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A Method to Determine Material
Length Scale Parameters in
Elastic Strain Gradient Theory
With specimen size decrease for advanced structural materials, the measured mechanics
behaviors display the strong size effects. In order to characterize the size effects, several
higher-order theories have been presented in the past several decades, such as the strain
gradient theories and the micro-polar theories, etc. However, in each higher-order
theory, there are several length scale parameters included, which are usually taken as
the material parameters and are determined by using the corresponding theoretical predic-
tions to fit experimental results. Since such kind of experimental approaches needs high
techniques, it is very difficult to be performed; therefore, the obtained experimental
results are very few until now; in addition, the physical meanings of the parameters still
need to be investigated. In the present research, an equivalent linkage method is used to
simply determine the elastic length parameters appeared in the elastic strain gradient
theory for a series of typical metal materials. We use both the elastic strain gradient
theory and the higher-order Cauchy-Born rule to model the materials mechanics behaviors
by means of a spherical expanding model and then make a linkage for both kinds of results
according to the equivalence of strain energy densities. The values of the materials length
parameters are obtained for a series of typical metal systems, such as the face-centered
cubic (FCC), body-centered cubic (BCC), and hexagonal close-packed (HCP) metals.
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1 Introduction
In the past several decades, with the development of researches

on the mechanical behavior of advanced structural materials
(ASMs), more and more new phenomena about ASMs, such as
micro-/nanostructured materials, etc., have been displayed. One
of the marked phenomena is that the smaller the specimen size,
the stronger the materials strength. These features are called the
size effect. Experiments at the micron/sub-micron scale have
revealed that the size-dependent strengthening is associated with
the strain gradient (SG) effects induced by non-uniform deforma-
tion at micro- or nanoscale, for example, bending of thin beams
whether or elastic plastic [1–4], torsion of thin wires [5,6], and
indentation of materials [7–9]. However, the conventional
mechanics theory (CMT) cannot predict these size effects effec-
tively because no length scales are reflected in the constitutive
model of the CMT. In order to describe the size effects, different
versions of SG theories have been presented [10–18]. In these SG
theories, the strain gradient contributions appearing in the consti-
tutive equations match with the conventional strain terms by intro-
ducing a kind of length parameters which are called material
length scale parameters ℓ. The measurability of the material
length scale parameters in SG theories should be very important.
However, since such kind of experimental approach commonly
needs high techniques, it is very difficult to carry out the experi-
ments of measuring the material length scale parameters;
therefore, the obtained experimental results are very few, in addi-
tion, the physical meanings of the parameters still need to be
investigated, only a few work has focused on the physical
origin of the material length scale [19–24].
The material length scale is usually determined by using the

simulation results of mechanics behavior based on the SG theory

to fit the corresponding experimental measurements [1–6,9]. In
fact, the material length scale is an intrinsic parameter. It is
closely related to the physical mechanism and microstructure for-
mation and evolution of materials at the micron scale. Most early
attempts have been made to give an explanation through fundamen-
tal dislocation physics. Nix and Gao [9] identified ℓ as L2/b, where
L is the average spacing between dislocation and b is the magnitude
of the Burgers vector. Al-Rub and Voyiadjis [19] pointed out that
the material length scale in metals can be considered by itself as
an internal variable representing the dislocation cell structure and
grain size. Fleck and Shu [20] defined ℓ as the fiber thickness
when studying the fiber-reinforced composites. Zhuk et al. [21]
found the ratio between ℓ and the size of small-scale yielding
plastic zone was 0.3 for multilayer film/matrix structures. Liu and
Dunstan [22] established a connection between ℓ and the funda-
mental physical quantities via critical thickness theory. Until now,
the clear physical interpretation of the material length scale still
needs to be investigated.
The physical meaning of the material length scale parameters is

probably that it describes a representative size of strong strain gra-
dient effect zone near interface, or surface, or singular points (such
as crack tip, etc.), when material is loaded, it should be the material
parameter. We have noted that at nano- or micro-scale, one can use
strain gradient theory or use the Cauchy-Born rule (CBR) method to
describe the material mechanical behavior independently; therefore,
we have presented the equivalent method to determine the elastic
length scale parameters appeared in the elastic strain gradient
theory indirectly connected with the interatomic potential parame-
ters (or called the microscopic physical parameters).
In our previous work [25], we paid great attention to the surface

