, this parameter can be
only a small fraction of unity at low temperatures, indicating
the existence of a wide spectrum of relaxation timescales in a
deeply glassy state, which is representative of strong dynamic
heterogeneity [14,18–21].

Although stretched exponential relaxation successfully ex-
plains many dynamic processes in glasses, such as stress
relaxation [19,20,25], aging [23,24], and creep [29], there are
few proposals for the physical foundation of this equation
to date [22,29]. In particular, the attempt to link the degree
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of dynamic heterogeneity to the glass transition seems to be
ambitious. On one hand, the difficulty lies in the lack of
reasonable protocols to effectively compress all the timescales
into one effective characteristic timescale in the framework
of a generalized Maxwell viscoelastic model without ex-
act topological information on the short-circuit relaxation
channels [30]. On the other hand, accurate determination of
individual relaxation timescales with distinct mechanisms is
usually difficult because the data have to be extracted from
a global response function via discretization or even continu-
ous spectrum fitting with numerous fitting parameters, which
usually involves a very large uncertainty [20,31,32].

In this paper, we address these issues by defining physi-
cally sound parameters for quantifying the degree of dynamic
heterogeneity and associating the parameters with the glass
transition. The parameters are deduced by performing sta-
tistical calculations on the activation barriers of local struc-
tural excitation in the inherent structures of a model glass
former. In terms of the potential energy landscape (PEL),
local atomic rearrangement corresponds to hoppings between
neighboring potential energy minima that are separated by
a saddle-point configuration, whose energy difference from
that of the initial configuration defines an activation barrier
for a local structural excitation event in the PEL [1,2,33–
36]. The distribution of these activation barriers is a strong
function of the inherent structure temperature and the cooling
history (inherent structure inherited from a frozen configu-
ration at a specific temperature). Tracing the evolution of
the activation barrier distribution with temperature should
be a straightforward way to see the variation in dynamic
heterogeneity because dynamic features can be thoroughly
expressed in terms of the degree of complexity of the PEL.
Fortunately, the activation barriers can be extensively ex-
plored using the recently developed methods, such as the
hybrid eigenvector-following approach [37,38], the dimer
method [39], the gentlest ascent dynamics method [40], and
the activation-relaxation technique (ART) [41], which can
overcome the timescale limitation in conventional molecular
dynamics (MD) simulations of the dynamics of amorphous
solids [42,43]. As an open-ended method, ART is used due to
its efficiency in randomly sampling a large number of events.
ART and the hybrid eigenvector-following approaches could
be unified in the same theoretical framework using the concept
of the Krylov subspace. In ART, the Lanczos method finds
the lowest eigenvalue in a Krylov subspace of increasing size,
whereas the hybrid eigenvector-following approach searches
in a smaller subspace spanned by the set of previous search
directions [38]. Therefore, they are similar in some theoretical
perspectives but a little different in operations. Here, we adopt
ART since it facilitates exploration of large barriers that are
inaccessible to normal MD simulations and, hence, can be
used to explore a complete barrier spectrum in the inherent
structures of glass-forming systems [44–50].

Here, a new concept, the Shannon information en-
tropy [51], is introduced to characterize the variation of
the activation barriers in terms of their spectra in different
configurational spaces. This quantity clearly changes during
the glass transition, in good agreement with experimental
observations of the evolution of the stretching exponent βKWW

in the KWW equation [19]. Therefore, we provide a statistical

parameter that indicates the glass transition in terms of the
dynamic heterogeneity extracted directly from the PEL. The
non-Arrhenius average relaxation time can be clearly visu-
alized after the statistical information on the nonequilibrium
evolution of inherent structures in the PEL of a glass-forming
system has been obtained [52,53].

II. METHODOLOGY

The PEL of an extensively studied binary glass-forming
system Cu50Zr50 is sampled where the force field is described
by a realistic many-body interacting embedded-atom method
(EAM) potential [54]. There are 10 976 atoms in the model
glass, which has dimensions of 60 × 60 × 60 Å3. The ART

NOUVEAU (ARTN) software [41] implemented in the LAMMPS

code [55] is adopted to obtain the force field and energetics of
disordered structures at both the energy minimum and the sad-
dle point as well as the image configurations between them.
To trace the evolution of the spectrum of the activation barrier
as a function of temperature, we quench the glass-forming
system from its equilibrium liquid state at 2000 K to the deep
glass state at 0 K at a constant cooling rate of 1010 K/s in
the framework of an isothermal-isobaric ensemble [56]. The
temperature is controlled by a Nosé-Hoover thermostat [57].
The MD time step is 2 fs. Periodic boundary conditions are
applied in all three directions. During cooling, we take dozens
of configuration fragments from the trajectory and bring them
to their local energy minima using a conjugate gradient al-
gorithm. The relaxed configurations, therefore, represent the
inherent structures of the glass-forming liquid and glass at
specific temperatures. The inherent structures are then input
to ARTN to probe possible activation events.

