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Energy transport in the spectral space is analyzed to study the mechanism underlying
the Taylor–Görtler-like (TGL) vortices that appear as two layers of streamwise-elongated
roll cells in a turbulent channel flow subjected to fast streamwise system rotation. The
transport equation of the velocity-spectrum tensor in a rotating frame is derived to study
the budget balance of energy spectra at different length scales. Two new terms, namely, the
rotation-induced redistribution term and rotation-induced wall-normal diffusion term, are
defined to reflect the effect of the imposed system rotation on the energy transport process.
By analyzing the data obtained from direct numerical simulation, it is discovered that four
key processes are responsible for sustaining the motion of the TGL vortices. The first
process corresponds to the energy production at the characteristic length scales of the TGL
vortices that drains energy from the mean flow to the TGL vortices. The second process
is the rotation-induced energy redistribution from the streamwise velocity fluctuations to
the wall-normal and spanwise velocity fluctuations that form the vortex structures on a
cross-stream plane. The third process is the energy diffusion from the near-wall region to
the channel center, which is enhanced due to the occurrence of the TGL vortices and, in
turn, feeds energy to the vortices. The last process is the inverse interscale energy transfer,
through which the large-scale TGL vortices absorb energy from small-scale eddies.
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I. INTRODUCTION

System rotations can induce large-scale Taylor–Görtler-like (TGL) vortex structures in turbulent
channel flows [1,2]. The occurrence of the TGL vortices further alters the turbulence field through a
global transport of momentum and energy across the channel. A thorough investigation on the TGL
vortices is crucial for understanding the dynamics of turbulent flows in rotating channels.

In the pressure-driven turbulent channel flows and turbulent Couette flows subjected to spanwise
system rotation [3–9], the TGL vortices appear as one layer of large-scale streamwise-elongated
roll cells. The TGL vortices are essentially induced by the inviscid local linear instability [10–14].
The TGL vortices in the spanwise-rotating channel flow occur at a low critical Reynolds number
[13], forming a streamwise-independent and spanwise-periodic pattern. The readers are referred to
the recent study of the Reynolds stress transport in the spanwise-rotating channel flow by Kawata
and Alfredsson [9] and the references therein for more details of the instability analyses of the
spanwise-rotating channel flow.
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TABLE I. Coriolis terms in the transport equations of Reynolds stress components 〈u′
iu

′
j〉 in the spanwise-

rotating and streamwise-rotating channel flows.

Component Spanwise-rotating channel flow Streamwise-rotating channel flow

〈u′
1u′

1〉 4�〈u′
1u′

2〉 0
〈u′

2u′
2〉 −4�〈u′

1u′
2〉 4�〈u′

2u′
3〉

〈u′
3u′

3〉 0 −4�〈u′
2u′

3〉
〈u′

1u′
2〉 −2�(〈u′

1u′
1〉 − 〈u′

2u′
2〉) 2�〈u′

1u′
3〉

〈u′
1u′

3〉 0 −2�〈u′
1u′

2〉
〈u′

2u′
3〉 0 −2�(〈u′

2u′
2〉 − 〈u′

3u′
3〉)

On the subject of the present research of streamwise-rotating channel flows, only a few
studies focusing on the TGL vortices have been conducted. By analyzing their direct numerical
simulation (DNS) data, Yang and Wang [15] observed a two-layer pattern of the TGL vortices
in a streamwise-rotating channel flow. They reported that, as the rotation number increases, the
streamwise characteristic length scales of the TGL vortices increase monotonically, but their
spanwise characteristic length scales remain almost unchanged. Similar to the one-layer roll cells in
the spanwise-rotating channel flow, the two-layer pattern of TGL vortices in the streamwise-rotating
channel flow also occur at a low Reynolds number (Re = 70 based on the velocity at the channel
center and one-half the channel height) [2]. Yang et al. [16] further investigated the effects of
streamwise system rotation on the pressure fluctuations. They discovered that the occurrence of
the TGL vortices significantly enhances pressure fluctuations at a very high rotation number. Dai
et al. [17] studied the flow structures under the effects of the TGL vortices and mean spanwise
motion in the streamwise-rotating channel flow [18,19]. The above studies of the TGL vortices in
streamwise-rotating turbulent channel flows mainly focused on the kinematic properties, in terms
of the characteristic length scales of TGL vortices and their influence on the mean and secondary
flow fields. However, the dynamics of the TGL vortices have not been investigated; specifically,
the physical processes associated with the production, dissipation, and diffusion of turbulent kinetic
energy (TKE) for sustaining the motion of the TGL vortices are unclear, and the effect of the TGL
vortices on the energy transport has not been studied systematically.

Insights into flow physics, coherent structures, and energy balance can be sought by investigating
the transport equation of Reynolds stresses. Following the pioneering work of Mansour et al. [20],
the budget balance of Reynolds stresses has been studied extensively using DNS in the context of
turbulent channel flows [21–23], turbulent Couette flows [24,25], turbulent boundary-layer flows
[24,26], and turbulent channel flows subjected to spanwise system rotation [3–5,9,12,27] and
streamwise system rotation [15]. In the rotating channel flows, additional Coriolis terms enter the
transport equations of Reynolds stresses, and play important roles in the balances of TKE and mo-
mentum fluxes. Table I compares the Coriolis terms in the transport equations of Reynolds stresses
between the spanwise- and streamwise-rotating channel flows. In the table, xi and ui denote the co-
ordinates and velocity components, respectively, subscripts 1–3 denote the variables corresponding
to the streamwise, wall-normal, and spanwise directions of the flow, respectively, � represents the
norm of the angular velocity of the system rotation, and a pair of angular brackets are used to denote
averaging over time and homogeneous directions, i.e., the x1 and x3 directions. It is seen from the
table that, in the spanwise-rotating channel flow, the Coriolis terms lead to an energy redistribution
between 〈u′

1u′
1〉 and 〈u′

2u′
2〉 of which the magnitude is proportional to the shear component 〈u′

1u′
2〉.

Meanwhile, the Coriolis term imposes an additional production effect on the budget balance of
〈u′

1u′
2〉, which tends to cause enhancement and suppression of the turbulence intensity on the pres-

sure and suction sides of the channel, respectively. The Coriolis terms of 〈u′
3u′

3〉, 〈u′
1u′

3〉, and 〈u′
2u′

3〉
are zero in the spanwise-rotating channel flow. Compared to the spanwise system rotation, the effects
of the streamwise system rotation on the budget balances of Reynolds stresses show the following
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three major differences. First, in the streamwise-rotating channel flow, the Coriolis term is absent in
the transport equation of 〈u′

1u′
1〉. It was discovered in our previous studies [15,28] that the streamwise

system rotation influenced the budget balance of 〈u′
1u′

1〉 mainly through the pressure-redistribution
effect, which caused additional TKE transport from 〈u′

1u′
1〉 to 〈u′

2u′
2〉 and 〈u′

3u′
3〉 in the streamwise-

rotating channel flow, leading to the suppression of 〈u′
1u′

1〉 at high rotation numbers. Second, the
Coriolis terms in the transport equations of 〈u′

1u′
3〉 and 〈u′

2u′
3〉 are nonzero in the streamwise-rotating

channel flow. This leads to the nonzero behavior of 〈u′
1u′

3〉 and 〈u′
2u′

3〉 in the streamwise-rotating
channel flow. The 〈u′

2u′
3〉 component further appears in the Coriolis terms in the transport equations

of 〈u′
2u′

2〉 and 〈u′
3u′

3〉 to redistribute energy between them. Finally, although the Coriolis term in
the transport equation of 〈u′

1u′
2〉 is nonzero in the streamwise-rotating channel flow, its influence

on 〈u′
1u′

2〉 is not significant as in the spanwise-rotating channel flow. As explained in detail in our
previous study [15], the wall-normal distribution of 〈u′

1u′
2〉 remains stable in the streamwise-rotating

channel flows at various rotation numbers because it is the dominant component of the total shear
stress (which is independent of the rotation number) in the central region of the channel.