energy density computations, meanwhile the elastic material length
scales for typical face-centered cubic (FCC) metals were deter-
mined through an equivalent condition of the strain energy
density calculated by adopting both the elastic SG theory and the
CBR method based on the Lennard–Jones potential, respectively,
for a physical model, the spherical expanding at nanoscale.
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In the present research, we conduct a more in-depth systematic
study based on the previous work. In addition to the case of the
FCC metals, the parameters ℓ for body-centered cubic (BCC) and
hexagonal close-packed (HCP) typical metals will also be deter-
mined by linking the elastic SG theory and the CBR method.
Both the standard Cauchy-Born rule (SCBR) and the higher-order
Cauchy-Born rule (HCBR) will be considered and compared. The
CBR is broadly used as a bridge to relate the continuum theories
with typical atomic or molecular theories and expresses material
energy and stress by the interatomic potential, which contains the
microscopic physical parameters of the materials such as potential
parameters, lattice constants, etc. Therefore, through the present
method, the microscopic physical characterization for the elastic
material length scale of the elastic SG theory can also be character-
ized and obtained.
The SG theory sometimes was called the cross-scale mechanics

theory by which the mechanics behavior of ASMs which are
designed starting from microstructures is characterized. The macro-
scopic mechanics properties of the ASMs are related to their micro-
structure features. One can simplify the ASMs into the equivalent
homogeneous materials, and their mechanics properties need to
be described by strain gradient theory in elasticity or in elastoplas-
ticity in order to interpret size effect. As conventional material
parameters, the material length parameter appeared in the strain gra-
dient theory should be determined through experiment measure-
ments, however as well known that this kind of experiments is
very difficult to be done so that the progress of the related researches
is very slowly until now. In the present research, we presented a
very simple method (equivalent method) to determine the elastic
length parameter appeared in the elastic strain gradient theory.
We shall adopt the theories that were constructed following from
the thermodynamics way under which it does not matter that the
materials studied are metals or not, although we focus attention to
typical metal materials in the present researches.
The paper is organized as follows. In Sec. 2, the typical theoret-

ical models of the elastic SG theory and the CBR method are briefly
reviewed. In Sec. 3, the parameters ℓ are characterized by adopting
the spherical expanding model. The equivalent condition of linking
the elastic SG theory and the CBRmethod is proposed. In Sec. 4, the
results are analyzed and discussed for typical metal systems, the
FCC, BCC, and HCP metals. The differences between the results
using SCBR and HCBR, the Aifantis SG theory and the simplified
Wei-Hutchinson SG theory are also compared. In Sec. 5, conclu-
sions are given.

2 Related Cross-Scale Theories and Methods
2.1 Elastic Strain Gradient Theory. There are several ver-

sions of elastic SG theories, the material length scales contained
therein are different from each other. There are 18 independent
components (8 antisymmetric components and 10 symmetric com-
ponents) contained in the elastic SG theory established by Mindlin
[26]. For the isotropic materials, the second-order displacement gra-
dient term corresponds to 5 non-classical material length parame-
ters. In view of the difficulty in determining the length scale
parameters, Altan and Aifantis [10] proposed a simplified SG elas-
ticity theory based on Mindlin SG theory [26], in which only one
material length scale is introduced. Gao and Park et al. [17] gave
the variation equations of the theory based on the principle of
energy minimization. Wei and Hutchinson [13] and Wei [14]
further refined the structure of the SG theory based on the frame-
work of the Fleck-Hutchinson SG theory [12]. In the present
work, we will adopt the Aifantis SG elastic theory and the simpli-
fied Wei-Hutchinson SG elastic theory, respectively.

2.1.1 Aifantis Strain Gradient Elastic Theory. For isotropic
elastic materials, the variables included in the Aifantis SG elastic
theory [10,17] are strain ε, Cauchy stress σ, strain gradient κ, and
couple stress μ. The tensor representation of its basic equations

can be expressed as

ε =
1
2
[∇u + (∇u)T], κ =

1
2
∇[∇u + (∇u)T] (1)

σ = λ(∇ · u)I + μ[∇u + (∇u)T], μ = l2∇σ (2)

and the governing equation reads

(1 − l2∇2)[(λ + 2μ)∇(∇ · u) − μcurl(curlu)] + f = 0 (3)

where λ and μ are the Lamé constants, ∇, ∇·, and ∇2 are gradient,
divergence and Laplace operator, respectively, u is displacement
tensor, and l is the material length scale.
The strain energy density based on the Aifantis SG elasticity

theory can be expressed as

wA−SG =
1
2
(σ:ε + μ..