To explore the activation barriers of local structural ex-
citations, we choose and perturb a local cluster around a
specific atom with a cutoff distance of 3.95 Å (including
nearest-neighbor atoms) in random directions with an initial
perturbation displacement of 0.10 Å. The increment is added
stepwise at 0.15-Å intervals. When the smallest eigenvalue of
the Hessian matrix becomes smaller than a critical value of
−0.30 eV/Å, we bring the energy state to the saddle point
along the weakest eigenvector direction using the Lanczos
algorithm [58]. If the maximum force of any atom is below
0.05 eV/Å, the configuration is assumed to converge on the
saddle point. Every atom cluster is activated successfully
20 times, accounting for the statistics of the complexity of the
high-dimensional configuration space of disordered materials.
We explore as many as 219 520 possible events in the PEL
that represent the dynamic heterogeneity because each event
represents a local structural excitation with a very different
incubation timescale. The calculations are reported in more
detail in our previous work [59].

III. RESULTS AND DISCUSSION

A. Conventional identification of glass transition via
thermodynamics

The most conventional way to determine the thermal glass
transition temperature Tg during cooling from an equilib-
rium liquid is probably by examining the discontinuities in
several thermodynamic parameters, which usually include
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FIG. 1. Glass transition according to conventional thermody-
namic parameters: (a) volume, (b) potential energy, (c) enthalpy per
atom, and (d) specific heat capacity in the modeled Cu50Zr50 glass-
forming system. The glass transition temperature is consistently
found to be 675 K.

the volume, potential energy, enthalpy, and heat capacity of
a glass-forming system [12,60]. Following this strategy, in
Figs. 1(a)–1(d), we demonstrate the temperature dependence
of these quantities. They consistently yield Tg = 675 K at a
constant cooling rate of 1010 K/s as performed in the present
MD simulations. The calculated Tg is in agreement with the
reported experimental data, e.g., Tg = 651 K in Ref. [60] and
Tg = 679 K in Ref. [61]. The red solid curves in Fig. 1 are
the best nonlinear fits of the thermodynamic data on the MD
cooling trajectory. All the kinks and discontinuities in these
curves are distinct transition points indicating transitions in
the thermodynamic phase. Note that the heat capacity shown
in Fig. 1(d) is obtained by taking the derivative of the enthalpy
[Fig. 1(c)] with respect to temperature.

Although these parameters are accurate indicators of the
thermal glass transition, all the criteria are based on ther-
modynamics. The results lack direct dynamic information
that is more directly related to the underlying mechanism of
the glass transition, which is, in fact, a dynamic process. A
question naturally arises regarding whether one can determine
the glass transition in terms of purely dynamic characteristics,
e.g., by examining the degree of complexity of the PEL. The
solution not only explains the onset of dynamic heterogeneity
after dynamic crossover with decreasing temperature, but also
suggests a ubiquitous non-Arrhenius average relaxation time
for the glass transition. In the following, we will attempt to
supply the missing measurement of the glass transition from
purely dynamic parameters.

B. Spectrum of activation barrier

In this section, we address the issue of associating the glass
transition with a physically meaningful dynamic quantity.
This is performed by establishing a framework for quantitative
characterization of the dynamic heterogeneity according to
the complexity of the underlying PEL of a glass-forming

liquid [2,34,36], which can give the glass transition an explicit
physical meaning. Figure 2 shows the histograms of the
activation barriers �Q for a wide range of inherent structures
explored by ARTN. They are inherited from configurations
frozen at different positions of the cooling history, which span
the entire range from an equilibrium liquid to a metastable
glass with supercooled states between them. It is not surpris-
ing to see a wide range of activation barrier distributions,
which is attributed to the disordered nature of glasses and
liquids. The present calculated spectra are in quantitative
agreement with early calculations, such as those of Fan and
co-workers [46–49] and Ding et al. [50]. The spectrum of the
activation barrier is found to be highly temperature dependent
as in the case of disordered materials prepared at different
cooling rates [48,49]. Two basic relaxation modes generally
appear in the distribution [48]. Mode I relaxation involves
an exponentially decaying distribution function. It dominates
the activation barriers in the supercooled liquid or liquid
state at high temperatures. In this case, lower barriers are
more common. Consequently, one has more possibility to
note the percolation of high mobility regions in the glass-
forming sample under external thermal or mechanical excita-
tions. Therefore, the relaxation or deformation mode tends to
exhibit cascade behavior over a large geometry [47]. Mode II
relaxation involves a shifted Rayleigh distribution function. It
is more likely to appear in glassy configurations. This type of
distribution usually indicates a localized relaxation mode [47].
In this case, slowly mobile (rigid) regions are abundant in the
sample. A solid skeleton that resists shear or thermal activa-
tion is easily formed [15]. The spatially sparse low-barrier
regions (corresponding to the left tail of the barrier spectrum)
are active within a typical laboratory timescale. This behavior
usually excludes an extended relaxation mode in the deep
glass configuration. However, the relaxation could be a local-
ized feature at low temperatures, such as the usual phenomena
of β relaxation [62,63] or shear transformation [64,65]. As the
temperature decreases at the liquid-to-glass transition, a shift
from a cascade to localized relaxation occurs. It also indicates
the onset of dynamic heterogeneity, which is closely related
to the glass transition.