The above studies of the budget balance of Reynolds stresses were conducted in the physical
space. Alternatively, the energy transport processes can be investigated in the spectral space, which
is advantageous in identifying the characteristic length scales of the physical processes and quantify-
ing the TKE transport across the cascade of wavelengths corresponding to the turbulence structures.
To this purpose, Lumley [29] derived the spectral energy equation to study the scale-by-scale energy
transport in the context of inhomogeneous turbulent flows. Since the early work of Lumley [29], the
transport equation of the velocity-spectrum tensor has been analyzed in wall-bounded turbulence
to study the dynamics of coherent structures. Mizuno [30] performed DNS to study the interscale
and wall-normal transport of energy in turbulent channel flows through the analyses of the energy
spectra. They found that the dominant structures at different scales in the energy transport process
are self-similar. Lee and Moser [31,32] further studied the effect of the Reynolds number on the
transport equations of the four nontrivial components of the velocity-spectrum tensor. They pointed
out that streamwise-elongated structures are important in the energy transport in a turbulent channel
flow. Kawata and Alfredsson [33] and Kawata and Tsukahara [34] studied the transport equation
of energy spectra in a turbulent Couette flow. They observed that the inverse interscale energy
transport process was crucial for sustaining the motion of large-scale vortex structures. These studies
[30–34] are fairly recent and have focused on channel flows in a stationary frame. They indicate
that the transport equation of energy spectra is a useful tool for analyzing the flow physics, which is
employed in the present paper to investigate the TGL vortices in the streamwise-rotating turbulent
channel flow.

The main objective of the present research is to study the sustaining mechanism of the TGL
vortices in a streamwise-rotating channel flow. The dominant physical processes that provide energy
to sustain the motions of the TGL vortices are investigated through the analyses of the transport
equation of energy spectra. The remainder of this paper is organized as follows: In Sec. II, the cases
and numerical method for generating the DNS database are introduced; in Sec. III, the effects of the
TGL vortices on the energy spectra are demonstrated; in Sec. IV, the transport equation of energy
spectra is analyzed; and in Sec. V, the main findings of this research are summarized.

II. DNS DATA OF STREAMWISE-ROTATING TURBULENT CHANNEL FLOW

The present study of the sustaining mechanism of the TGL vortices in a streamwise-rotating
channel flow is conducted based on the analyses of the DNS database recently obtained by Yang
and Wang [15]. This database includes six rotation numbers ranging from Roτ = 2�h/uτ = 0 to
150, where �, h, and uτ represent the angular speed of the system rotation, one-half the channel
height, and the mean friction velocity of the two channel walls, respectively. It was discovered
in our previous study [15] that the characteristic streamwise length scales and the intensities of
the TGL vortices both increase monotonically as the rotation number increases. To focus on the
mechanism sustaining the TGL vortices, the case for the highest rotation number Roτ = 150 is
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TABLE II. Summary of DNS cases and parameters.

Roτ L1×L2×L3 N1×N2×N3

0 16πh×2h×8πh 512×128×512
150 512πh×2h×8πh 16384×128×512

chosen as a representation of the streamwise-rotating channel flows because, in this case, the TGL
vortices are the most intensive, and their streamwise length scales are the largest among all rotation
numbers tested [15]. To identify the effects of imposed streamwise system rotation on the energy
transport processes, a nonrotating channel flow for Roτ = 0 is analyzed as a comparative case.
Table II summarizes the key parameters of these two DNS cases, including the rotation number
Roτ , domain size L1×L2×L3, and number of grid points N1×N2×N3. The computational domain
size was chosen based on a systematic study of the effect of the domain size on the simulation results
[15]. The Reynolds number is fixed at Reτ = uτ h/ν = 180, where ν is the kinematic viscosity.

The DNS was conducted by solving the following continuity and momentum equations for an
incompressible flow subjected to a system rotation:

∂ui

∂xi
= 0, (1)

∂ui

∂t
+ uk

∂ui

∂xk
= − 1

ρ

∂ p

∂xi
+ ν

∂2ui

∂xk∂xk
− 2εi jk� juk − 	

ρ
δi1. (2)

Here, ρ represents the density of the fluid, p is the pressure, � j is the angular velocity of the system
rotation in the jth direction, εi jk is the Levi-Civita symbol, 	 is the constant mean streamwise
pressure gradient that drives the flow, and δi j is the Kronecker δ. For a streamwise-rotating
channel flow, � = [�, 0, 0]T . Periodic boundary conditions are imposed in the streamwise and
spanwise directions, and the no-slip boundary condition is prescribed at two solid walls at x2 = ±h.
Equations (1) and (2) are solved using an in-house pseudospectral method code. This computer
code has been extensively tested in the context of nonrotating [35], streamwise-rotating [15,16],
and spanwise-rotating [36,37] turbulent channel flows.

III. EFFECT OF TGL VORTICES ON VELOCITY FLUCTUATIONS

Before starting the analyses of the sustaining mechanism of the TGL vortices, we first show their
major features through the illustration of the instantaneous flow field and energy spectra. Figure 1
visualizes the TGL vortices using the vectors consisting of instantaneous velocity fluctuations

FIG. 1. Visualization of TGL vortices using vectors consisting of instantaneous velocity fluctuations u′
2

and u′
3 and contours of instantaneous streamwise vorticity fluctuations ω′

1 on an x3-x2 plane of the streamwise-
rotating channel flow at Roτ = 150.
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FIG. 2. Contours of instantaneous velocity fluctuations (a) u′+
1 , (b) u′+

2 , and (c) u′+
3 on an x1-x2 plane of

the streamwise-rotating channel flow at Roτ = 150. Note that the ratio between the scales in the x1 and x2

directions has a large value of 300:1.

u′
2 and u′

3 and contours of the instantaneous streamwise vorticity fluctuations ω′
1 on an x3-x2

plane. Because the spanwise domain size is much larger than the channel height, only a portion
of the spanwise domain (from x3/h = 11 to 18) is plotted to show the vortex structures more
clearly. It is seen from Fig. 1 that the large-scale TGL vortex structures form a two-layer pattern
for 13 � x3/h � 18. This is consistent with the TGL vortices observed by Yang and Wang [15]
based on the time-averaged velocity fluctuations. These two-layer vortex structures induce large
magnitude wall-normal velocity fluctuations around x2/h = ±0.5 and large magnitude spanwise
velocity fluctuations near the walls around x2/h = ±0.9 and around the channel center x2/h = 0. At
some other spanwise locations, such as x3/h = 12, one-layer vortices occur due to the coalescence
of corotating vortices, which enhance the wall-normal velocity fluctuations around the channel
center x2/h = 0. The instantaneous TGL vortices shown in Fig. 1 indicate that the occurrence of the
TGL vortices in the streamwise-rotating turbulent channel has a significant impact on the secondary
flow pattern of the turbulence in the cross-stream directions, which leads to the enhancement of the
wall-normal and spanwise velocity fluctuations.

