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ABSTRACT The aim of this paper is to introduce a new semi-analytical method named pre-
cise integration method of lines (PIMOL), which is developed and used to solve the ordinary
differential equation (ODE) systems based on the finite difference method of lines and the pre-
cise integration method. The irregular domain problem is mainly discussed in this paper. Three
classical examples of Poisson’s equation problems are given, including one regular and two irreg-
ular domain examples. The PIMOL reduces a semi-discrete ODE problem to a linear algebraic
matrix equation and does not require domain mapping for treating the irregular domain problem.
Numerical results show that the PIMOL is a powerful method.

KEY WORDS PIMOL, ODEs, FDMOL, PIM, Poisson’s equation problems, Semi-analytical
(discrete), Irregular domain

1. Introduction
The newly developed semi-analytical algorithm scheme for solving boundary-value problems (BVPs)

of elliptic type, i.e., the precise integration method of lines (PIMOL) discussed in this paper, is based on
the finite difference method of lines (FDMOL) and the precise integration method (PIM). For a review
of the method of line (MOL)-related studies, see, for instance, Ref. [1]. The key is to semi-discretize
a partial differential equation (PDE) into a system of ordinary differential equations (ODEs) defined
on discrete lines by replacing the derivatives with respect to all but independent variables with finite
differences (FDs). The resulting two-point boundary-value ODEs may then be solved by analytical or
numerical methods. The requirement of regular domain, inflexibility of meshes and ODE solving, or
the conventional MOL did not attract much attention, and the related investigations and applications
were limited. Some applications of MOL in the Poisson’s equation and other BVPs can be found in
Ref. [2–5] by Meyer and Janac, respectively. The MOL has also been applied to solid mechanics by
Irob [6], Gyekenyesi and Mendelson [7], Malik and Fu [8, 9], Mendelson and Alam [10], and Alam and
Mendelson [11]. In most of the aforementioned applications, the ODEs were solved by ad hoc shooting-
like numerical processes. Jones et al. [12], however, studied the convergence of the MOL solution and
found that the ODEs resulting from the MOL may be inherently unstable for the shooting methods.
Xanthis [13, 14] and Yuan [15] solved the system of ODEs using an ODE solver and, furthermore,
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developed a new computational tool in structure analysis FEMOL based on the finite element discrete
ideas and a modern ODE solver [15–17]. The PIM is a powerful method for solving ODEs of both
initial problems and boundary-value problems [18–20]. Reference [21] developed a PIMOL scheme in
the regular domain. In this paper, the PIMOL scheme in an arbitrary irregular domain is investigated.
The old method FDMOL equipped with PIM will be gaining new value, power, and efficiency in the
future.

2. PIMOL: Standard Formulation of FDMOL Based on PIM
2.1. The Finite Difference Method of Lines

To explore the FDMOL and the PIMOL, we consider the following Poisson’s equation defined on a
rectangular domain, as shown in Fig. 1 [17]:

∇2u =
∂2u

∂2x
+

∂2u

∂2y
= −f (1)

which is subject to the Dirichlet boundary conditions (BCs):

u = 0 (x = ±a, y = ±b) (2)

For simplicity, we assume that f (x, y) is bi-symmetrical. Thus, we can solve the problem on a
quarter of the domain, which is semi-discretized by N + 1 equally spaced vertical lines with distance
h = a/N , as shown in Fig. 2.

By defining

ui = ui (y) = u (xi, y) (3)

and using the three-point central difference of accuracy O
(
h2

)
to approximate the partial derivatives

with respect to the independent variable x at x = xi,
(

∂u

∂x

)

i

=
ui+1 − ui−1

2h
+ O

(
h2

)
;

(
∂2u

∂x2

)

i

=
ui+1 − 2ui + ui−1

h2
+ O

(
h2

)
(4)

The typical FDMOL equation on an interior line i can be written as a second-order ODE of the
following:

u′′
i = −ui+1 − 2ui + ui−1

h2
− fi (y ∈ (0, b) , i = 2, 3, . . . , N) (5)

where fi = fi (y) = f (xi, y). To establish the FDMOL equation on the first line, an auxiliary line i = 0
is introduced. Using the Neumann-type BC, ∂u/∂x = 0 at the left boundary line yields u0 = u2, which
eliminates the line function u0 at the auxiliary line. The ODE of the first line can be rewritten as