Now, we quantitatively characterize the distribution of
barriers, which will provide accurate information about the
dynamic heterogeneity. For this purpose, we follow the pro-
posal of Fan et al. in their recent work [48] in which the
probability distribution function of the activation barriers is
decomposed into two distinct modes, i.e.,

P(�Q) = W
1

ε
exp

[
−�Q

ε

]
+ W ′�Q exp

[
− (�Q − μ)2

2σ 2

]
.

(1)

The first term on the right-hand side of Eq. (1) represents
mode I activation (cascade relaxation), whereas the second
term represents mode II activation (localized relaxation). In
the literature, a similar normal distribution or improved log-
normal distribution has been assumed, which can predict the
plasticity of metallic glasses reasonably well in the framework
of thermal activation [66,67]. In Eq. (1), the parameter W is
the amplitude of mode I, where 1/ε is a decay constant. W ′ is
the relative weight, μ is the peak position, and σ is the scale
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FIG. 2. Temperature-dependent histogram of activation barriers from the deep glassy state to the liquid state of Cu50Zr50 glass formers.
The distribution can be decomposed into two distinct modes. One is a shifted Rayleigh distribution representing local features of structural
excitation of an amorphous solid. The other is an exponentially decaying model that is typical of nonlocal cascade deformation in a liquid. As
the temperature increases above Tg = 675 K, the deformation mode of the liquid gradually dominates the dynamics. The solid curves in the
panels are nonlinear fits according to Eq. (1). The temperatures are those of inherent structures before the kinetic energy is removed.

parameter of mode II activation. The solid curves in Fig. 2 are
the best nonlinear fits of the spectra of the activation barriers
according to Eq. (1). The fittings are very satisfactory. They
indicate that the assumed mixed distribution can capture the
features of possible thermal structural excitation in the PEL
reasonably well.

FIG. 3. Evolution of fitting parameters, (a) μ,W and (b) σ, ε in
Eq. (1) for activation by modes I and II, respectively, as a function
of the temperature of the inherent structures. The fits of the spectra
shown in Fig. 2 are based on Eq. (1).

In Fig. 3, we plot the evolution of all the fitting parameters
except W ′ as a function of configuration temperature because
W ′ can actually be determined from the normalized condition
once the form of the distribution is fixed. As the temperature
increases from 10 to 1990 K, W starts to increase substantially
at the glass transition temperature (Tg = 675 K). However,
W remains almost zero in the glassy state. This means that
mode I activation dominates the dynamics after the glass tran-
sition. However, it always occurs over the entire temperature
range at an almost constant decay rate as indicated by the
constant value of ε = (0.14 ± 0.04) eV shown in Fig. 3(b).
It corresponds to the left tail of the barrier distribution even
at low temperatures as shown in Fig. 2. This represents the
so-called liquid region frozen in the solid glass state, which
is irrelevant to the inherent structure temperature. Mode II
activation generally dominates the glassy dynamics at low
temperatures. Because mode II activation spans a wide range
of activation barriers, there should be obvious dynamic hetero-
geneity [6]. An interesting observation is that μ for mode II
becomes slightly smaller with increasing temperature before
the glass transition. This may suggest that the effective activa-
tion barrier becomes smaller, and thermal activation is easily
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triggered. However, the range of the mode II activation energy
is almost independent of the temperature of the inherent
structure. Moreover, the scale parameter remains nearly un-
changed at σ = (0.64 ± 0.08) eV, except for a sudden in-
crease at the glass transition point, which may be a numerical
error due to the dramatic shift in μ. Here, the magnitude
of σ is in agreement with the value of 0.49 eV reported in
the literature [48]. In brief, the finding of the transition from
the mode I to the mode II distribution at the liquid-to-glass
transition indicates a shift in the mechanism from cascade to
localized relaxation or from the liquid dynamics to the glassy
dynamics during cooling. It also explains the divergence of the
main (α) and secondary (β) relaxation at the mode-coupling
critical temperature [2,6]. Although we demonstrate the tran-
sition in terms of a change in the inherent structure temper-
ature, it resembles the transition of the relaxation modes if
one changes the cooling rate in the glass sample preparation
process [47,49].