The above results of instantaneous vortex structures show the distribution of the TGL vortices in
the wall-normal and spanwise directions. To further demonstrate the streamwise distribution of the
TGL vortices, the contours of u′+

i are depicted in Fig. 2 where the superscript “+” denotes physical
quantities nondimensionalized using uτ and ν/uτ as the characteristic velocity and length scales,
respectively, with uτ = √

νd〈u1〉/dx2|x2=−h being the streamwise wall friction velocity. Note that
the ratio between the scales in the x1 and x2 directions is set to a large value of 300:1 in the figure to
show the entire streamwise computational domain. Therefore, the streamwise extent of each vortex
structure is actually much larger than its wall-normal size. From Figs. 2(a) and 2(c), it is seen that
the streamwise and spanwise velocity fluctuations, i.e., u′+

1 and u′+
3 , are more active in the near-wall

region around x2/h = −0.9 than in the center region of the channel around x2/h = 0. In contrast, as
shown in Fig. 2(b), the wall-normal velocity fluctuations u′+

2 are more active around x2/h = −0.5
where the cores of one of the two layers of the TGL vortices are concentrated (Fig. 1).
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FIG. 3. Contours of premultiplied energy spectra (a) k+
1 Ẽ+

11, (b) k+
1 Ẽ+

22, and (c) k+
1 Ẽ+

33 on a λ1-x2 plane in
the streamwise-rotating channel flow at Roτ = 150. The cross symbols show the maxima of the premultiplied
energy spectra max(k+

1 Ẽ+
ii ). The hollow triangle in (c) shows the secondary peak of k+

1 Ẽ+
33. The dashed-dotted

lines represent the isopleths of k+
1 Ẽ+

ii = 0.5 max(k+
1 Ẽ+

ii ) and k+
1 Ẽ+

ii = 0.85 max(k+
1 Ẽ+

ii ). Here, the summation
convection over subscript i is not applied. The wave-number λ1 is shown in a logarithmic coordinate.

The premultiplied energy spectra k+
1 Ẽ+

ii is a useful tool for diagnosing the streamwise scale of the

vortex structures, where Ẽii(k1, x2) = Re{û′
i
∗
û′

i} is the streamwise energy spectrum of u′
i. Note that

the summation convention over subscript “i” is not applied. The hat denotes the Fourier coefficient
of an arbitrary variable φ(x1, x2, x3, t ) as

φ̂(k1, x2, x3, t ) = 1

L1

∫ L1

0
φ(x1, x2, x3, t )e−ik1x1 dx1, (3)

where i = √−1 is the imaginary unit and k1 = n1k01 is the streamwise wave number with n1 ∈
[−N1/2, N1/2 − 1] being an integer and k01 = 2π/L1 being the lowest positive wave number in
the streamwise direction. The superscript ∗ and operator Re{ } denote the conjugate and real part
of a complex number, respectively. The overline represents averaging over time t and spanwise
direction x3.

Figure 3 displays the contours of k+
1 Ẽ+

11, k+
1 Ẽ+

22, and k+
1 Ẽ+

33 at Roτ = 150 on a λ1-x2 plane
where the streamwise wavelength λ1 is defined as λ1 = 2π/k1. The wave-number λ1 is shown in a
logarithmic coordinate in all figures of this paper. As shown using the cross symbol in Figs. 3(a) and
3(c), the peaks of k+

1 Ẽ+
11 and k+

1 Ẽ+
33 both occur at x2/h = −0.9, whereas in Fig. 3(b), the maximum
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FIG. 4. Profiles of premultiplied energy spectra k+
1 Ẽ+

i j in nonrotating (Roτ = 0) and streamwise-rotating
(Roτ = 150) channel flows. (a) k+

1 Ẽ+
11 at x2/h = −0.9, (b) k+

1 Ẽ+
22 at x2/h = −0.5, (c) k+

1 Ẽ+
33 at x2/h = −0.9,

and (d) k+
1 Ẽ+

33 at x2/h = 0. The wave-number λ1 is shown in a logarithmic coordinate.

of k+
1 Ẽ+

22 is located at x2/h = −0.5. The contours of k+
1 Ẽ+

33 also show a secondary peak at the
channel center (x2/h = 0). These peaks of k+

1 Ẽ+
i j all occur at large wavelengths ranging from λ1/h =

30 to 90, which can be regarded as characteristic length scales of the TGL vortices. The pattern
of k+

1 Ẽ+
i j shown in Fig. 3 is typical for large-scale streamwise vortical motions. The wall-normal

location x2/h = −0.5 of the maximum of k+
1 Ẽ+

22 indicates the averaged location of the core of the
TGL vortices, whereas the large-scale spanwise motions are enhanced at the bottom and top edges of
the TGL vortices, located around x2/h = −0.9 and x2/h = 0, respectively. The wall-normal location
of the TGL vortices diagnosed from the energy spectra on the λ1-x2 plane is consistent with the
observation of the instantaneous TGL vortices in the physical space shown in Fig. 1.

To further investigate the effect of the TGL vortices on the energy spectra, the profiles of the
premultiplied energy spectra k+

1 Ẽ+
ii in the nonrotating and streamwise-rotating channel flows are

compared in Fig. 4. To focus on the characteristics of the TGL vortices inferred from Fig. 3, the
results are shown at the wall-normal positions corresponding to the peaks of k+

1 Ẽ+
ii at Roτ = 150 in

Fig. 3. Specifically, the profiles of k+
1 Ẽ+

11 and k+
1 Ẽ+

22 are shown at x2/h = −0.9 and x2/h = −0.5,
respectively, whereas those of k+

1 Ẽ+
33 are shown at x2/h = −0.9 and 0. It is seen from Fig. 4(a)

that the peak of k+
1 Ẽ+

11 occurs at a large wavelength [Fig. 3(a)] in the streamwise-rotating channel
flow. It is shown in Sec. IV that this is mainly because of the suppression of k+

1 Ẽ+
11 at small

wavelengths in response to the imposed streamwise system rotation. Figures 4(b)–4(d) show that
the magnitudes of k+

1 Ẽ+
22 and k+

1 Ẽ+
33 at large wavelengths is higher at Roτ = 150 than at Roτ = 0.

These observations of k+
1 Ẽ+

22 and k+
1 Ẽ+

33 directly reflect the characteristics of the TGL vortices,
i.e., the strong motions in a cross-stream plane consisting of wall-normal and spanwise velocity
fluctuations at large streamwise length scales.
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From the above examinations of the instantaneous field and turbulence statistics of a streamwise-
rotating channel flow, we can summarize the following four distinct features of the energy spectra
characterizing the motions of TGL vortices. Given the symmetry of the channel in the wall-normal
direction and the presence of one layer of TGL vortices on each side of the channel, this summary
is based on the lower half of the channel (for −1 � x2/h � 0). There exist:

(i) the suppression of k+
1 Ẽ+

11 at relatively small streamwise wavelengths (for λ1/h < 50) in the
near-wall region (x2/h = −0.9);

(ii) the enhancement of k+
1 Ẽ+

22 at large streamwise wavelengths (peaking at λ1/h ≈ 50) around
the core region of the TGL vortices (x2/h = −0.5);

(iii) the enhancement of k+
1 Ẽ+

33 at large streamwise wavelengths (peaking at λ1/h ≈ 30) around
the bottom edge of the TGL vortices (x2/h = −0.9); and

(iv) the enhancement of k+
1 Ẽ+

33 at large streamwise wavelengths (peaking at λ1/h ≈ 90) around
the top edge of the TGL vortices (x2/h = 0).

These four features of the energy spectra are further investigated in Sec. IV through the analyses
of their transport equations.

