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a b s t r a c t 

Motived by recent ground-based and microgravity experiments investigating the interfacial dynamics 

of a volatile liquid (FC-72, Pr = 12 . 34 ) contained in a heated cylindrical cell, we numerically study the 

thermocapillary-driven flow in such an evaporating liquid layer. Particular attention is given to the pre- 

diction of the transition of the axisymmetric flow to fully three-dimensional patterns when the applied 

temperature increases. The numerical simulations rely on an improved one-sided model of evaporation by 

including heat and mass transfer through the gas phase via the heat transfer Biot number and the evap- 

orative Biot number. We present the axisymmetric flow characteristics, show the variation of the transi- 

tion points with these Biot numbers, and more importantly elucidate the twofold role of the latent heat 

of evaporation in the stability; evaporation not only destabilizes the flow but also stabilizes it, depend- 

ing upon the place where the evaporation-induced thermal gradients come into play. We also show that 

buoyancy in the liquid layer has a stabilizing effect, though its effect is insignificant. At high Marangoni 

numbers, the numerical simulations revealed smaller-scale thermal patterns formed on the surface of 

a thinner evaporating layer, in qualitative agreement with experimental observations. The present work 

helps to gain a better understanding of the role of a phase change in the thermocapillary instability of 

an evaporating liquid layer. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

A thin fluid layer open to the air is unstable when heated

rom below or cooled from above due to evaporation if the

ayleigh number ( Ra ) exceeds the primary threshold Ra c for purely

uoyancy-driven convection, or if the Marangoni number ( Ma ) ex-

eeds the primary threshold Ma c for purely surface-tension-driven

onvection. These situations with the combined effects of buoy-

ncy and surface tension – referred to as the Rayleigh-Bénard-

arangoni convection instability, arise in a wide range of problems

f fundamental and practical importance (see e.g., recent reviews

y Fauve [1] ; Gallaire and Brun [2] ). 

When the liquid-gas systems are confined by a heated or cooled

idewall relative to the surrounding environment, lateral temper-

ture gradients can result and induce surface-tension-driven flow
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ear the sidewall. It is, therefore, useful to distingush two classes

f instabilities, depending upon whether the applied tempera-

ure gradient is primarily normal to the interface (Marangoni-

onvection instability) or along the interface (thermocapillary-

onvection instability), see the review article by Schatz and Neitzel

3] . 

For Marangoni-convection instability, linear-stability analysis of 

he conductive or basic state (i.e., motionless) predicts two differ-

nt types of primary instabilities that may arise in experiments,

hat is, a short-wavelength instability for thick liquid layers and a

ong-wavelength instability for sufficiently thin liquid layers. Cellu-

ar patterns observed in experiments at convective onset are due

o the short-wavelength models [4,5] . In contrast to the Marangoni

onvection where there exists a critical applied temperature gradi-

nt (normal to the interface), thermocapillary convection appears

henever a surface-temperature gradient exists, no matter how

mall. The problem of stability of these basic (steady convective)

tates is rarely analytically tractable in practice because the ba-

ic states themselves may be unavailable or too complex to deal

ith analytically. Prior research on thermocapillary instabilities has

https://doi.org/10.1016/j.ijheatmasstransfer.2020.119587
http://www.ScienceDirect.com
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Fig. 1. Schematic depiction of the experimental setup. The liquid layer is heated 

from below and from the side. 
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been mostly focused on three configurations due to their relevance

to crystal-growth application, namely, liquid bridge [6,7] , rectangu-

lar layer [8,9] or slot [10] , and annular geometry [11] . 

Buoyancy-driven motion and thermocapillary convection can

operate simultaneously in terrestrial experiments, and the relative

strength of the two mechanisms is given by the ratio Ra / Ma called

the dynamic Bond number ( Bd ). Since Bd ~ gh 2 , with g being the

gravitational acceleration and h the thickness of liquid layer, the

condition for thermocapillarity to dominate over buoyancy in ex-

periments is easily satisfied by choosing h sufficiently small or by

carrying out experiments under microgravity conditions where g

almost vanishes [12–15] . 