C. Spatial characteristics of the potential energy landscape

The hypothesis of a relaxation mode transition observed
in the spectra of activation barriers can be further confirmed
and explained by the topological characteristics. To this end,
we plot the heat map of an activation barrier in a slice
perpendicular to the z direction as shown in Fig. 4. The
thickness of the slice is 3.95 Å, which corresponds to the
first minimum of the radial distribution function. The acti-
vation barrier is, therefore, coarse grained at this thickness.
The spatial characteristics represent two distinct scenarios
of possible structural excitation for either the glassy state at
100 K as shown in Fig. 4(a) or the liquid state at 1990 K as
shown in Fig. 4(b). For a convenient laboratory observation
timescale of τ = 102 s, the critical activation barrier for this
local structural excitation is �Qc = kBT ln(τ/τ0) ≈ 37kBT ,
where kB is the Boltzmann constant. As a first approximation,
here, we assume a relaxation time prefactor on the order of
τ0 = 10−14 s [13,53]. This barrier is approximately 0.95 eV at
ambient temperature T = 300 K. From the barrier heat map
shown in Fig. 4(a), one can deduce that the activated structural
arrangement should be localized (where the barrier region is
smaller than 0.95 eV). It is evident that the low-barrier regions
in the glass are highly localized as exemplified by the local
region indicated by an arrow in Fig. 4(a). The dimensions of
this possible local structural excitation are of subnanometer
order. The local nature of structural excitation in the glass
is consistent with the common understanding of secondary
β relaxation [62,63] or shear transformation in terms of the
plastic deformation zone [64,65]. The size of the low-barrier
regime is also consistent with the consensus that a shear
transformation event involves nanoscale rearrangements of
several tens of atoms [64,68].

However, the incubation timescale of an event at high
temperature should be much shorter, possibly even compa-
rable to the order of the phonon lifetime under extreme
conditions. In this case, the critical activation barrier �Qc =
kBT ln(τphonon/τ0), should be extremely small. Then the
landscape-dominated relaxation mechanism will be replaced
by diffusive viscous flow once the thermal energy is high
enough to explore a large fraction or even all of the shallow
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FIG. 4. Spatial features of activation barriers in (a) deep glassy
state at 100 K and (b) equilibrium liquid state at 1990 K. The
heat maps demonstrate clearly that the excitation is localized in the
glass but nonlocal in the liquid, supporting the scenario of the glass
transition as a consequence of a change in the relaxation mode from
primary (α) relaxation to secondary (β) relaxation with decreasing
temperature. The arrow in (a) indicates a location of possible β

relaxation that is a feature of a low-energy barrier. The xy plane is
a coarse-grained slice with a thickness of 3.95 Å perpendicular to
the paper plane.

energy minima of the PEL. As shown in Fig. 4(b), the low-
barrier regions in the inherent structure of a liquid are much
more extended. The highly mobile regimes tend to percolate
through the entire sample, which is ready to be triggered
into a large relaxation mode or extended deformation. The
scenario is in agreement with the deduction from a power-law
scaling distribution of the activation barrier in the inherent
structure of an unstable glass-forming liquid that is instantly
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quenched from an equilibrium liquid state [47]. Therefore, we
conceived a basic idea of enhanced dynamic heterogeneity
from the liquid to the glass, based on the evolution of the
spatial characteristics of the activation barrier. The patterns of
the activation barrier also support the scenario of a reduction
in the static configuration correlation at the liquid-to-glass
transition [16,69,70].

D. Statistical complexity of the PEL and glass transition

Having qualitatively explained the evolution of the ac-
tivation barrier spectrum, we now provide a general strat-
egy to quantify the degree of dynamic heterogeneity of a
glass-forming system on the basis of the complexity of the
hyperdimensional surface where the configuration remains at
the relative position of the PEL. Because the distribution of
activation barriers in Fig. 2 characterizes a wide variety of
timescales in the dynamics, if we can quantitatively measure
the variation in these activation barriers, then, we may have
a physically sound number that reveals the dynamic hetero-
geneity. In the literature, a set of parameters characterizing
the level of frustration of the energy landscape have been
proposed based on the topological features of PEL, and,
meanwhile, a novel Shannon entropy concept defined with the
information of local energy minima in the equilibrium state is
also applied to quantify frustration in glassy systems [71,72].
Inspired by those concepts, here, we adopt Shannon entropy
to measure the complexity of the activation barriers (the shape
of the spectrum) as well as multiplicity of local short-range
Voronoi structures [73], which yield dynamic and structural
Shannon entropy, respectively. Here, we apply the concept of
Shannon entropy to characterize the variation in the activation
barriers, such as those shown in Fig. 2. Because the distribu-
tion functions are continuous, the dynamic Shannon entropy
is defined as