.
κ) (4)

2.1.2 Simplified Wei-Hutchinson Strain Gradient Elastic
Theory. In the framework of the simplified Wei-Hutchinson SG
elastic theory [13,14], the generalized strain tensor includes the fol-
lowing two parts:

εij =
1
2
(ui,j + u j,i), ηijk = uk,ij (5)

Introducing orthogonal decomposition of the strain gradient tensor,

ηijk=
∑4
I=1

η(I)ijk (I ≠ J, η(I)ijkη
(J)
ijk = 0)

η(I)ijk = T (I)
ijklmnηlmn I = 1, 4

(6)

where T (I)
ijklmn(I = 1, 4) are the projection tensors for strain gradient.

For the elastic case, the constitutive equations are [14]

σij =
E

1 + ν
εij +

Eν

(1 − 2ν)(1 + ν)
εkkδij

τijk = 2E
∑4
I=1

l2I T
(I)
ijklmn

{ }
ηlmn, I = 1, 4

(7)

where E and ν are the Young’s modulus and Poisson’s ratio, lI (I=
1, 4) are the material length scales; here, we take the same value
lI = l (I = 1, 4).
The strain energy density based on the simplified Wei-

Hutchinson SG elastic theory can be expressed as

wW−SG =
1
2
(σ:ε + τ..

.
η) (8)

2.2 Cauchy-Born Rule Method. In the present paper,
the SCBR and the HCBR will be adopted and compared, res-
pectively. The SCBR failed when the unconstrained atomistic
deformation became inhomogeneous due to instabilities [27].
Sunyk and Steinmann [28] considered the SCBR in the classical
form as the first term of a Taylor’s series expansion of the defor-
mation field and enhanced this expansion by the second quadratic
term including the higher-order deformation gradient, and proposed
the HCBR.
In the framework of continuum mechanics, the non-linear defor-

mation map φ(X ) relates a point X in the initial configuration before
deformation and a point x in the current configuration after deforma-
tion: x=φ(X ), the local deformation gradient F can be expressed as

F =∇Xφ =
∂φ
∂X

(9)

Considering a crystallite body consisting of N interacting atoms,
the kinematics are then typically represented by the distance vectors
between two atoms labeled i and j, i.e., Rij and rij in the initial and in
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the current configuration, respectively.

Rij = Ri − Rj, rij = ri − rj (10)

The position vectors Ri and ri in both configurations are con-
nected by the non-linear discrete map φ(Ri). The SCBR assumes
that this discrete mapping is replaced by a continuum mapping,
and the relative position of the atoms after deformation is
specified by

rij = F · Rij (11)

The HCBR introduces the second-order deformation gradient G
based on SCBR, and the fundamental relation can be read as

rij = F · Rij +
1
2
G:[Rij ⊗ Rij]

G = ∇F =∇X∇Xφ

(12)

The core of the CBR method used in this paper is to determine
the total energy or energy density of the system. The energy of
the system is a function of degrees of freedom (i.e., the
position of the atoms), and the interaction between atoms is gov-
erned through potential, such as the Lennard–Jones (L–J) pair
potential,

ϕ(rij) = 4e
r0
rij

( )12

−
r0
rij

( )6
[ ]

(13)

in which two atoms i and j are at the relative distance rij. The param-
eters e and r0 represent the energy at the minimum in ϕ(rij) and the
distance to zero. The energy contribution Ei of atom i to the total
energy can be obtained as

Ei =
1
2

∑
j≠i

ϕ(rij) =
1
2

∑
j≠i

ϕ(|rij|) (14)

The strain energy density can be expressed as

wCBR =
ΔEi

Vi
=

1
2Vi

∑
j≠i

[ϕ(|rij|) − ϕ(|Rij|)] (15)

where Vi denotes the effective volume around the atom i,

Vi =
V

N
(16)

where V is the total volume of the body and N is the total number of
the atoms in the body.