Fig. 1. The Poisson’s equation



Vol. 33, No. 6 Y. Xu: PIMOL: The Finite Difference Method of Lines 825

Fig. 2. PIMOL mesh for a quarter domain

u′′
1 = −2u2 − 2u1

h2
− f1 (y ∈ (0, b)) (6)

For the right boundary line i = N +1, since uN+1 = 0, the ODE on line i = N can be rewritten as

u′′
N = −−2uN + uN−1

h2
− fN (y ∈ (0, b)) (7)

The end-point BCs for each line are

u′
i (0) = 0, ui (b) = 0 (i = 1, 2, 3, . . . , N) (8)

2.2. Precise Integration Method [18]

An ordinary differential equation of any order can be always changed into an equivalent system of
first-order ODEs. A set of ODEs can be given in the matrix/vector form as

v′ = Av + f (9)

where a prime (′) stands for the derivative with respect to ξ, v (ξ) is an n-dimensional vector function
to be determined, A is a given n × n constant matrix, and f (ξ) is a given n-dimensional external force
vector.

For the homogeneous equations,

v′ = Av (10)

because A is a ξ-invariant matrix, its general solution can be given as

v = exp(Aξ) · v0 (11)

where v0 = v (ξ0) is assumed to be a known vector boundary condition.
The solution of Eq. (9) can be obtain using Duhamel’s integration

v = exp (A · (ξ − ξ0)) · v0 +
∫ ξ

ξ0

exp (A · (ξ − ζ)) f (ζ) dζ (12)

The focuses are on the precise calculation of exp(At), t = ξ − ξ0 for a given ξ and the precise
numerical calculation of the second integration part, and the precise numerical integration also focuses
on the precise computation of exp(At) for a given t = ξ − ζ.

The exponential matrix is defined as usual

T = exp (Aξ) = I + Aξ +
(Aξ)2

2
+

(Aξ)3

3!
+

(Aξ)4

4!
+ · · · (13)

the focus of which is on the numerical calculation of the exponential matrix T, as precise as possible.
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(1) Direct Computation Method
Sufficient terms of the series are taken to guarantee the precise of matrix T. For a large N ,

T ≈ TN =
(Aξ)
N

· (Aξ)(N−1)

(N − 1)!
+ TN−1 (14)

(2) The 2N Algorithm
Using the additional theorem of the exponential function,

T = exp (Aξ) ≡
[
exp

(
A

ξ

2N

)]2N

= [exp (Aζ)]2
N

, ζ =
ξ

2N
(15)

exp (Aζ) ≈ I + Aζ +
(Aζ)2

2
+

(Aζ)3

3!
+

(Aζ)4

4!
+ · · · +

(Aζ)K

K!
= I + Ta (16)

For matrix T, Eq. (15) should be factored into

T = (I + Ta)2
N

= [(I + Ta) · (I + Ta)]2
N−1

=
[
I +

(
2Ta + (Ta)2

)]2N−1

(17)

Such factorization should be iterated N times

Ta = 2Ta + (Ta)2 , N times, (18)

and the summation

T = I + Ta (19)

is finally executed.

2.3. PIMOL Algorithm

In order to change the governing equations of Eqs. (5)–(7) into an equivalent system of first-order
ODEs, we define a new identity function on each line as

vi = u′
i (y ∈ (0, b) , i = 1, 2, 3, . . . , N) (20)

and then the governing equations of Eqs. (5)–(7) can be rewritten as the following equivalent system
of first-order ODEs:

⎧
⎪⎨

⎪⎩

v′
1 = − 2u2−2u1

h2 − f1

v′
i = −ui+1−2ui+ui−1

h2 − fi (y ∈ (0, b) , i = 2, 3, . . . , N)

v′
N = −−2uN+uN−1

h2 − fN

(21)

Based on Eqs. (20) and (21), a set of first-order ODEs can be given in the matrix/vector form as