SShannon(T ) = −
∫ ∞

0
P(�Q) ln[P(�Q)]d �Q. (2)

Here, P(�Q) is a normalized probability distribution function
of an activation barrier. In practice, the entropy can be calcu-
lated numerically as SShannon(T ) = −∑

i Pi(T ) ln Pi(T ) after
discretization of the spectra into a finite number i of bins of
appropriate width. Because the distribution is temperature de-
pendent, the variation in the barriers and, thus, the complexity
of the PEL are naturally related to the temperature. This novel
parameter will be shown to be not only a number indicative of
the dynamic heterogeneity, but also an intuitive signature of
the glass transition. Finally, we note that the present definition
of the Shannon entropy is not equivalent to any specific form
of physical entropy that we are familiar with in statistical me-
chanics. It is only a statistical number facilitating quantitative
measurement of the degree of complexity of the dynamics,
which usually involves multiple timescales.

On the other hand, the statistical variation in the activation
barriers (or dynamic diversity) obtained from the spectrum is
defined according to the dynamic Shannon entropy,

Dbarrier = exp(SShannon). (3)

The dynamic diversity Dbarrier could be an intuitive number
indicating how hierarchical the dynamics of a glass-forming

system is. For a single activation barrier, there is no dynamic
heterogeneity. In our framework, the situation has SShannon = 0
and Dbarrier = 1. Then, the timescale of the dynamics can be
well described by the conventional Arrhenius equation τ ∝
exp(�Q/kBT ) with βKWW = 1. This describes the dynamics
of a strong substance, such as the everyday window glass
SiO2 [2,12] as well as a unique thermally activated plastic
mechanism in crystalline materials [27,28]. However, there
will be a wide distribution of the constituent timescales or
activation barriers for a fragile glass [2,12]. In this case, the
dynamic Shannon entropy will be a positive number with
the diversity parameter Dbarrier � 1. This corresponds to the
stretched exponential dynamics with 0 < βKWW � 1. As a
result, one may anticipate that the variation in the parameters
SShannon and Dbarrier could be in accord with that of the con-
ventional βKWW parameter in the KWW function and could
explain the underlying mechanism of dynamic heterogeneity
in disordered materials.

Now, we apply the new concepts to Cu50Zr50 glass for-
mers. The calculated dynamic Shannon entropy describing
the distribution of activation barriers and the barrier diversity
parameter are shown in Figs. 5(a) and 5(b), respectively. The
most significant feature is that both the dynamic Shannon en-
tropy and the dynamic diversity start to decrease dramatically
with increasing temperature at the glass transition. This means
that the proposed parameters are effective for characteriz-
ing the degree of dynamic heterogeneity. It is easier to note
that the degree of dynamic heterogeneity changes noticeably
from the temperature derivatives of dynamic Shannon entropy
and dynamic diversity as shown in Figs. 6(a) and 6(b). re-
spectively. Both of them are obtained by performing nonlinear
fitting of the original data shown in Figs. 5(a) and 5(b). There
is an apparent valley around the glass transition in the two
curves of Fig. 6, which denotes an anomaly in the rate of
change in dynamic heterogeneity from glass to liquid. They
can be notable dynamic signatures of the glass transition in
addition to the conventional thermodynamic criteria. In the
inset of Fig. 5(a), we also provide a reference for compari-
son, which is the evolution of the stretching exponent βKWW

in the KWW equation describing the decay of stress in a
stress relaxation experiment [19]. In that protocol, the hid-
den temperature-dependent evolution of the relaxation mode
during the glass-to-liquid transition was successfully revealed
by tracking βKWW. Thus, the stretched exponent could be
used to calibrate the proposed statistical parameters of the
activation barrier. Because the KWW equation is a mean-field
description of the hierarchical dynamics, the synchronous
variation in SShannon and βKWW should imply that the former
is also a good physical parameter measuring the degree of
dynamic heterogeneity. More specifically, once the stretching
exponent increases from βKWW 	 0.5 to βKWW 	 1 at the
glass-to-liquid transition, the dynamic heterogeneity gradu-
ally decreases. Simultaneously, the dynamic Shannon entropy
changes from a plateau SShannon 	 3.7 at low temperatures to
another plateau SShannon 	 3 at high temperatures.