Most previous experiments considered that the liquid-gas in-

terface is adiabatic, but the heat and mass transfer through the

interface has a significantly impact on the flow stability. As such,

Li et al. [16] introduced Newton’s cooling law via the Biot num-

ber to represent the heat transfer at the interface. Liu and Kabov

[17] added the evaporation effect on the convective instabilities in

a horizontal liquid layer. Li et al. [18] and Roman et al. [19] used

experimental and numerical methods to investigate the effects of

gas-phase transport on the critical conditions of thermal convec-

tion in an evaporating liquid layer. Wei and Duan [20] investigated

the onset of long-wave-instability in an evaporating liquid layer

subjected to vapor recoil, thermocapillarity, gravity, and ambient

cooling. 

A thin liquid layer with evaporation plays a significant role in

various physical fundamental problems and industrial utilization

including thin-film coating [21,22] , organic electronics [23,24] and

heat-energy engineering [25,26] . In terms of the industrial appli-

cation technology of crystal preparation, it is crucial to study the

flow stability in shallow liquid layers, see the review article by

Imaishi and Kakimoto [27] . Additionally, unlike large-scale ground

fluid systems, the surface tension-driven interfacial flow becomes

the foremost factor affecting the fluid heat and mass transfer pro-

cess in a microgravity environment [12,13] . The research of the

thermocapillary convection stability and heat mass transfer law in

an evaporating thin liquid layer will provide the necessary theo-

retical basis for the design and development of thermal fluid fa-

cilities, such as space heat pipes, fluid-on-orbit management, and

space life support systems. The present work is a part of numer-

ical studies of the space project of the two-phase fluid experi-

ment, which is one of the microgravity fluid physics experiments

scheduled onboard Chinese Tianzhou-1 cargo ship [28,29] . The rea-

son we have selected FC-72 as a working liquid is as follows. Due

to a large number of electronic components in our space experi-

ment equipment, from the perspective of space experiment safety,

the experimental working medium should be dielectric and non-

flammable. FC-72 liquid is non-conductive, non-flammable, non-

toxic, and resistant to pollution, which meets the safety design

principles of space experiments. Furthermore, from the perspective

of flow stability, the surface tension of FC-72 is relatively low that

a small temperature difference can drive the Marangoni convec-

tion in the liquid, which is helpful to obtain physical phenomena

in both ground and space experiments. Also, because of its high

heat exchange efficiency, FC-72 is often used as an experimental

working fluid in heat pipes for space applications. 

The present study is also motivated by recent ground-based ex-

periments [30] investigating the dynamics of an evaporating layer

of FC-72 liquid exposed to the air. The liquid layer is contained in a

shallow cylindrical pool, heated both from below and from the side

at a fixed higher temperature relative to its environment. An over-

head infrared camera is employed to observe the surface tempera-

ture field and the development of the flow pattern in the evaporat-

ing layer. The experiments help to gain a better understanding of

the physics of the thermocapillary instability associated with evap-

orative phase change. Even in the absence of gravity, the thermo-
apillary effect is present, so there doesn’t exist the onset of con-

ection. One would expect a steady axisymmetric flow induced by

hermocapillarity and buoyancy (in the presence of gravity) if the

mposed temperature difference is sufficiently small. Before going

ny further, the primary question of interest concerns the stability

f the steady basic state. 

To the best our knowledge, an evaporating liquid layer sub-

ected to a bidirectional temperature gradient has rarely been stud-

ed in detail experimentally and/or numerically. The present work

ims to predict the stability threshold of the axisymmetric flow

ndergoing a transition to a fully 3D flow pattern, and to study

ow heat and mass transfer across the surface (i.e., liquid-gas in-

erface) affects the transition point, namely the critical Marangoni

umber Ma c . To this end, we perform fully three-dimensional

omputer simulations based on a one-sided evaporation model in

hich vapor dynamics is ignored and the heat and mass fluxes

cross the interface are represented by global transfer coefficients. 