U′ = AU + F (y ∈ (0, b)) (22)

where A is a 2N × 2N matrix:

A =
[

0 a
I 0

]
, a = 1

h2

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

2 −2 0 . . . 0 0 0 . . . 0 0 0
−1 2 −1 . . . 0 0 0 . . . 0 0 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 0 0 . . . −1 2 −1 . . . 0 0 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 0 0 . . . 0 0 0 . . . −1 2 −1
0 0 0 . . . 0 0 0 . . . 0 −1 2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

i

i
a11 = 2, a12 = −2
ai i−1 = −1, aii = 2, ai i+1 = −1, i = 2, 3, 4, . . . , N
the others: aij = 0

U = [v1, v2, v3, . . . vi, . . . , vN , u1, u2, u3, . . . ui, . . . uN ]T
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F = [−f1,−f2,−f3, . . . ,−fi, . . . ,−fN , 0, 0, 0, . . . , 0 . . . , 0]T

In addition, the end-point BCs for each line can also be rewritten as

vi (0) = 0, ui (b) = 0 (i = 1, 2, 3, . . . , N) (23)

2.4. Solution Algorithm

The solutions of Eq. (22) can be expressed as the following by using Duhamel’s integration as Eq.
(12):

U (y) = exp(Ay)U0 +
∫ y

0

exp (A · (y − t)) F (t) dt (y ∈ (0, b)) (24)

When y = b, we have

Ub = TbU0 + F̂b, Tb = exp(Ab), F̂b =
∫ b

0

exp (A · (b − t)) F (t) dt (25)

where Tb is a 2N × 2N matrix and F̂b is a 2N vector.
Substituting Eq. (23) of the end-point BCs into Eq. (25) yields

Ub = TbU0 + F̂b

U0 = [0, 0, 0, . . . 0, u1 (0) , u2 (0) , u3 (0) , . . . ui (0) , . . . uN (0)]T = [0 ū0]
T

Ub = [v1 (b) , v2 (b) , v3 (b) , . . . vi (b) , . . . , vN (b) , 0, 0, 0, . . . 0]T = [v̄b 0]T

Tb =
[

T̄11 T̄12

T̄21 T̄22

]
, F̂b =

[
F̄1 F̄2

]T (26)

Notice that a semi-discrete BV ODE problem is reduced to a set of linear algebraic equations with 2N
unknowns. It is easy to obtain that

{
ūT
0 = −T̄−1

22 F̄T
2

v̄T
b = T̄12ū

T
0 + F̄T

1

(27)

At this point, we can say that the problem is solved. For any point (x, y) in the domain in Fig. 2, the
semi-analytic solutions with respect to y on each line can be obtained by using Eq. (24); for any x
falling out of the mesh lines, the interpolation method and many other methods can be used to obtain
a relatively accurate solution.

3. PIMOL: “Semi”-irregular Domain
Because most engineering problems are not always in the regular domain shown in Fig. 1, we discuss

those that we call “semi-irregular domains,” as shown in Fig. 3. One of the characteristics of these

Fig. 3. PIMOL mesh for semi-irregular domain
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domains is two parallel boundary lines. We arrange equally spaced vertical lines parallel to the parallel
boundary lines for the PIMOL meshing. Only two cases need to be studied: one with one irregular end
line and the other with double irregular end lines.

3.1. The Domain with One Irregular End Line

It suffices to discuss the case as shown in Fig. 3b because a is equivalent to b. The straight end
line is perpendicular to the parallel boundary lines, and it is only a Neumann boundary condition or a
Dirichlet boundary condition. For other cases, the straight end line is a Neumann BC and a Dirichlet
BC, and an initial problem can be solved directly.

We here discuss the BCs in Fig. 3b:

left :
∂u

∂x
= 0; right : u = 0; up :

∂u

∂n
= 0; bottom :

∂u

∂y
= 0

And other cases can be treated similarly. The solution can be expressed as Eq. (24):

U (y) = exp(A · (y − yI))UyI
+

∫ y

yI

exp (A · (y − t)) F (t) dt (28)

When y = yiII , we have

UiII = TiIIUyI
+ F̂iII , TiII = exp(A · (yiII − yI)), F̂iII =

∫ yiII

yI

exp (A · (yiII − t)) F (t) dt

(i = 1, 2, . . . NL) (29)

where for each line i, TiII is a 2N ×2N determined value matrix by PIM, and F̂iII is a 2N determined
column vector by PIM and numerical integration.