In terms of the variation in the activation barriers or
the dynamic diversity as shown in Fig. 5(b), the parame-
ter Dbarrier also changes dramatically at the glass-to-liquid
transition. After the glass transition, this parameter changes
from Dbarrier 	 50 to Dbarrier 	 25. For a first approximation,
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FIG. 5. Glass transition described by dynamic Shannon entropy and variation in the activation barriers. (a) Dynamic Shannon entropy
of activation barriers as a function of temperature, which decreases dramatically at the glass-to-liquid transition. The inset provides a direct
comparison with the experimentally available stretching exponent βKWW in the KWW equation, which is an empirical parameter indicating the
degree of dynamic heterogeneity. (b) Dynamic variation in the activation barriers, which decreases sharply after the glass-to-liquid transition,
also indicating a decrease in the complexity of the potential energy landscape. The vertical dashed lines in (a) and (b) indicate the positions of
the glass transition temperature. The solid curves in (a) and (b) are nonlinear fits of data points. (c) Schematic of the complexity of the PEL
in the liquid and glass, respectively. Dense low-energy minima appear at similar depths in the PEL of the liquid, whereas sparse, large, and
hierarchically arranged energy basins are typical of the topology of the PEL of the glass.

one can imagine that there are approximately 50 dashpots
with distinct relaxation timescales in a generalized Maxwell
model [20]. However, the number of dashpots decreases
significantly which evolves to be only half numbers after
the glass-to-liquid transition. It can serve as an intuitive
physical interpretation of the puzzling reduction in the degree
of dynamic heterogeneity with increasing temperature at the
glass transition [19]. As demonstrated by the cartoon shown
in Fig. 5(c), small dense energy basins appear in the PEL
of the liquid. However, the activation barriers are of similar
magnitude. All the activation barriers tend to move to the
left tails of the spectra; see Fig. 2. Consequently, the low
activation barriers dominate the distribution, resulting in less
dynamic diversity and a small value of Dbarrier. However, the
energy minima in the PEL of the glass are sparse and deep
with a strongly hierarchical distribution. Thus, the activation
barrier distribution is wide. It is the physical foundation of the
underlying large Dbarrier as well as the high degree of dynamic
heterogeneity in the glass. This scenario and quantification

of the PEL may also shed light on the widespread onset of
non-Arrhenius relaxation and the dynamic arrest phenomenon
in a wider variety of glass-forming systems as extensively
discussed in the literature [12,52,53,74].

However, the dynamics is not only related to the spectrum
of barriers, but also depends on the connectivity and orga-
nization of the underlying PEL, i.e., its topology. It is well
known that a superstructure, namely, a metabasin constituted
by a set of basins, emerges naturally in PEL as suggested
in the literature [75–80]. As a way to describe the general
shape and overall connectivity in the PEL, disconnectivity
graphs [81,82], i.e., the one-dimensional projection of the
3N-dimensional PEL, are frequently used to visualize topo-
logical features of a multidimensional PEL. The way maps the
configuration space into samples of pathways linking multiple
local energy minima via transition states (energy barriers or
saddle points). On one hand, a vertex of the disconnectivity
graph indicates a saddle point, and each branch terminates
at a local energy minimum along its vertical axis (potential
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energy). On the other hand, each single point stands for a
superbasin including one or more daughter superbasins [83].
Recently, the temporal disconnectivity graph was developed
in a binary Lennard-Jones glassy system, which can describe
the temporal evolution of metabasins when they consolidate
with time to form even larger metametabasins [80].

Here, to complement the schematic of the PEL as shown
in Fig. 5(c), two representative disconnectivity graphs are
demonstrated in Figs. 7(a) and 7(b), respectively. One is for
an equilibrium liquid state at an inherent structure of 1990 K,
and the other is for a deep glassy state at an inherent struc-
ture of 100 K. Both graphs consist of 2900 successive local
activation events starting from a local energy basin, which
enables sufficient sampling of possible configurations. The
complex connectivity topology of the trajectories resembles
the results demonstrated in different disorder systems in the
literature [84–88]. In Fig. 7(a), the overall potential well depth
is about 0.008 eV per atom. Various local minima sampled are
densely distributed in a local space and most of the activation
barriers are low. Moreover, the small barriers are of similar
height, indicating less multiplicity of relaxation times is as-
sociated with less dynamic heterogeneity in the equilibrium
liquid state. The profile for the equilibrium liquid state may
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FIG. 7. Disconnectivity graphs for (a) the equilibrium liquid
state at 1990 K and (b) the deep glassy state at 100 K, respec-
tively. Each graph consists of 2900 successive activation events
starting from a local energy basin representing a specific inherent
configuration.

resemble that of a banyan-tree topology with relatively small
fluctuations in depth of the local minima [89]. However, once
starting from a deep glass state as shown in Fig. 7(b), ex-
tremely deep local basins locate at the depth of about 0.022 eV
per atom. The graph corresponds to a palm-tree motif which
owns a well-defined global minimum and relatively small
downhill barriers [89]. The main branch indicates a metabasin
which requires extremely numerous activation events to climb
the large mountain. Many minima are scattered on the narrow
fragment of the PEL. The activation barriers are relatively
large with high diversity, implying enhanced dynamic het-
erogeneity in the glass state. One may anticipate that the
topology of the top of the glass disconnectivity graph will
be similar to that of the bottom of the liquid disconnectivity
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graph, once the potential energy levels are compared to each
other after exhausted exploration. Therefore, the scenarios
from the disconnectivity graphs inosculate basically with our
illustrations on the cartoon as shown in Fig. 5(c).