The paper is structured as follows. In Section 2 , we present the

athematical model and basic underlying assumptions. A brief de-

cription of the numerical method used and a mesh convergence

tudy are given in Section 3 . Simulation results are presented and

iscussed in Section 4 , with an emphasis on the transition point

the critical Marangoni number Ma c , and the effects of various

ontrol parameters on Ma c . A summary of the main results of the

resent work and concluding remarks are given in Section 5 . 

. Problem formulation 

.1. Basic assumptions 

We consider a viscous liquid layer enclosed in a cylindrical cell,

s depicted in Fig. 1 . The liquid layer is an incompressible New-

onian fluid with constant material properties and surrounded by

 passive gas, whose viscosity and thermal conductivity are taken

o be very small compared to those of the liquid. The layer is sub-

ected to a bidirectional temperature gradient due to a uniformly

eated ( T h ) bottom wall and sidewall, compared to the far-field

as temperature ( T ∞ 

). Even in the absence of gravity, thermocapil-

arity induces fluid flow in the layer. This flow is coupled to the

uoyancy-driven motion in the presence of gravity. Besides, the

ayer is evaporating, at a rate being dependent on the volatility of

orking fluid. In the present work, the working liquid is Fluorinert

iquid FC-72, which is a clear, colorless, fully-fluorinated liquid. Its

hermophysical properties are listed in Table 1 , in which ρ , μ, ν , α,

, β , σ , and L respectively denote fluid density, dynamic viscosity,

inematic viscosity, thermal diffusivity, thermal conductivity, ther-

al expansion coefficient, surface tension, and the latent heat of

aporization. The surface tension is assumed to be a decreasing

unction of temperature T , i.e., σ (T ) = σ0 (T ∞ 

) − γ (T − T ∞ 

) , where

( ≡ −d σ/ d T > 0 ) is the (negative) temperature coefficient of sur-

ace tension σ . These symbols are to be used straightforwardly

ereafter without specifying again their meanings. 



W. Liu, P.G. Chen and J. Ouazzani et al. / International Journal of Heat and Mass Transfer 153 (2020) 119587 3 

Table 1 

Thermophysical properties of FC-72 at 298.15 K and 1 atm used for calculations. A value of h = 2 mm is used in calculating the dimen- 

sionless groups. 

ρ × 10 −3 μ × 10 4 ν × 10 7 α × 10 8 κ × 10 2 β × 10 3 σ 0 × 10 2 γ × 10 5 L × 10 −4 

(kg m 

−3 ) (kg m 

−1 s −1 ) (m 

2 s −1 ) (m 

2 s −1 ) (W m 

−1 K −1 ) (K −1 ) (N m 

−1 ) (N m 

−1 K −1 ) (J kg −1 ) 

1.68 6.38 3.80 3.08 5.70 1.56 1.06 8.58 8.80 

Fig. 2. A simplified one-sided model of evaporation. A thin liquid layer is enclosed 

in a cylindrical cell of radius R ( R = 10 mm, h = 2 mm). The bottom wall and the 

sidewall in contact with the liquid are maintained at temperature T h ( 	T = T h −
T ∞ > 0 ). 
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As shown in Fig. 2 , the mathematical model of the motion of

 layer evaporating into a passive medium is based on the one-

ided model of evaporation (negligible vapor density and viscos-

ty). Three simplifying assumptions are additionally made: (i) the

iquid layer remains planar, (ii) its thickness h remains constant,

nd (iii) the heat and mass fluxes cross the interface are described

y global heat and mass transfer coefficients. We note that several

reviously reported studies on Rayleigh-Bénard-Marangoni convec-

ion under evaporation used such a one-sided model (e.g., [31–

3] ). 