The BCs at the lower end points are straight forward:

viI = 0, y = yI (i = 1, 2, 3, . . . , N) (30)

Then, we have

UyI
= [0, 0, . . . , 0, u1 (yI) , u2 (yI) , . . . , uNL (yI)]

T (31)

and the BCs at the upper end point of each line can be approximated by replacing ∂u/∂x with the
finite difference (FD) formula as follows:

v1II = 0 (a)
ui+1(yiII)−ui−1(yiII)

2h nx

∣
∣
∣
iII

+ viII ny|iII = 0 (y = yiII , i = 2, 3, . . . , NL − 1) (b)
−ui−1(yiII)

2h nx

∣
∣
∣
iII

+ viII ny|iII = 0 (y = yiII , i = NL) (c)
(32)

Substituting Eq. (29) into Eq. (32) yields

[T1II [1, 1], T1II [1, 2], . . . , T1II [1, 2NL]]UyI
+ F̂iII [1] = 0

(
T̄NL+i + 2h

nyi

nxi
T̄i

)
UyI

+ 2h
nyi

nxi
F̂iII [i] + F̂iII [NL + i + 1]

−F̂iII [NL + i − 1] = 0 (i = 2, 3, . . . , NL)
T̄NL+i = [TiII [NL + i + 1, 1] − TiII [NL + i − 1, 1], . . . , TiII [NL + i + 1, NL]

−TiII [NL + i − 1, 2NL]]
(i = 2, 3, . . . , NL − 1)

T̄NL+i = [−TiII [2NL − 1, 1],−TiII [2NL − 1, 2], . . . ,−TiII [2NL − 1, 2NL]]. (i = NL)
(33)

Rearranging Eq. (32) gives

T̃uyI
+ F̃ = 0

uyI
= [u1 (yI) , u2 (yI) , . . . , uNL (yI)]

T = −T̃−1F̃
(34)
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The problem can be considered completely solved now. For any point (x, y) in the domain in Fig. 3b,
the semi-analytic solutions with respect to y on each line can be obtained by using Eq. (28), and for
any x falling out of the mesh lines, the interpolation method or many other methods can be used to
obtain a relatively accurate solution.

3.2. The Domain with Double Irregular End Lines

We discuss the BCs in Fig. 3c:

left:
∂u

∂x
= 0; right: u = 0; up:

∂u

∂n
= 0; bottom:

∂u

∂n
= 0

as an example, and other cases can be treated similarly. By introducing an auxiliary line y = ya, the
solution based on that line can be expressed as Eq. (28):

U (y) = exp(Ay)Uya
+

∫ y

ya

exp (A · (y − t)) F (t) dt (35)

When y = yiI and y = yiII , we have

UiI = TiIUya
+ F̂ia, TiI = exp (A · (yiI − ya)) , F̂iI =

∫ yiI

ya

exp (A · (yiI − t)) F (t) dt

UiII = TiIIUya
+ F̂ia, TiII = exp (A · (yiII − ya)) , F̂iII =

∫ yiII

yI

exp (A · (yiII − t))F (t) dt

(i = 1, 2, . . . NL) (36)

where for each line i,TiI and TiII are 2N × 2N determined value matrix by PIM, and F̂iI and F̂iII

are 2N determined column vector by PIM and numerical integration.
The BCs at the lower and upper end points of each line can be approximated by replacing ∂u/∂x

with the FD formula as follows:

v1I = 0 (a)
ui+1(yiI)−ui−1(yiI)

2h nx

∣
∣
∣
iI

+ viI ny|iI = 0 (y = yiI , i = 2, 3, . . . , NL − 1) (b)
−ui−1(yiI)

2h nx

∣
∣
∣
iI

+ viI ny|iI = 0 (y = yiI , i = NL) (c)
(37)

v1II = 0 (a)
ui+1(yiII)−ui−1(yiII)