E. Possible relationship between dynamics and structure

Dynamic features are typically thought to have deep ori-
gins in the structures of glasses and liquids [59,70,73,90]. To
reveal the possible structural causes of the evolution of dy-
namic heterogeneity that accommodates the glass transition,
we also examine the statistics of the distribution of Voronoi
polyhedra in multiple inherent structures of a Cu50Zr50 glass-
forming liquid. The statistics of the structure is analogous with
that obtained for the dynamics using the same concept of the
Shannon information entropy and the variation in the activa-
tion barriers as shown in Eqs. (2) and (3). The only difference
is that the distribution of activation barriers in the dynamics is
replaced with that of the Voronoi polyhedra in the structural
analysis. The idea has been shown to be very effective for
characterizing the multiplicity of local structures in two model
glass-forming binary atomic alloys, i.e., Cu50Zr50 as described
by the EAM and a Lennard-Jones A80B20 mixture [73]. First,
in a specific inherent structure of a disordered configuration,
we label each atom according to its Voronoi environment
with a unique four-digit index 〈n3, n4, n5, n6〉, where ni is the
number of faces with i edges [91–93]. Then, we obtain the
statistics of the fraction of specific Voronoi polyhedra and
extract the entire spectrum of the local structure distribution,
which usually includes more than several hundreds of species
of short-range structures. When the distribution of the Voronoi
structures is available, we calculate the structural Shannon
entropy as defined in Eq. (2), i.e., the value calculated numeri-
cally as SShannon(T ) = −∑

i Pi(T ) ln Pi(T ) is then the fraction
of a specific Voronoi polyhedron. By using this strategy, the
structural diversity can be further quantified in terms of the
structural Shannon entropy using Eq. (3).

The calculated structural Shannon entropy and structural
diversity are plotted against the dynamic Shannon entropy and
dynamic diversity in Fig. 8. Although the dynamic features
are strongly correlated with the structural features, the general
trend is that the dynamic diversity (or entropy) decreases with
increasing structural diversity (or entropy). In other words,
once the dynamic heterogeneity decreases at the glass-to-
liquid transition, local disordered structures become more
abundant. This correlation seems to be obscure, but it, indeed,
can be explained by the change in structures. In the deep
glassy state, the structural and dynamic features are confined
well in a regime defined by the boundary between the glass
and liquid as indicated by the horizontal dashed lines in
Fig. 8. The dynamic Shannon entropy fluctuates about ∼3.9,
whereas the structural entropy is stable at ∼4.55. The data for
glass correspond to a dynamic diversity of ∼50 and structural
diversity of ∼95. After the glass-to-liquid transition occurs,
the dynamic and structural features change substantially. This
is because more configurational space can be explored for
a liquid than for a glass [2]. After the glass transition, an
increasing number of stable Voronoi structures are broken,
producing more structural diversity with fewer stable local
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FIG. 8. Relationships between structural and dynamic hetero-
geneity in a Cu50Zr50 glass-forming system. (a) Relationship be-
tween dynamic Shannon entropy and structural Shannon entropy.
(b) Relationship between dynamic diversity and structural diversity.
The solid lines represent apparent linear fits, which serve as guides
for the eyes. The horizontal dashed lines are the boundaries between
the glass and the supercooled liquid. The symbols are colored by the
magnitudes of the temperatures of their inherent structures, starting
with red for 10 K, and ending with blue for 1990 K, respectively.

structures. However, the newly generated structures result-
ing from the glass transition have low activation barriers as
demonstrated by the evolution of the distribution shown in
Fig. 2. With increasing temperature, the peak in the left tail
of the activation barrier increases, whereas the central peak
gradually disappears. Consequently, the barrier distribution
becomes less uniform in the liquid state, i.e., the low-energy
barrier events dominate the liquid dynamics. Simultaneously,
the dynamic diversity and dynamic Shannon entropy decrease
with this increase in the diversity or Shannon entropy of
local structures. The scenario corresponds to the decrease in
dynamic heterogeneity as indicated by the increase in the
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glass-forming system. The solid line represents an apparent linear
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inherent structures, starting with red for 10 K, and ending with blue
for 1200 K, respectively. The inset shows how the dynamic Shannon
entropy and excess total entropy change with temperature.

KWW stretching exponent βKWW, which was observed in the
stress relaxation experiment performed by Wang et al. [19].
Therefore, a preliminary link between the dynamics and the
structure has been revealed using the newly defined Shan-
non entropy and diversity of both the activation barriers and
Voronoi structures.