3 Physical Model Selection and Solution
In our previous work [25], we used a spherical expanding

cell model and obtained the material length scales for several
typical FCC metals by the linkage of results of the strain
energy density based on the simplified Wei-Hutchinson SG
elastic theory and the HCBR method, respectively. In the present
paper, we conducted further systematic and in-depth researches
on this model for the Aifantis SG elastic theory, the simplified Wei-
Hutchinson SG elastic theory, the SCBR method as well as the
HCBR method, and for typical FCC, BCC, and HCP metals,
respectively.

3.1 Solution Based on Elastic Strain Gradient Theory. Con-
sidering a sphere having the radius R and expanding outward by
the deformation gradient F under the spherical coordinate system

(r, θ, φ), the displacement field has the form

u = u(r)er (17)

According to Eqs. (1)–(4), the strain energy density wA−SG based
on the Aifantis SG elastic theory can be given by

wA−SG =
1
2
(σ:ε+μ..

.
κ)

=
1
2

{
(λ+ 2μ)u′2 + 4λ

u · u′
r

( )
+ 4(λ+μ)

u

r

( )2
+ l2A

[
(λ+ 2μ)u′′2

+ 4λu′′
u′

r
−
u

r2

( )
+ 4(λ+ 3μ)

u′

r
−
u

r2

( )2]}
(18)

where lA is the material length scale in the Aifantis SG elastic
theory.
Combining Eqs. (5)–(8), the strain energy density wW−SG based

on the simplifiedWei-Hutchinson SG elastic theory can be given by

wW−SG =
1
2
(σ:ε + τ..

.
η)

=
1
2

(λ + 2μ)u′2 + 4λ
u · u′
r

( )
+ 4(λ + μ)

u

r

( )2{

+ 2El2W

[
u′′2 + 6

u′

r
−

u

r2

( )2]}
(19)

where lW is the material length scale in the simplified Wei-
Hutchinson SG elastic theory.
The detailed derivation process can be seen in Refs. [17,25], and

the general solution form of the displacement can be expressed as

uSG(r) = Ar +
B

r2
[(r − L)er/L + (r + L)e−r/L] (20)

where L = lA for the Aifantis SG elastic theoryand L =
lW

�������������
2E/(λ + 2μ)

√
for the simplified Wei-Hutchinson SG elastic

theory. The undetermined constants A and B are different for the
two SG elastic theories and can be determined by the outer bound-
ary conditions and the equivalent conditions, which will be given in
detail in Sec. 3.2.

3.2 Solution Based on Cauchy-Born Rule Method. Take the
atom at the center of the sphere as the representative atom i, the
radius at any other atom j is r, under the spherical coordinate
system, the displacement is u(r). The atomic spacing vector before
deformation can be written as Rij= rer, and after deformation, it
becomes rij= (r+ u)er; therefore, the deformation gradient tensor is

F = ∇rij = (1 + u′)erer + 1 +
u

r

( )
(eθeθ + eφeφ) (21)

The second-order deformation gradient is

G =∇F = ∇∇rij

= u′′ererer +
u′

r
−

u

r2

( )
(eθeθer + eφeφer)

+ (1 + u′)∇(erer) + 1 +
u

r

( )
∇(eθeθ + eφeφ) (22)

We introduce an effective deformation gradient F̃, the SCBR and
HCBR can be written in the unified form

rij = F̃ · Rij (23)

For the spherical expanding model, the displacement based on the
CBR can be expressed as

uCBR(r) = F̃rr · r − r (24)

where F̃rr is the radial component of F̃.
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For SCBR, we have F̃ = F; therefore,

F̃rr = 1 + u′CBR(r) (25)

Substituting Eq. (24) into the above equation, we can get F̃
′
rr = 0.

That is to say, the radial component of F̃ is a constant, combining
with the Eq. (21), we obtain

F̃ =
f 0 0
0 f 0
0 0 f

⎡⎣ ⎤⎦ (26)

where f is the spherical expanding ratio, a constant.
For HCBR, the effective deformation gradient can expressed as

F̃ = F +
1
2
G · Rij

= 1 + u′ +
1
2
u′′r

( )
erer + 1 +

u + u′r
2r

( )
(eθeθ + eφeφ) (27)

and its the radial component is

F̃rr = 1 + u′CBR(r) +
1
2
u′′CBR(r) · r (28)

Substituting Eq. (24) into the above equation, we can get
F̃
′′
rr · r + 4F̃

′
rr = 0, which solution is F̃rr = λ0 · r−3 + λ1, where λ0, λ1

are constants. Introducing a dimensionless constant λ2 = λ0/a3,
where a is the lattice size. The radial component of F̃ becomes
F̃rr = λ1 + λ2 · (a3/r3). Combining with the Eq. (27), we obtain