2h nx

∣
∣
∣
iII

+ viII ny|iII = 0 (y = yiII , i = 2, 3, . . . , NL − 1) (b)
−ui−1(yiII)

2h nx

∣
∣
∣
iII

+ viII ny|iII = 0 (y = yiII , i = NL) (c)
(38)

Substituting Eq. (36) into Eqs. (37) and (38) yields

(a)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[T1I [1, 1], T1I [1, 2], . . . , T1I [1, 2NL]]UyI + F̂iI [1] = 0(
T̂i + 2h

nyiI

nxiI
T̂i

)
Uya + 2h

nyiI

nxiI
F̂iI [i] + F̂iI [NL + i + 1] − F̂iI [NL + i− 1] = 0

(i = 2, 3, . . . , NL)

T̂1 = [T1I [1, 1], T1I [1, 2], . . . , T1I [1, 2NL]]

T̂i = [TiI [NL + i + 1, 1] − TiI [NL + i− 1, 1], . . . , TiI [NL + i + 1, NL] − TiI [NL + i− 1, 2NL]]
(i = 2, 3, . . . , NL− 1)

T̂NL = [−TiI [2NL− 1, 1],−TiI [2NL− 1, 2], . . . ,−TiI [2NL− 1, 2NL]] (i = NL)

(b)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[TiII [1, 1], TiII [1, 2], . . . , TiII [1, 2NL]]Uya + F̂iII [1] = 0(
T̄NL+i + 2h

nyiII

nxiII
T̄i

)
UyI + 2h

nyiII

nxiII
F̂iII [i] + F̂iII [NL + i + 1] − F̂iII [NL + i− 1] = 0

i = 2, 3, . . . , NL
T̄NL+1 = [TiII [1, 1], TiII [1, 2], . . . , TiII [1, 2NL]]
T̄NL+i = [TiII [NL + i + 1, 1] − TiII [NL + i− 1, 1], . . . , TiII [NL + i + 1, NL] − TiII [NL + i− 1, 2NL]]

(i = 2, 3, . . . , NL− 1)
T̄2NL = [−TiII [2NL− 1, 1],−TiII [2NL− 1, 2], . . . ,−TiII [2NL− 1, 2NL]]. (i = NL)

(39)
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Fig. 4. PIMOL mesh for an arbitrary irregular domain

Rearranging Eq. (39) gives

T̃Uya
+ F̃ = 0, T̃ =

[
T̂
T̄

]

Uya
= [v1 (ya) , v2 (ya) , . . . , vNL (ya) , u1 (ya) , u2 (ya) , . . . , uNL (ya)]T = −T̃−1F̃

(40)

The problem is now solved. For any point (x, y) in the domain in Fig. 3c, the semi-analytic solutions
with respect to y on each line can be obtained by using Eq. (35); for any x falling out of the mesh
lines, the interpolation method among many others can be used to obtain a relatively accurate solution
(Fig. 4).

4. PIMOL: Arbitrary Irregular Domain
Special treatment 1 : ΓN for all BCs
It is an underdetermined problem because all Neumann BCs ΓN cannot eliminate the rigid body

displacement, namely the Dirichlet BCs at n points are needed for a n-dimensional problem at least.
Special treatment 2 : ΓD for all BCs
It is a well-posed problem.
Special treatment 3 : ΓD + ΓN for all BCs
It is also a well-posed problem. Because there are at least two overlapped joint points between

different BCs, we only need to mesh at least two lines at the overlapped joint points.
General case :
Simply treating the degenerated lines on the left point C and right point D as Neumann or Dirichlet

BCs as before, and introducing an auxiliary end line y = ya, the solution can be obtained as in Sect. 3.2.

5. Numerical Examples
We use the following three examples, calculated by the self-programming program with the computer

package Maple 17.00 [22], to explore the precision and efficiency of this new semi-analytical algorithm
of PIMOL. The focus is on the numerical integration part in Eq. (24) for a given y. In the present
paper, the Gaussian integral method is adopted to guarantee the convergence of a large-scale matrix A.