IV. ENERGY TRANSPORT PROCESSES FOR SUSTAINING TGL VORTICES

To develop deeper insights into the sustaining mechanism of the TGL vortices, it is useful to
study the energy transport processes at different characteristic length scales. For this purpose, we
study the transport equation of velocity-spectrum tensor, expressed as (see the Appendix for the
derivation)

∂Ẽi j

∂t
= 0 = P̃i j + �̃r

i j + G̃r
i j + �̃c

i j + G̃c
i j + ε̃i j + D̃i j + T̃ p

i j + T̃ s
i j . (4)

The budget terms on the right-hand side of (4) include the production term P̃i j , rotation-induced
redistribution term �̃r

i j , rotation-induced pressure-diffusion term G̃r
i j , convection-induced redis-

tribution term �̃c
i j , convection-induced pressure-diffusion term G̃c

i j , dissipation term ε̃i j , viscous-
diffusion term D̃i j , wall-normal turbulence-diffusion term T̃ p

i j , and the interscale transport term T̃ s
i j ,

which are, respectively, defined as

P̃i j = Re

{
−û′

j û
′
2
∗ ∂〈ui〉

∂x2
− û′

i
∗
û′

2

∂〈u j〉
∂x2

}
, (5)

�̃r
i j = Re

⎧⎨⎩−2�
(
εi1kû′

j û
′
k

∗ + ε j1kû′
i
∗
û′

k

) − 1

ρ
ik1

(
p̂′

r
∗
û′

jδi1 − p̂′
r û′

i
∗
δ j1

)

+ 1

ρ

⎛⎝ p̂′
r
∗ ∂ û′

j

∂x2
δi2 + p̂′

r

∂ û′
i
∗

∂x2
δ j2

⎞⎠ + 1

ρ

⎛⎝ p̂′
r
∗ ∂ û′

j

∂x3
δi3 + p̂′

r

∂ û′
i
∗

∂x3
δ j3

⎞⎠⎫⎬⎭, (6)

G̃r
i j = Re

⎧⎨⎩− 1

ρ

⎛⎝∂ p̂′
r
∗
û′

j

∂x2
δi2 + ∂ p̂′

r û′
i
∗

∂x2
δ j2

⎞⎠⎫⎬⎭, (7)

�̃c
i j = Re

⎧⎨⎩− 1

ρ
ik1

(
p̂′

c
∗
û′

jδi1 − p̂′
cû′

i
∗
δ j1

)

+ 1

ρ

⎛⎝p̂′
c
∗ ∂ û′

j

∂x2
δi2 + p̂′

c

∂ û′
i
∗

∂x2
δ j2

⎞⎠ + 1

ρ

⎛⎝p̂′
c
∗ ∂ û′

j

∂x3
δi3 + p̂′

c

∂ û′
i
∗

∂x3
δ j3

⎞⎠⎫⎬⎭, (8)
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G̃c
i j = Re

⎧⎨⎩− 1

ρ

⎛⎝∂ p̂′
c
∗
û′

j

∂x2
δi2 + ∂ p̂′

cû′
i
∗

∂x2
δ j2

⎞⎠⎫⎬⎭, (9)

ε̃i j = Re

⎧⎨⎩−2ν

⎛⎝k2
1 û′

i
∗
û′

j + ∂ û′
i
∗

∂x2

∂ û′
j

∂x2
+ ∂ û′

i
∗

∂x3

∂ û′
j

∂x3

⎞⎠⎫⎬⎭, (10)

D̃i j = Re

⎧⎨⎩ν
∂2û′

i
∗
û′

j

∂x2
2

⎫⎬⎭, (11)

T̃ p
i j = Re

⎧⎨⎩−1

2

⎛⎝∂ û′
iu

′
2
∗
û′

j

∂x2
+ ∂ û′

ju
′
2û′

i
∗

∂x2

⎞⎠⎫⎬⎭, (12)

T̃ s
i j = Re

⎧⎨⎩1

2

⎛⎝∂ û′
iu

′
2
∗
û′

j

∂x2
+ ∂ û′

ju
′
2û′

i
∗

∂x2

⎞⎠ − ik1
(
û′

j û
′
iu

′
1
∗ − û′

i
∗
û′

ju
′
1

)

− ∂ û′
iu

′
2
∗

∂x2
û′

j − ∂ û′
ju

′
2

∂x2
û′

i
∗ − ∂ û′

iu
′
3
∗

∂x3
û′

j − ∂ û′
ju

′
3

∂x3
û′

i
∗
⎫⎬⎭. (13)

In Eqs. (6)–(9), p′
c and p′

r denote convection-induced pressure and rotation-induced pressure
fluctuations, respectively. The decomposition of the pressure fluctuations follows the decomposition
of pressure p = pc + pr proposed by Yang et al. [16], which separates the nonrotating and rotating
effects on the pressure field. The decomposition procedure starts by taking the divergence of Eq. (2)
and utilizing the continuity equation to obtain

1

ρ

∂2 p

∂xi∂xi
= − ∂ui

∂x j

∂u j

∂xi
+ 2�ω1, (14)

where ω1 = ∂u3/∂x2 − ∂u2/∂x3 is the streamwise vorticity. Equation (14) can be further linearly
decomposed into two equations that govern the convection-induced and rotation-induced pressure
fields, respectively. The convection-induced pressure pc is governed by the following Poisson
equation and boundary condition:

1

ρ

∂2 pc

∂xi∂xi
= − ∂ui

∂x j

∂u j

∂xi
with

∂ pc

∂x2
= ρν

∂2u2

∂x2
2

at x2 = ±h, (15)

whereas the Poisson equation and boundary condition for the rotation-induced pressure pr are
expressed as

1

ρ

∂2 pr

∂xi∂xi
= 2�ω1 with

∂ pr

∂x2
= 0 at x2 = ±h. (16)

The above linear decomposition method for the pressure is unique mathematically as there is a natu-
ral constraint that requires the rotation-induced pressure pr to vanish in the context of a nonrotating
flow, i.e., ∂ pr/∂xi = 0 if � = 0. By applying the decomposition of pressure fluctuations, two new
terms, namely, the rotation-induced redistribution term �̃r

i j and rotation-induced pressure-diffusion
term G̃r

i j are defined to capture the effect of system rotation on the energy transport process. The
physical processes represented by �̃r

i j and G̃r
i j are clear. The function of �̃r

i j is to redistribute energy
among the three normal components of the velocity-spectrum tensor because �̃r

ii = 0 holds strictly.
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The function of G̃r
i j is to transport energy in the wall-normal direction because the integration of G̃r

i j

over x2 is zero, i.e.,
∫ h
−h Gr

i jdx2 = 0.
The rotation-induced redistribution term �̃r

i j in Eq. (7) consists of two parts, namely, the con-
tributions from the Coriolis force �̃rc

i j and the rotation-induced pressure �̃
r p
i j , defined, respectively,

as

�̃rc
i j = Re{−2�(εi1kû′

j û
′
k

∗ + ε j1kû′
i
∗
û′

k )}, (17)

�̃
r p
i j = Re

⎧⎨⎩− 1

ρ
ik1( p̂′

r
∗
û′

jδi1 − p̂′
r û′

i
∗
δ j1) + 1

ρ

⎛⎝ p̂′
r
∗ ∂ û′

j

∂x2
δi2 + p̂′

r

∂ û′
i
∗

∂x2
δ j2

⎞⎠
+ 1

ρ

⎛⎝p̂′
r
∗ ∂ û′

j

∂x3
δi3 + p̂′

r

∂ û′
i
∗

∂x3
δ j3

⎞⎠⎫⎬⎭. (18)

Figure 5 compares the profiles of k+
1 �̃r+

i j , k+
1 �̃rc+

i j , and k+
1 �̃

r p+
i j to demonstrate the purpose of

considering �̃r
i j as a whole in the present analyses of the energy spectra budgets. In consistency

with Fig. 4, the results of the 11-component at x2/h = −0.9, 22-component at x2/h = −0.5, and
33-component at x2/h = −0.9 and 0 are shown in Fig. 5. Because the magnitudes of k+