F̃ =
λ1 + λ2 · (a3/r3) 0 0

0 λ1 − λ2 · (a3/2r3) 0
0 0 λ1 − λ2 · (a3/2r3)

⎡⎣ ⎤⎦
(29)

Here, the interatomic potential adopts L–J pair potential, Eq. (13),
and the strain energy density based on the CBRmethod, Eq. (15), can
be rewritten as

wCBR =
ΔEi( F̃; Rij)

Vi
=

1
2

∑
j≠i

Δϕij

Vi

=
N

2V

∑
j≠i

4e
r0
rij

( )12

−
r0
rij

( )6
[ ]

− 4e
r0
Rij

( )12

−
r0
Rij

( )6
[ ]{ }

=
N

2V

∑
j≠i

4e
r0

| F̃ · Rij|

( )12

−
r0

| F̃ · Rij|

( )6
⎡⎣ ⎤⎦⎧⎨⎩

−4e
r0
|Rij|

( )12

−
r0
|Rij|

( )6
[ ]}

(30)

In the CBR method, before an atomic potential is used, the only
thing needs to be done is to determine the deformation gradients.
For the spherical expanding problem in the present research, it can
be done by equivalent conditions, as seen Sec. 3.3. Then, we can sys-
tematically analyze the effect of the ratio of spherical radius to the
lattice size, R/a, on the results.

3.3 Equivalent Method to Determine the Material
Length Scales. For the spherical expanding model, the outer
boundary conditions and the equivalent conditions can be used as
follows:

uSG(r)|r=R = uCBR(r)|r=R
duSG(r)

dr

∣∣∣∣
r=R

=
duCBR(r)

dr

∣∣∣∣
r=R

�wSG = wCBR

⎧⎪⎪⎨⎪⎪⎩ (31)

where �wSG are the average strain energy density of the whole sphere
based on the SG theory and can be obtained by

�wSG =

�
VwSG(r)dV

V
=

�2π
0 dφ

�π
0sin θdθ

�R
0wSG(r)r2dr

V
(32)

Using Eq. (31), one can obtain two unknown constants A and B
in Eq. (20) as well as materials length scale parameter.
It is worth noting that at nano-meter/micron-meter scale, the

strain gradient (second-order deformation gradient) effect is consid-
erably large. Since the SCBR method is based on the first-order
deformation gradient, while the HCBR method considers the
second-order deformation gradients; therefore, the HCBR method
can be considered as a more accurate method than the SCBR
method in determining the length scale parameters through the
equivalent method. Since the elastic strain gradient theory corre-
sponds to small deformation case, we take the same radius and
same radius deformation gradient values as in the strain gradient
elastic theory solution for spherical cell model in order to confirm
the CBR method corresponding to the small deformation case.

4 Results and Discussion
In the solution process according to the equivalent method from

Eq. (31), all known parameters taken here are shown in Table 1.
The dimensionless strain energy density (a3/e)wCBR based on

SCBR for Cu is shown in Fig. 1. We can see that, for different
deformation gradient, the values of the strain energy density gradu-
ally stabilize with the sphere radius increasing, and they become
independent of the spherical radius when the radius is larger than
about 10 times the lattice size a, which is similar to the results cal-
culated by HCBR in literature [25]. The same conclusions have
been drawn from the calculation of the other typical metal material
systems. From Fig. 1, when spherical radius Rwas larger than about
five times the lattice size of metal a, the energy density calculated
from the CBR method is independent of the spherical radius R,
and its variations with radius change ratio f are from increasing at
first stage to decreasing at the second stage.
Therefore, in the present research, we will choose a sufficiently

large spherical radius after the strain energy density is stable. The
results shown in the present paper corresponds to taking as R/a=
10. We have also checked at two cases of R/a= 15 and 20, the
results are very near the case of R/a= 10, and the differences are
within 5%.