Before any numerical examples are given, let us remark that, as a semi-discrete method, the dis-
cretization errors introduced in the FDMOL formulation are limited to the x-direction in terms of h,
as long as the associated ODE system can be accurately solved based on the PIM. Analytical solutions
are obtained along the mesh line by ignoring the error from the numerical integration.

Example 1 Torsion of a square bar with regular solving region

Let a = b = 1, f (x, y) = 2. The corresponding physical model is an elastic torsion of a square bar
or a small deflection of a square membrane subject to a uniform transverse load. The PIMOL meshing
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is shown in Fig. 2. The computational results are given in Table 1. Comparing with the analytical
solution, it can be seen that the accuracy is satisfactory and the convergence of u is indeed within the
order of h2, as shown in Fig. 5.

Example 2 Torsion of a square bar with irregular solving region

Just like Example 1 with a = b = 1, f (x, y) = 2, the corresponding physical model is an elastic
torsion of a square bar or a small deflection of a square membrane subject to a uniform transverse
load. Using bi-directional and diagonal symmetry, we solve this problem on a trapezoidal region of
the domain, as shown in Fig. 6. The computational results are given in Table 2. Although the present
method best suits the domains with two parallel straight boundaries as boundary lines in Fig. 6, we
can still see that the accuracy is satisfactory and the convergence of u is indeed within the order of
h2, as shown in Fig. 7.

Example 3 Torsion of a circular bar

Table 1. PIMOL solution on a square domain

NI h u|o e (%) (error) e
100h2

∂u
∂y

∣
∣
∣
A

e (%) (error) e
100h2

2 0.5 0.575568 2.346739 0.0939 − 1.324137 1.988389 0.0795
3 1/3 0.583066 1.074734 0.0967 − 1.338561 0.920755 0.0829
4 0.25 0.585789 0.612669 0.0980 − 1.343780 0.534442 0.0855
5 0.2 0.587068 0.395685 0.0989 − 1.346227 0.353291 0.0883
6 1/6 0.587768 0.276975 0.0997 − 1.347565 0.254252 0.0915
7 1/7 0.588191 0.205108 0.1005 − 1.348375 0.194315 0.0952
8 0.125 0.588467 0.158347 0.1013 − 1.348902 0.155324 0.0994
9 1/9 0.588656 0.126234 0.1022 − 1.349263 0.128552 0.1041
10 0.1 0.588792 0.103237 0.1032 − 1.349522 0.109382 0.1094
11 1/11 0.588892 0.086208 0.1043 − 1.349714 0.095187 0.1152
12 1/12 0.588968 0.073248 0.1055 − 1.349860 0.084384 0.1215
13 1/13 0.589028 0.063157 0.1067 − 1.349974 0.075973 0.1284
14 1/14 0.589075 0.055147 0.0932 1.350064 0.069276 0.1171
15 1/15 0.589113 0.048683 0.0823 1.350114 0.065564 0.1108
16 1/16 0.589144 0.043392 0.0733 1.350211 0.058437 0.0988
Analytic [23] 0.5894 − 1.351

NL = NI + 1, NI-No. of intervals, NL-No. of lines

Fig. 5. The error of displacement and its derivative along h2
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Fig. 6. PIMOL line meshes or trapezoidal region for a square bar

Table 2. PIMOL solution on a trapezoidal region

NI h u|o e
100h2

∂u
∂y

∣
∣
∣
A

e
100h2

PIMOL [15] PIMOL [15]

2 0.5 0.572797 0.5837 0.1127 − 1.321032 − 1.3421 0.0887
3 1/3 0.581246 0.1245 − 1.336716 0.0952
4 0.25 0.584574 0.1310 − 1.342624 0.0992
5 0.2 0.586228 0.1345 − 1.345462 0.1025
6 1/6 0.587141 0.1380 − 1.347010 0.1063
7 1/7 0.587733 0.1386 − 1.347971 0.1099
8 0.125 0.588083 0.1430 − 1.348573 0.1150
9 1/9 0.588372 0.1412 − 1.349025 0.1184
10 0.1 0.588515 0.5882 0.1501 − 1.349289 − 1.3487 0.1267
Analytic [23] 0.5894 − 1.351