Doumenc et al. [32] discussed the conditions under which the

rst two assumptions can be adopted. Firstly, surface deformation

an be neglected on scales of order of h if the crispation number Cr

 ≡ μα/( σ 0 h )) � 1 and the Galileo number Ga ( ≡ gh 3 /( να)) � 1.

hese conditions are indeed fulfilled herein since Cr = 9 . 3 × 10 −7 

nd Ga = 6 . 7 × 10 6 (see Table 1 ). Secondly, if the Péclet number

e ( ≡ U ev / U ) � 1, the surface displacement h ′ remains negligi-

le compared to the thickness of the layer h . Here, we estimate

he interface velocity due to evaporation, U ev = κ	T / (ρL h ) , from

 balance of heat transfer and latent heat terms in the interfacial

nergy balance [34] . A characteristic velocity scale, U = γ	T /μ, is

btained by a balance between viscous stress and thermocapillar-

ty along the liquid-gas interface [35] . From Table 1 , we get an es-

imate of Pe ( = h ′ /h ) ≈ 1 . 4 × 10 −6 , thereby justifying the second

ssumption. 

Finally, instead of using the energy balance and mass conser-

ation conditions at the free surface, as in, e.g., [35] , we adopt a

henomenological approach in which the heat flux and mass con-

ervation across the interface are given by global heat and mass

ransfer coefficients. As such, the heat transfer in the gas phase

nd the cooling effect due to evaporation can be described respec-

ively by an equivalent Biot number [31,32,36,37] . Since our main

oncern lies more in the prediction of the instability thresholds of

he basic state and than the detailed account of the transfer, the

ast assumption allows us to greatly simplify the description of the

oupling conditions at the free surface while retaining the physics

f the problem under study. 
.2. Governing equations 

The flow and heat transfer in the liquid layer is governed by

he incompressible Navier-Stokes equations, continuity and energy

quation. We formulate the governing equations in a cylindrical

oordinate system ( e r , e φ , e z ), where the bottom of the layer is

ocated at z = 0 and the upper free surface at z = h . Under the

oussinesq approximation, the velocity field u ( ≡ u r e r + u φe φ +
 z e z ), pressure field p , and temperature field T satisfy 

∂ u 

∂t 
+ 

(
u · ∇ 

)
u = − 1 

ρ
∇ p + ν∇ 

2 u + gβ(T − T ∞ 

) e z , (1a) 

 · u = 0 , (1b) 

∂T 

∂t 
+ 

(
u · ∇ 

)
T = α∇ 

2 T . (1c) 

Here, the density ρ is taken to be the density at T = T ∞ 

. These

quations are subject to appropriate boundary conditions that are

pecified hereafter. 

At the bottom wall and the sidewall, the velocity satisfies the

o-slip condition and the temperature is maintained at tempera-

ure T h , 

 = 0 , T = T h at z = 0 and r = R. (2)

At the upper free surface, the abovementioned first two as-

umptions (i.e., planar and constant layer) lead to a simplified

inematic boundary condition, 

 z = 0 at z = h, (3)

nd a reduced form of the dynamic boundary condition for the

angential stress balance, 

∂u r 

∂z 
= −γ

∂T 

∂r 
, μ

∂u φ

∂z 
= −γ

∂T 

r∂φ
at z = h. (4)

ere, the shear viscous stress (left-hand side term) is balanced

ith the Marangoni stress (right-hand side term) due to the tem-

erature dependence of the surface tension. 

The problem formulation is completed by specifying appropri-

te boundary conditions for the temperature at the free surface,

hich constitutes a key ingredient of the one-sided model of evap-

ration. Fundamentally, the energy balance implies that the heat

ux across the interface experiences discontinuity due to the la-

ent heat of vaporization L , 

 l − q v = j m 

L at z = h. (5)

ere, q l ( ≡ −κ∂ T /∂ z) represents the heat flux in the liquid phase,

nd q v ( ≡ −κv ∂ T /∂ z) represents the heat flux in the gas phase,

hich is modeled using Newton’s law involving the heat trans-

er coefficient h th (in W m 

−2 K 

−1 ). The heat flux is proportional

o the difference in temperature between the surface and ambient

edium far from the surface, 

 v = h th (T s − T ∞ 

) . (6)

The evaporative mass flux of vapor from the layer j m 

(in

g m 

−2 s −1 ) is modeled in a similar manner. It depends on the
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Fig. 3. Estimated evaporative heat transfer coefficient h ev and evaporative Biot 

number B ev as a function of the applied substrate temperature T h (at T ∞ = 25 ◦C ). 