1 �̃r+
22 and

k+
1 �̃r+

33 are significantly smaller than those of their corresponding two parts, the values of k+
1 �̃r+

22
and k+

1 �̃r+
33 in Figs. 5(b) and 5(c) are amplified by a factor of 10, whereas the value of k+

1 �̃r+
33 in

Fig. 5(d) is amplified by a factor of 50 to ensure a clearer visualization. The value of �̃rc+
11 is zero by

definition in Eq. (17). As a result, the profile of �̃r+
11 overlaps that of �̃

r p+
11 in Fig. 5(a). In the budget

balance of Ẽ+
22 and Ẽ+

33 as shown in Figs. 5(b)–5(d), the behaviors of �̃rc+
i j and �̃

r p+
i j are opposite

each other, indicating that their effects on the transport of energy spectra are mostly canceled out.
As a result, the net rotation-induced redistribution effect as represented by �̃r+

i j is actually much

smaller than that of either �̃rc+
i j or �̃

r p+
i j . As such, the effect of the system rotation on the transport

of energy spectra can be misidentified or exaggerated if only the contribution of the Coriolis force
is considered. For example, as shown in Figs. 5(c) and 5(d), if the attention is solely paid to the
negatively valued �̃rc+

33 , it leads to an erroneous conclusion that the system rotation tends to suppress
the spanwise velocity fluctuations at all streamwise wavelengths. On the contrary, the value of the
rotation-induced redistribution term �̃r+

33 is positive at both small and large wavelengths, indicating
that the net effect of the streamwise system rotation is actually to intensify the spanwise velocity
fluctuations. Furthermore, it is seen from Figs. 5(b)–5(d) that the profiles of �̃rc+

22 , �̃
r p+
22 , �̃rc+

33 , and
�̃

r p+
33 show only one peak, but the profiles of both �̃r+

22 and �̃r+
33 form bimodal shapes. This indicates

that if �̃rc+
i j and �̃

r p+
i j are treated as two independent effects in the budget analyses, the energy

redistribution at certain wavelengths would be overlooked. For example, in Fig. 5(c), both �̃rc+
33 and

�̃
r p+
33 peak at a relatively small wavelength λ1/h = 1.6, but �̃r+

33 shows an additional peak at a much
larger wavelength λ1/h = 30. In other words, considering �̃rc+

33 and �̃
r p+
33 separately would miss the

energy gain by Ẽ33 at large scales through the rotation-induced energy redistribution.
Figure 6 compares the premultiplied budget terms in the transport equation of Ẽ+

11 for the
nonrotating (Roτ = 0) and streamwise-rotating (Roτ = 150) channel flows at x2/h = −0.9. Given
the fact that the streamwise computational domain size is much larger at Roτ = 150 than at Roτ = 0
(Table II), the range of the nondimensionalized streamwise wavelength λ1/h is kept the same in
Figs. 6(a) and 6(b) to make a direct comparison of the characteristic length scales of the budget
terms at these two rotation numbers. Specifically, λ1 ranges from πh/16 (twice the grid resolution
in the x1 direction at both rotation numbers) to 512πh (streamwise computational domain size for
the case of Roτ = 150). The streamwise wavelength corresponding to the peak of k+

1 Ẽ+
11 is shown
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FIG. 5. Premultiplied rotation-induced redistribution term k+
1 �̃r+

i j and its two parts k+
1 �̃rc+

i j and k+
1 �̃

r p+
i j

at Roτ = 150. (a) The 11-component at x2/h = −0.9, (b) 22-component at x2/h = −0.5, (c) 33-component at
x2/h = −0.9, and (d) 33-component at x2/h = 0. Because the magnitudes of k+

1 �̃r+
22 and k+

1 �̃r+
33 are significantly

smaller than those of their corresponding two parts, the values of k+
1 �̃r+

22 and k+
1 �̃r+

33 in panels (b) and (c) are
amplified by a factor of 10, whereas the value of k+

1 �̃r+
33 in panel (d) is amplified by a factor of 50 to ensure a

clearer visualization. The wave-number λ1 is shown in a logarithmic coordinate.

in Fig. 6(b) using the vertical dashed-dotted line as a reference that demarcates the characteristic
length scale of the TGL vortices.

Figure 6 shows two mechanisms in the streamwise-rotating channel flow that dominate the
suppression of k+

1 Ẽ+
11 at relatively small length scales (Fig. 4). The first mechanism is associated with

the reduction of energy production. From the comparison between Figs. 6(a) and 6(b), it is seen that
the wavelengths corresponding to the peaks of k+

1 P̃+
11 in the nonrotating and streamwise-rotating

channel flows are close. This indicates that the energy production in the streamwise-rotating
channel flow is dominated by the near-wall vortex structures as in the nonrotating channel flow.
However, the peak value of k+

1 P̃+
11 is smaller in the streamwise-rotating channel flow than in the

nonrotating channel flow. This is partially responsible for the energy suppression at small scales in
the streamwise-rotating channel flow. In closely relevant to the present paper, the energy suppression
at small scales is also observed in the spanwise-rotating channel flow. As noted by Kawata and
Alfredsson [9], in the spanwise-rotating channel flow, the reduction of energy production at small
scales is the dominant reason for the suppression of near-wall vortex structures. The second
mechanism underlying the suppression of k+

1 Ẽ+
11 at small length scales is the rotation-induced

redistribution term. As shown in Fig. 6(a), in the nonrotating channel flow, the dissipation term ε̃+
11
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FIG. 6. Premultiplied budget terms in the transport equation of spectrum Ẽ+
11 at x2/h = −0.9 for (a) nonro-

tating (Roτ = 0) and (b) streamwise-rotating (Roτ = 150) turbulent channel flows. The vertical dashed-dotted
line demarcates the characteristic streamwise wavelength corresponding to the maximum value of k+

1 Ẽ+
11

[marked by the cross symbol in Fig. 3(a)]. The wave-number λ1 is shown in a logarithmic coordinate.

is the dominant sink term, but Fig. 6(b) shows that, in the streamwise-rotating channel flow, most
energy is consumed by the rotation-induced redistribution term �̃r+

11 , indicating that the effect of
streamwise system rotation tends to transfer more energy from the streamwise velocity fluctuations
to the wall-normal and spanwise velocity fluctuations. The rotation-induced redistribution term is
also responsible for the significant difference in the wavelengths corresponding to the peaks of
k+

1 P̃+
11 and k+

1 Ẽ+
11. It is seen from the comparison between Figs. 4(a) and 6(b) that the peak of

k+
1 Ẽ+

11 occurs at λ1/h = 40, which is much larger than the wavelength corresponding to the peak
of k+

1 P̃+
11. Meanwhile, Fig. 6(b) shows no additional energy production mechanism at λ1/h = 40

that induces the peak of k+
1 Ẽ+

11 there. Therefore, it is evident that the additional energy loss at small
wavelengths due to the rotation-induced redistribution leads to the peak shift of k+

1 Ẽ+
11 to a much

larger wavelength.
To further investigate the contributions of the production term and rotation-induced redistribution

term to the sustaining of the TGL vortices in the streamwise-rotating channel flow, contours of k+
1 P̃+

11
and k+

1 �̃r+
11 on a λ1-x2 plane are displayed in Fig. 7. The isopleth of k+

1 Ẽ+
11 = 0.85 max(k+

1 Ẽ+
11) is

superimposed for the purpose of comparison, which shows the ranges of streamwise wavelength
and wall-normal location where the TGL vortices are energetic. It is seen that on the λ1-x2 plane,
the region with large magnitude of k+

1 Ẽ+
11 (inside the dashed-dotted line) collocates with the

regions with large energy gain through the production term P̃+
11 and relatively small energy loss

through the rotation-induced redistribution term �̃r+
11 [in comparison with that at small wavelengths

outside the dashed-dotted line in Fig. 7(b)]. This observation, together with the result of k+
1 Ẽ+

11
shown in Fig. 4(a), indicates that it is the differences in the energy gain through P̃+

11 and in the
energy loss through �̃r+

11 that determine the energy level of Ẽ+
11. To be specific, at relatively small

wavelengths (λ1/h < 50) in the near-wall region, the summation of k+
1 P̃+

11 and k+
1 �̃r+

11 is smaller
in the streamwise-rotating channel flow than in the nonrotating channel flow, resulting in the
suppression of k+

1 Ẽ+
11 [i.e., feature (i) of the energy spectra summarized in Sec. III].