NL = NI + 1, NI-No. of intervals, NL-No. of lines

Fig. 7. The error of displacement and its derivative along h2
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Fig. 8. PIMOL line meshes for a circular bar

Table 3. PIMOL solution on a quarter circular region

NI h u|o e (%) ∂u
∂y

∣
∣
∣
A

e (%)

1/NI PIMOL [15] (error) PIMOL [15] (error)

2 1/2 0.529233 0.50368 5.847 − 1.031530 − 1.00418 3.153
3 1/3 0.519022 3.804 − 1.023028 2.303
4 1/4 0.512815 2.563 − 1.013320 1.332
5 1/5 0.509106 1.821 − 1.009453 0.945
6 1/6 0.506831 1.366 − 1.007037 0.704
7 1/7 0.505370 1.074 − 1.005543 0.554
8 1/8 0.504377 0.875 − 1.004507 0.451
9 1/9 0.503662 0.732 − 1.003758 0.376
10 1/10 0.503122 0.50127 0.624 − 1.003192 − 1.00134 0.319
11 1/11 0.502700 0.540 − 1.002746 0.275
12 1/12 0.502364 0.473 − 1.002408 0.241
13 1/13 0.502091 0.418 − 1.002128 0.213
14 1/14 0.501868 0.374 − 1.001899 0.190
15 1/15 0.501682 0.336 − 1.001708 0.171
16 1/16 0.501524 0.305 − 1.001547 0.155
17 1/17 0.501390 0.278 − 1.001399 0.140
18 1/18 0.501275 0.255 − 1.001291 0.129
19 1/19 0.501174 0.235 − 1.001189 0.119
20 1/20 0.501086 0.50044 0.217 − 1.001099 − 1.00046 0.110
Analytic [23] 0.5 − 1.0

NL = NI + 1, NI-No. of intervals, NL-No. of lines

Figure 8 shows the cross section of a circular bar and the line mesh for PIMOL analysis. With the
knowledge that the exact solution is a quadratic polynomial

u =
(
1 − x2 − y2

)
/2 (41)

this example has been selected to demonstrate the applicability of the proposed method to irregular
domains including curved boundaries (Table 3; Figs. 9, 10).

6. Conclusions
A new semi-analytical method solving BVPs of elliptic type is presented. Three examples of BVPs

of elliptic type are given. The numerical results show that PIMOL is a powerful method. It is of great
value that PIMOL can reduce a semi-discrete BVP to a linear algebraic matrix equation problem.
Based on the numerical experimentation discussed above, the following conclusions can be drawn:
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Fig. 9. The error of displacement and its derivative along h2

Fig. 10. A comparison of the PIMOL solution (NI = 20) with the analytical solution

(1) New semi-analytical method The present method PIMOL is a newly developed semi-analytical
method for elliptic BVPs. In this method, the PDEs defined on arbitrary domains are semi-
discretized by the MOL into a system of ODEs defined on discrete mesh lines, and then, the
analytical result is expressed in algebraic matrix equations using the precise integration method.
The PIMOL completely changes the PDEs of elliptic type into solving a linear algebraic matrix
equation.

(2) Generality PIMOL is not restricted to the Poisson’s equation problems. It can be easily extended
to plane problems, plate-and-shell problems, 3D problems, and so on. It can also be extended to
other subjects such as the pipes conveying fluid, fluid–structure interaction, multi-body dynamics,
and so on. It can be also easily extended to the parametric finite difference method of lines and
finite element method of lines.

(3) Accuracy Theoretically, PIMOL is a semi-analytical method. Such high precision of the results is
guaranteed by semi-discrete approximation of MOL. However, the analytical expression cannot be
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computed directly, and numerical integration with PIM is inevitable. Fortunately, several numerical
algorithms can guarantee desirable accuracy of the solutions.

(4) Reliability The comparisons have shown that the results agree very well with the exact solutions.
(5) Efficiency The present work has demonstrated that PIMOL has high precision and computational

efficiency in solving the PDEs of elliptic type
(6) With PIMOL, irregular domains are no longer needed to be mapped to regular ones when treating

arbitrary irregular domain problems.
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