F. Connection between thermodynamic entropy and dynamic
Shannon entropy

The Kauzmann paradox [94] and the success of the Adam-
Gibbs entropic scenario [95] to some degree have suggested
that the nature of glass transition should be based on both
thermodynamics and dynamics [13]. Therefore, it is vital
to understand the correlation between thermodynamics and
dynamics in terms of the thermodynamic entropy and the
proposed Shannon information entropy in the present paper.
Aiming at clarifying the relationship, total entropy of the
glass-forming system is obtained in our previous work [96].
It is performed by thermodynamic integration after heating
a glass to its liquid counterpart, i.e., Stot = ∫ T

0
dQ
T within an

isothermal-isobaric ensemble. Here, T is temperature, and
Q is the absorption heat. Therefore, the excess total entropy
�Stot of glass and liquid over crystal is defined as �Stot =
Sglass

tot − Sxtal
tot .

As shown in the inset of Fig. 9, we provide a direct com-
parison of the dynamic Shannon entropy with the excess total
entropy in the system. It is evident that the glass transition
occurs at about 675 K at which entropies change dramatically.

To further clarify their possible relationship, the excess total
entropy is plotted against the dynamic Shannon entropy in
Fig. 9. In most cases, the dynamic entropy is strongly cor-
related with the thermodynamic entropy. A general trend is
that the dynamic Shannon entropy decreases with increasing
excess total entropy, i.e., thermodynamic entropy. A possible
mechanism behind the phenomenon may be explained by
combining Figs. 8 and 9. The structural diversity (hence en-
tropy) increases as thermodynamic entropy increases (mainly
from configurational entropy as demonstrated in Ref. [60]),
which leads to reduction in dynamic diversity.

IV. CONCLUDING REMARKS

A new concept of dynamic heterogeneity is proposed using
the Shannon information entropy to describe the variation in
the activation barriers under local structural excitations in dis-
ordered solids and is demonstrated successfully in the under-
lying PEL of a model CuZr glass-forming system. The activa-
tion barriers are explored extensively by the well-established
ARTN method, and the activation barrier spectra over a wide
temperature range in configurational space are calculated for
the glass-forming system. On the basis of the spectra, a
statistical description of the dynamic diversity is built on
the extracted dynamic Shannon entropy. Both the dynamic
Shannon entropy and the dynamic diversity can quantitatively
characterize the degree of dynamic heterogeneity. They both
decrease dramatically at the glass-to-liquid transition, and,
therefore, they can serve as intuitive numerical dynamic signa-
tures of the general glass transition phenomenon. The validity
of the parameters for characterizing the glass transition is cal-
ibrated by the commonly adopted stretching exponent of the
KWW function, which can be extracted by a stress relaxation
experiment. Although the demonstration is applied in an EAM
model of a CuZr system, the method is expected to be general-
ized to evaluate the dynamic heterogeneity of other disordered
materials if the activation barrier spectrum can be extracted
from either atomistic simulations or experiments, such as
creep, stress relaxation, and dynamic mechanical analyses.

Afterwards, a preliminary relationship between the dynam-
ics and the structure is revealed by correlating the defined
dynamic diversity (or entropy) of the activation barriers to
the structural diversity (or entropy) of the Voronoi structures.
The increase in less-stable Voronoi polyhedra with low-energy
barriers enhances the uniformity of the activation barrier at the
liquid state and, consequently, diminishes the dynamic Shan-
non entropy and dynamic heterogeneity. Finally, a possible
relationship between the dynamics and the thermodynamics
is established by relating the proposed dynamic Shannon
entropy and excess total entropy of the glass-forming system.
The observed correlation might connect two fundamental but
important concepts in glass transition models: the Adam-
Gibbs entropic scenario [95] and the PEL perspective [2,34–
36]. Our strategy may pave the way to a complete explanation
of the general glass transition phenomenon. It also provides
hints to the solution of the long-standing scientific problem of
understanding the non-Arrhenius temperature dependence of
the relaxation time in glass-forming liquids [52,53].
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APPENDIX: ESTIMATION OF NUMERICAL ERROR IN
DYNAMIC SHANNON ENTROPY

To reduce the impact of insufficient sampling of possible
configurations, we prepare another four (five in total) sta-
tistically independent binary Cu50Zr50 glass-forming liquid
systems for Shannon entropy as shown in Fig. 10. Here, we
perform the ensemble average of dynamic Shannon entropy
on configurations at three characteristic temperatures, i.e., 10,
700, and 1990 K. It is evident that each standard deviation
of the entropy is less than 0.06, which is trivial compared to
the average value of the five independent inherent structures.
Therefore, the calculated Shannon entropy is reliable with
reasonable numerical errors.
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FIG. 10. Ensemble average of Shannon entropy at three char-
acteristic temperatures. The solid line indicates the dependence of
Shannon entropy on temperature. Each data point is an average of
five independent inherent structures. The error bars stand for the
standard deviation of the entropy in five statistically independent
configurations.
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