It is also found that at x2/h = −0.5 (where the cores of the TGL vortices are concentrated), the
maximum value of k+

1 P̃+
11 occurs at a large wavelength of λ1/h ≈ 100, indicating a self-enhancement

behavior of the TGL vortices. Once the TGL vortices appear in the streamwise-rotating channel
flow, they induce energy production at large length scales to sustain the motions of themselves.
Based on the budget analyses of Ẽ+

22, it is shown below that the energy production at large length
scales in Ẽ+

11 is further transferred to Ẽ+
22 through the rotation-induced energy redistribution process,

leading to the enhancement of the wall-normal velocity fluctuations.
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FIG. 7. Contours of key premultiplied budget terms in the transport equation of Ẽ+
11 on a λ1-x2 plane at

Roτ = 150. (a) Production term k+
1 P̃+

11 and (b) rotation-induced redistribution term k+
1 �̃r+

11 . The dashed-dotted
line represents the isopleth of k+

1 Ẽ+
11 = 0.85 max(k+

1 Ẽ+
11). The wave-number λ1 is shown in a logarithmic

coordinate.

Figure 8 compares the premultiplied budget terms of Ẽ+
22 between the nonrotating and the

streamwise-rotating channel flows at x2/h = −0.5, which corresponds to the wall-normal location
of max(k+

1 Ẽ+
22) on the λ1-x2 plane in the streamwise-rotating channel flow [Fig. 3(b)]. As shown in

Fig. 8(a), in the nonrotating channel flow, the dominant source of Ẽ+
22 is the convection-induced

redistribution term �̃c+
22 for λ1/h > 0.5. The TKE is transported to smaller wavelengths by the

interscale transport term T̃ s+
22 and then consumed by the dissipation term ε̃+

22. In comparison
with the nonrotating channel flow, the budget balance of Ẽ+

22 in the streamwise-rotating channel
shown in Fig. 8(b) shows a more complex pattern. The rotation-induced redistribution term �̃r+

22 ,

FIG. 8. Premultiplied budget terms in the transport equation of spectrum Ẽ+
22 at x2/h = −0.5 for (a) nonro-

tating (Roτ = 0) and (b) streamwise-rotating (Roτ = 150) turbulent channel flows. The vertical dashed-dotted
line demarcates the characteristic streamwise wavelength corresponding to the maximum value of k+

1 Ẽ+
22

[marked by the cross symbol in Fig. 3(b)]. The wave-number λ1 is shown in a logarithmic coordinate.
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interscale transport term T̃ s+
22 , wall-normal turbulent-diffusion term T̃ p+

22 , rotation-induced pressure-
diffusion term G̃r+

22 , and convection-induced pressure-diffusion term G̃c+
22 all act as sources at certain

wavelengths. To further examine the contributions of these terms in sustaining the TGL vortices,
the contours of their premultiplied values for the streamwise-rotating channel flow are displayed
in Fig. 9.

From Fig. 9(b), it is seen that, on the λ1-x2 plane, the region featuring large magnitude of k+
1 Ẽ+

22
(area enclosed by the dashed-dotted line) coincides with the region of positively valued interscale
transport term T̃ s

22 (which represents an energy transport among different streamwise wavelengths at
the same wall-normal location). From Fig. 8(b), it is seen that the energy gained by the wall-normal
motions of the TGL vortices at x2/h = −0.5 through T̃ s+

22 comes from both larger and smaller
wavelengths for λ1/h > 100 and λ1/h < 10, respectively. This is different from the nonrotating
channel flow where only energy transport from large to small wavelengths is observed from the
budget balance of k+

1 Ẽ+
22 [Fig. 8(a)]. In other words, the TGL vortices are able to absorb energy

from both larger and smaller eddies to sustain their own motions. Such an interscale energy transport
process, especially the inverse one from small to large scales, is usually crucial for sustaining the
large-scale vortex structures. For example, a similar inverse interscale energy transport process takes
place in the turbulent Couette flow [33,34] to sustain large-scale vortex structures therein [25].

To further track the origin of the energy gain through the interscale energy transport process,
we note that at the wavelengths smaller than the characteristic length scales of the TGL vortices
(i.e., to the left of the region surrounded by the dashed-dotted line in Fig. 9), the dominant
sources are the positively valued rotation-induced redistribution term �̃r+

22 [Fig. 9(a)] and the
wall-normal turbulent-diffusion term T̃ p+

22 [Fig. 9(c)]. The energy gain through �̃r+
22 comes from

the energy redistribution from the streamwise velocity fluctuations to the vertical ones at the same
streamwise wavelength λ1/h and wall-normal location x2/h. The function of T̃ p+

22 is to diffuse
energy from the near-wall region at the same streamwise wavelengths, which also originates from
the streamwise velocity fluctuations through a rotation-induced energy redistribution process [see
the negatively valued k+

1 �̃r+
11 in Fig. 7(b) and positively valued k+

1 �̃r+
22 in Fig. 9(a)]. This indicates

that the additional energy loss of Ẽ+
11 through the rotation-induced energy redistribution process

in the near-wall region at small length scales [Fig. 4(a)] is eventually transferred to Ẽ+
22 at large

length scales around x2/h = −0.5 to sustain the motion of the TGL vortices. In other words, the
suppression of the streamwise velocity fluctuations in the near-wall region is correlated to the energy
supplying process of the TGL vortices. Furthermore, it is seen from Fig. 8 that the magnitude of the
wall-normal redistribution term T̃ p+

22 is much larger in the streamwise-rotating channel flow than
in the nonrotating channel flow, indicating that the TGL vortices are self-enhanced by raising the
energy from the near-wall region to the channel center through a wall-normal turbulent diffusion
process.

The energy production at large scales for λ1/h > 50 around x2/h = −0.5 [as represented by the
positively valued k+

1 P̃+
11 in Fig. 7(a)] also makes a contribution to the sustaining of the TGL vortices.

As shown in Figs. 7(b) and 9(a), the values of the rotation-induced redistribution terms k+
1 �̃r+

11
and k+

1 �̃r+
22 are negative and positive, respectively, at the corresponding streamwise wavelength

λ1/h and wall-normal location x2/h. This indicates an energy transfer from Ẽ+
11 to Ẽ+

22. Although
the characteristic streamwise length scale of the rotation-induced energy redistribution process as
represented by the peak of k+

1 �̃r+
22 (λ1/h ≈ 100) is greater than that of k+

1 Ẽ+
22 (λ1/h ≈ 50) at x2/h =

−0.5 [Fig. 8(b)], this part of redistributed energy is eventually gained by the TGL vortices through
the interscale energy transport process.