Table 1 The related microscopic physics parameters and
macroscopic mechanical parameters for typical FCC, BCC, and
HCP metals adopted in the present research

Metals

Young’s
modulus
(GPa)

Poisson’s
ratio

Lattice
size a
(Å)

L–J
potential

parameter r0
(Å)

L–J
potential

parameter e
(eV)

Cu 119 0.33 3.61 2.28 0.42
Ni 200 0.32 3.52 2.22 0.53
Al 70 0.35 4.05 2.55 0.41
Ag 83 0.33 4.09 2.57 0.35
Pd 121 0.39 3.89 2.45 0.47

Fe 211 0.29 2.93 2.38 0.52
Cr 279 0.21 2.91 2.34 0.50
W 411 0.28 3.17 2.56 1.07
Mo 325 0.29 3.15 2.55 0.84
V 128 0.37 3.03 2.46 0.65

Mg 45 0.29 3.21 2.94 0.18
Zn 105 0.25 2.67 2.45 0.16
Cd 50 0.30 2.98 2.73 0.14
Co 211 0.31 2.51 2.30 0.51
Be 318 0.02 2.29 2.09 0.39

031010-4 / Vol. 87, MARCH 2020 Transactions of the ASME



From Fig. 1, when the ratio of spherical radius to the lattice size,
R/a, is smaller than about 2, the energy density calculated is waved,
this is because that within the sphere, the atoms are very few, and
the distribution regular is poor, so that the law of the deformation
gradient is also poor.
For the combination of both the SCBR method and the Aifantis/

simplified Wei-Hutchinson SG elastic theories, solving the above
Eqs. (17)–(32), one can obtain the corresponding unknown constants
A and B in Eq. (20) and the material length scales lA and lW. The
values of lA for FCC, BCC, and HCP metals are given in Fig. 2. In
order to conform the small deformation, within the typical small
deformation region (1.01, 1.08) of the radius deformation gradient
f, length scale values vary with f. It can be seen that the values of
the material length scale vary with the deformation gradient. The
values of lA for typical FCC metals (Cu, Al, Ag, Ni, Pd) are in the
scope of (0.5, 3) µm, for typical BCC metals (Fe, Cr, W, Mo, V)
are in the scope of (0.2, 1.5) µm, and for typical HCP metals (Mg,
Zn, Cd, Co, Be) are in the scope of (0.1, 1) µm. Within the spherical
expanding deformation gradient (1.01, 1.09), the length scale param-
eters for the above typical metal systems are all on the order of micro-
meters. We also find that the range of the material length scales of
these materials has the following relationship: FCC >BCC>HCP.
The average values of the material length scales �lA and �lW calcu-

lated through the equivalent connection between SCBR and
Aifantis/simplified Wei-Hutchinson SG theory are listed
in Table 2. We can see that the length scales in the two theories
for the same metal are similar in average values, and there is a
common law, that is in FCC metals, Al has the largest value and
Pd has the smallest; in BCC metals, Cr and V have the largest
values and Mo has the smallest; in HCP metals, Cd is the largest,
and Mg is the smallest.
For the combination of both the HCBR method and the Aifantis/

Wei-Hutchinson SG elastic theories, solving the above Eqs. (17)–
(32), one can obtain the corresponding unknown constants A and
B in Eq. (20) and the material length scales lA and lW, as shown in
Fig. 3. The average values are also listed in Table 3. The range of
the values for FCC metals is in 1.2 µm∼ 4.8 µm, BCC metals is in
0.2 µm∼ 2.5 µm, HCP metals is in 0.1 µm∼ 2 µm, and the
common law in the above paragraph is also obtained.
Compared with the results of the SCBR, the values calculated by

the HCBR are generally larger. For different metals in the typical
metal systems, the order of the values calculated by SCBR and
HCBR is consistent, such as Al has the largest material length
scale in FCC metals, etc., and the relationship of FCC>BCC>
HCP is satisfied. For the same metal, the material length scales in
Aifantis SG elastic theory and Wei-Hutchinson SG elastic theory
are almost the same. We can see that the material length scales
can be characterized by the microscopic physical parameters of

(a)

(b)

(c)

Fig. 2 Material length scales for typical metals calculated
through the equivalent connection between SCBR and Aifantis
SG elastic theory: (a) FCC, (b) BCC, and (c) HCP

Table 2 The average values of the material length scales for
several typical metals obtained by SCBR

FCC �lA(μm) �lW (μm) BCC �lA(μm) �lW (μm) HCP �lA(μm) �lW (μm)

Cu 1.92 1.44 Fe 0.62 1.08 Mg 0.46 0.42
Ni 1.67 1.27 Cr 0.90 1.20 Zn 0.56 0.75
Al 2.26 1.55 W 0.60 0.91 Cd 0.64 0.89
Ag 1.84 1.21 Mo 0.47 0.76 Co 0.52 0.47
Pd 1.20 1.03 V 0.86 1.51 Be 0.77 0.43

Fig. 1 Relations of the average strain energy density with a
spherical radius
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the materials. For the relationship among length scale parameters
FCC>BCC>HCP, the main reason is probably that the three
kinds of the crystals display the different magnitudes of volume
energies under loading based on the L–J potential. Certainly, differ-
ent mechanical parameters such as Young’s modulus and Poisson
ratios of the three kinds of crystals cause the different deformation
energies based on the elastic strain gradient theory is another reason.
As a comparison with the L–J potential case, we consider the

embedded atom method (EAM) potential for copper here. EAM
potential is more suitable for metal materials, which was proposed
by Mishin et al. [29] to describe copper, and was improved by
Hijazi and Park [30] for FCC metals. For the present sphere
model, the material length scale parameters of Cu are calculated
using the HCBR method based on EAM potential with Hijazi and
Park’ version by the equivalent method. The comparison of
results based on both L–J potential and EAM potential is shown
in Fig. 4. The average values of the length scale parameters
within the effective region 1.01 <F< 1.06 of the deformation gradi-
ent based on both L–J and EAM potentials are very near each other,
2.89 μm and 2.92 μm.
From above analysis, it is worth noting that in order to determine

the length scale parameters in elastic strain gradient theory, we pre-
sented the equivalent method simply connecting two fully different
theories through energy density equivalency, one is the continuum
cross-scale mechanics method based on the elastic strain gradient
concept, other one is the CBR method based on the interatomic
potential concept. We have an expectation to obtain the average
values of the elastic material length scale parameters within an
effective deformation gradient region. From this kind of equivalent
method, although the material lengths scale change with deforma-
tion gradient, we are more concerned with their average values
within the effective deformation gradient region. From the above
analysis, we found that the strain gradient elasticity effect is impor-
tant, which is consistent with that shown in Ref. [1].
It is also worth noting that in the present paper, we considered a

kind of perfect case (defect-free) in order to determine the material
parameters (length scales in elastic strain gradient theory). After the
material parameters are determined, we can further use the theory to
analyze a true engineering problem, including defect, crack, etc.

5 Conclusion
In the present research, the values of the material length scales are

obtained for several typical metal systems, such as FCC, BCC, and
HCP metals, through using the energy density equivalency based on
the elastic strain gradient theory and the Cauchy-Born rule method.
The ranges of the material length scale obtained by the present

(a)

(b)

(c)

Fig. 3 Material length scales for typical metals calculated
through the equivalent connection between HCBR and Aifantis/
Wei-Hutchinson SG elastic theory: (a) FCC, (b) BCC, and (c) HCP

Table 3 The average values of the material length scales for
several typical metals obtained by HCBR

FCC �lA(μm) �lW (μm) BCC �lA(μm) �lW (μm) HCP �lA(μm) �lW (μm)

Cu 3.17 3.12 Fe 1.04 0.96 Mg 0.78 0.72
Ni 2.77 2.65 Cr 1.52 1.24 Zn 0.94 0.81
Al 3.72 3.82 W 1.01 0.91 Cd 1.22 1.01
Ag 3.05 3.05 Mo 0.78 0.72 Co 0.88 0.82
Pd 2.11 2.53 V 1.45 1.58 Be 1.20 0.93

Fig. 4 A comparison of Cu length scale parameters predicted
using the equivalent method based on both L–J potential and
EAM potential
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microscopic physics method are at the micron level. Through
observing and comparing the results based on the SCBR method
and on the HCBR method, we think that the HCBR method is
more accurate because it can describe both first-order and
second-order effects of deformation gradients effectively, especially
when the non-uniform gradient becomes large. For the typical
metals, there exists a relation on the values of the material length
scale parameters that FCC>BCC>HCP. For the same metal, the
values of the length scale parameters included in different elastic
strain gradient theories obtained from the method are similar. It
shows that the material length scale parameters are closely related
to the intrinsic microscopic physical properties of the material
itself, which is significant to probably make clear the physical
meanings of the material length scales and promote the develop-
ment and application of the cross-scale mechanics theory.
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