The roles of rotation-induced and convection-induced pressure-diffusion terms are opposite each
other on the λ1-x2 plane within the region of k+

1 Ẽ+
22 � 0.85 max(k+

1 Ẽ+
22), leaving a relatively small

net contribution to the wall-normal motions of the TGL vortices. As shown in Figs. 9(d) and 9(e),
the values of k+

1 G̃r+
22 and k+

1 G̃c+
22 are most positive and negative, respectively, at the corresponding x2

locations and wavelengths λ1/h (inside the dashed-dotted line in the figure). The energy gain from
the rotation-induced pressure-diffusion term mainly comes from near-wall x2 locations with negative
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FIG. 9. Contours of key premultiplied budget terms in the transport equation of Ẽ+
22 on a λ1-x2

plane at Roτ = 150. (a) Rotation-induced redistribution term k+
1 �̃r+

22 , (b) interscale transport term k+
1 T̃ s+

22 ,
(c) wall-normal turbulent-diffusion term k+

1 T̃ p+
22 , (d) rotation-induced pressure-diffusion term k+

1 G̃r+
22 , and

(e) convection-induced pressure-diffusion term k+
1 G̃c+

22 . The dashed-dotted line represents the isopleth of
k+

1 Ẽ+
22 = 0.85 max(k+

1 Ẽ+
22). The wave-number λ1 is shown in a logarithmic coordinate.
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FIG. 10. Premultiplied budget terms in the transport equation of spectrum Ẽ+
33 at x2/h = −0.9 for

(a) nonrotating (Roτ = 0) and (b) streamwise-rotating (Roτ = 150) turbulent channel flows. The vertical
dashed-dotted line demarcates the characteristic streamwise wavelength corresponding to the maximum value
of k+

1 Ẽ+
33 [marked by the cross symbol in Fig. 3(c)]. The wave-number λ1 is shown in a logarithmic coordinate.

values of k+
1 G̃r+

22 [Fig. 9(d)], whereas the energy loss to the convection-induced pressure-diffusion
term mainly feeds back to the near-wall region with positive values of k+

1 G̃c+
22 .

In summary of the budget analyses of Ẽ+
22, the enhancement of k+

1 Ẽ+
22 at large wavelengths in

the core region of the TGL vortices [i.e., feature (ii) of the energy spectra summarized in Sec. III]
is induced by the combined effects of the rotation-induced redistribution, wall-normal turbulent
diffusion, and interscale energy transfer. The rotation-induced redistribution process transfers
energy from Ẽ+

11 to Ẽ+
22 at scales that are either larger or smaller than the characteristic streamwise

length scales of the wall-normal motions induced by the TGL vortices. The TGL vortices feature
a self-enhancement behavior through the wall-normal turbulent diffusion process that transports
energy from the near-wall region to the core region of the TGL vortices around x2/h = −0.5.
The energy gained by Ẽ+

22 through the wall-normal turbulent diffusion process mainly concentrates
at length scales that are smaller than the characteristic streamwise length scales of wall-normal
motions induced by the TGL vortices. The energy at both smaller and larger scales is eventually
gained by the TGL vortices through the interscale energy transport process.

At last, we examine the budget balance of the energy spectra of spanwise velocity fluctuations
Ẽ+

33. Figures 10 and 11 compare the premultiplied budget terms of Ẽ+
33 between the nonrotating and

the streamwise-rotating channel flows at x2 = −0.9 and 0, respectively. An interesting observation
from these two figures is that the functions of the interscale transport term T̃ s+

33 are opposite
between the nonrotating and the streamwise-rotating channel flows in both the near-wall region
(x2/h = −0.9) and the central region (x2/h = 0) of the channel. As shown in Fig. 10(a), in the
near-wall region of the nonrotating channel flow, the value of k+

1 T̃ s+
33 is negative and positive at

smaller wavelengths for λ1/h < 2 and larger wavelengths for λ1/h > 3, respectively, indicating
inverse energy transport from small to large streamwise length scales in the near-wall region. By
applying an averaging conditioned by a negative TKE production, Hamba [38] observed that the
inverse energy transport is associated with vortex structures elongated in the streamwise direction.
The spectral analyses also suggest that such an inverse energy transport in nonrotating channel
flow is a direct consequence of vortex motions in the near-wall region [32,39,40]. The streamwise
length scales of these vortices are, indeed, much smaller than those of the TGL vortices, and in the
streamwise-rotating channel, these vortices are suppressed (Fig. 4). As a result, in the streamwise-
rotating channel flow, the inverse energy transport is absent in the near-wall region [Fig. 10(b)].
However, in the central region, the inverse energy transport is seen in the streamwise-rotating
channel only [Fig. 11(b)].
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FIG. 11. Premultiplied budget terms in the transport equation of spectrum Ẽ+
33 at x2/h = 0 for (a) nonro-

tating (Roτ = 0) and (b) streamwise-rotating (Roτ = 150) turbulent channel flows. The vertical dashed-dotted
line demarcates the characteristic wavelengths corresponding to the secondary peak of k+

1 Ẽ+
33 [marked by the

triangle symbol in Fig. 3(c)]. The wave-number λ1 is shown in a logarithmic coordinate.

To further investigate the vortex structures responsible for the inverse interscale energy transport
in the center region of the streamwise rotating channel, we decompose the velocity fluctuations u′

i
into a large-scale part uL

i and a small-scale part uS
i based on a cutoff filter at λ1 = λc in the spectral

space. Since we focus on the inverse interscale energy transport shown in Fig. 11(b), the cutoff
wavelength is set to λc = 50 at which k+

1 T s+
33 = 0. Kawata and Alfredsson [9] adopted a similar

decomposition based on the spanwise wavelength to analyze their experimental data of spanwise-
rotating channel flows. They noted that the interscale and wall-normal transports of Reynolds
stresses are closely connected with the large-scale roll cells. By applying the decomposition
of velocity fluctuations, the interscale transport term T s

i j can be further decomposed into the

contributions from the large-scale motions T s,L
i j , small-scale motions T s,L

i j , and interactions between

large- and small-scale motions T s,LS
i j , defined respectively, as

T̃ s,L
i j = Re

⎧⎨⎩1
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i uL
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∗
⎫⎬⎭, (19)
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i j = Re
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∗
ûS
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ûS

j u
S
1

)

− ∂ ûS
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i
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ûS

j − ∂ ûS
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∗
⎫⎬⎭, (20)

T̃ s,LS
i j = T̃ s

i j − T̃ s,L
i j − T̃ s,S

i j . (21)

Figure 12 compares the premultiplied interscale transport term k+
1 T s+

33 and the three corresponding
parts k+

1 T s,L+
33 , k+

1 T s,S+
33 , and k+

1 T s,LS+
33 . It is seen that the values of k+

1 T s,L+
33 and k+

1 T s,S+
33 are almost

zero at λ1 < λc and λ1 > λc, respectively. This indicates that either large-scale or small-scale
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FIG. 12. Premultiplied interscale transport term k+
1 T s+

33 and the contributions from the large-scale motions
k+

1 T s,L+
33 , small-scale motions k+

1 T s,S+
33 , and interactions between large- and small-scale motions k+

1 T s,LS+
33 at

x2/h = 0 for streamwise rotating channel flow (Roτ = 150). The wave-number λ1 is shown in a logarithmic
coordinate.

motions are insufficient to induce inverse interscale energy transport. The magnitude of k+
1 T s,LS+

33

is larger than that of either k+
1 T s,L+

33 or k+
1 T s,S+

33 , indicating that the interactions between large-scale
and small-scale motions are responsible for the inverse energy transport in Ẽ33 at the center region
of the channel [Fig. 10(b)].

From Figs. 10 and 11, it is seen that besides the interscale transport term T̃ s+
33 , the rotation-

induced redistribution term �̃r+
33 , wall-normal turbulent-diffusion term T̃ p+

33 , and convection-induced
redistribution term �̃c+

33 act as important sources in the streamwise-rotating channel flow at different
x2 locations and wavelengths λ1/h. To develop a deeper understanding of their roles in sustaining
the motion of the TGL vortices, the contours of their premultiplied values are displayed in Fig. 13.
As shown in Fig. 13(a), in the near-wall region, the rotation-induced redistribution term �̃r+

33 is the
dominant source that provides energy to sustain the large-scale spanwise motions. The region with
large magnitude of k+

1 �̃r+
33 collocates with the region for k+

1 Ẽ+
33 � 0.85 max(k+

1 Ẽ+
33), indicating that

the energy redistribution process induced by the imposed system rotation is mainly responsible for
the enhancement of k+

1 Ẽ+
33 at large wavelengths around the bottom edge of the TGL vortices [i.e.,

feature (iii) of the energy spectra summarized in Sec. III].
Around the top edge of the TGL vortices (x2/h = 0), the large-scale spanwise motion induced

by the TGL vortices is mainly sustained by the interscale transport term T̃ s+
33 [Fig. 13(b)], through

which the TGL vortices gain energy from small-scale eddies. To track the origin of this part of
energy at relatively small length scales for λ1/h < 40 (smaller than the characteristic length scale
λ1/h ≈ 90 corresponding to the secondary peak of k+

1 Ẽ+
33), it is seen from Figs. 13(c) and 13(d) that

the wall-normal turbulent-diffusion term T̃ p+
33 and convection-induced redistribution term �̃c+

33 are
the dominant sources. The function of T̃ p+

33 is to transport energy from the core region of the TGL
vortices (around x2/h = −0.5) to the top edge of them (around x2/h = 0). The energy gain through
the convection-induced redistribution term �̃c+

33 for λ1/h < 40 around x2/h = 0 mainly originates
from Ẽ+

22 through negatively valued �̃c+
22 at the same ranges of x2/h and λ1/h (not shown in the

figure), whereas Fig. 9(c) shows that it is also the wall-normal turbulent diffusion term T̃ p+
22 that

transports energy from the near-wall region to the channel center for λ1/h < 40 in the budget of
Ẽ+

22. The above analyses indicate that the wall-normal turbulent diffusion and interscale transport
processes are important for sustaining the spanwise motions of the TGL vortices at the channel
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FIG. 13. Contours of key premultiplied budget terms in the transport equation of Ẽ+
33 on a λ1-x2 plane

at Roτ = 150. (a) Rotation-induced redistribution term k+
1 �̃r+

33 , (b) interscale transport term k+
1 T̃ s+

33 , (c) wall-
normal turbulent-diffusion term k+

1 T̃ p+
33 , and (d) convection-induced redistribution term k+

1 �̃c+
33 . The dashed-

dotted lines represents the isopleths of k+
1 Ẽ+

33 = 0.85 max(k+
1 Ẽ+

33) and k+
1 Ẽ+

33 = 0.5 max(k+
1 Ẽ+

33). The wave-
number λ1 is shown in a logarithmic coordinate.

center that result in the enhancement of k+
1 Ẽ+

33 at large wavelengths around the top edge of the TGL
vortices [i.e., feature (iv) of the energy spectra summarized in Sec. III].

V. CONCLUSIONS

To study the sustaining mechanism of the TGL vortices in the streamwise-rotating turbulent
channel flows, we analyze the transport equation of energy spectra. Two new terms, namely, the
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FIG. 14. Summary of the key features of the energy spectra Ẽii characterizing the motion of the TGL
vortices in the streamwise-rotating channel flow and the dominant energy sustaining processes. The horizontal
and vertical axes represent the streamwise length scale and wall-normal location, respectively.

rotation-induced redistribution term and rotation-induced pressure-diffusion term, are defined to
investigate the effect of the imposed streamwise system rotation on the energy transport process.

Through the budget balance analyses of the energy spectra, it is discovered that there are
four crucial physical processes that sustain the motion of large-scale the TGL vortices. Figure 14
summarizes these four energy sustaining processes of the TGL vortices. The four key features of
the energy spectra Ẽii characterizing the motion of the TGL vortices summarized in Sec. III are
also listed in the figure. As shown, the first process is the energy production at large length scales.
Through this process, the large-scale TGL vortices are able to gain energy from the mean flow
once they are induced in the channel. The second process is the additional energy redistribution
from the streamwise velocity component to the wall-normal and spanwise components. In the
nonrotating channel flow, the convection-induced pressure fluctuation plays an important role in
the energy redistribution, but in the streamwise-rotating channel flow, its role is replaced by the
rotation-induced pressure fluctuation. The magnitude of the rotation-induced redistribution term in
the streamwise-rotating channel flow is larger than that of the convection-induced redistribution
term in the nonrotating channel flow, indicating an enhancing effect of the streamwise system
rotation on the wall-normal and spanwise velocity fluctuations to sustain the vortex motion in
the cross-stream plane. The enhanced wall-normal diffusion is the third important process, which
transports additional energy from the near-wall region to the channel center to sustain the motion
of the TGL vortices. The last key process is the inverse interscale energy transport in the vertical
and spanwise velocity fluctuations, through which the large-scale TGL vortices absorb energy from
small-scale eddies.
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APPENDIX: TRANSPORT EQUATION OF VELOCITY-SPECTRUM TENSOR

The transport equation of the energy spectra Ẽi j in a nonrotating channel flow has been given by
Lumley [29], Mizuno [30], and Lee and Moser [32]. Here, we derive the equation in a streamwise-
rotating channel flow. Detailed analysis of the budget balance of Ẽi j is presented in Sec. IV. The
derivation starts with the following governing equation of instantaneous velocity fluctuations:

∂u′
i

∂t
= −〈uk〉 ∂u′

i

∂xk
− u′

k

∂〈ui〉
∂xk

− ∂ (u′
iu

′
k )
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+ ∂〈u′

iu
′
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∂xk
− δik

ρ

∂ p′

∂xk
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k . (A1)

Applying the Fourier transform (3) to the above equation yields

∂ û′
i

∂t
= −ik1〈u1〉û′
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∂2û′
i

∂x2
2

+ ν
∂2û′
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Note that the fourth term on the right-hand side of Eq. (A1) is independent of x1 in the physical
space. As a result, its Fourier transform is nontrivial only at k1 = 0. Because the value of û′

i is zero
at k1 = 0, the Fourier transform of the fourth term on the right-hand side of Eq. (A1) does not show
in Eq. (A2). Taking the conjugate of Eq. (A2) yields the governing equation of û′

i
∗
, viz.,
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Replacing subscript i with j in Eq. (A2) results in the governing equation of û′
j as
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Multiplying Eqs. (A3) and (A4) with û′
j and û′

i
∗
, respectively, and taking the summation of the two

resultant equations leads to
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j û
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û′

jδi3 + ∂ p̂′

∂x3
û′

i
∗
δ j3

)
− 2νk2

1 û′
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∂ û′
j

∂x2
− 2ν

∂ û′
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Decomposing the pressure term into a redistribution part and a wall-normal diffusion part and
further applying the decomposition of pressure fluctuations p′ into the rotation-induced part p′

r and
convection-induced part p′

c, Eq. (A5) is rewritten as
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− û′
i
∗
û′
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r û′
i
∗
)

∂x3
δ j3

]

− 1

ρ
ik1( p̂′

c
∗
û′
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cû′

i
∗
δ j1) + 1

ρ

[
p̂′

c
∗ ∂ û′
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∂ û′
j

∂x3
+ ν

∂2(û′
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i
∗
û′
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Finally, performing time and spanwise averaging over Eq. (A6) and taking the real part of the
resultant equation results in the transport equation (4) of the velocity-spectrum tensor Ẽi j .
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