Experimental data of the average evaporation rate are taken from Ref. [30] . 

Fig. 4. Comparison of the surface temperature profile between the present numer- 

ical simulation and the experimental measurement by Zhu and Liu [41] 
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saturation pressure, the vapor diffusivity, and the far-field concen-

tration: 

j m 

≡ −D∂ c/∂ z = h m 

(c sat (T s ) − c ∞ 

) , (7)

where D denotes the mass diffusivity of vapor in the ambient air,

c is the mass concentration of the liquid vapor, c sat and c ∞ 

repre-

sent the vapor concentration in the gas-phase near the surface and

far from the surface, respectively, and h m 

is the phenomenological

mass transfer coefficient in the gas (in m s −1 ). The mass flux j m 

is

readily converted into a heat flux. To that, we use the evaporative

resistance model [38] , we then have 

j m 

L = h ev (T s − T ∞ 

) , (8)

where h ev is the evaporative heat transfer coefficient. Giustini

et al. [38] provided an estimate for its value. It depends on the

fluid properties, and in particular on the evaporation coefficient

and the latent heat of evaporation. We shall estimate h ev based

on our ground evaporation experiments [30] . 

Putting them together, we obtain the final expression for this

one-sided model: 

κ
∂T 

∂z 
+ h th (T − T ∞ 

) + h ev (T − T ∞ 

) = 0 at z = h. (9)

While it is possible to use a global transfer coefficient by combin-

ing the two heat transfer coefficients, we distinguish the two terms

here to examine their contributions separately. 

We now nondimensionalize the governing equations and

boundary conditions. Here, it is natural to use the thickness of the

liquid layer h as the length scale, a characteristic surface-tension-

driven velocity U ( = γ	T /μ) for the velocity scale, h / U for the

time scale. The nondimensionalization leads to equations for the

velocity field u and temperature θ ( ≡ (T − T ∞ 

) / 	T ) (all variables

and parameters are henceforth dimensionless): 

∂ u 

∂t 
+ 

(
u · ∇ 

)
u = −∇ p + 

P r 

Ma 
∇ 

2 u + Bd 
P r 

Ma 
θ e z , (10a)

∇ · u = 0 , (10b)

∂θ

∂t 
+ 

(
u · ∇ 

)
θ = 

1 

Ma 
∇ 

2 θ, (10c)

∂u r 

∂z 
+ 

∂θ

∂r 
= 

∂u φ

∂z 
+ 

∂θ

r∂φ
= 0 at z = 1 , (10d)

∂θ

∂z 
+ Bi θ + B ev θ = 0 at z = 1 , (10e)

u z = 0 at z = 1 , (10f)

u r = u φ = u z = 0 , θ = 1 at z = 0 , (10g)

u r = u φ = u z = 0 , θ = 1 at r = 5 . (10h)

Hence, the flow in the liquid layer is determined by five inde-

pendent dimensionless parameters: the Marangoni number Ma , the

dynamic Bond number Bd ( ≡ Ra / Ma , instead of using the Rayleigh

number Ra ), the Prandtl number Pr , the (heat transfer) Biot num-

ber Bi , and the evaporative Biot number B ev : 

Ma = 

γ	T h 

μα
, Bd = 

ρgβh 

2 

γ
, P r = 

ν

α
, 

Bi = 

h th h 

, B ev = 

h ev h 

. 

κ κ
We shall note that for our particular working fluid FC-72 (see

able 1 ), we have P r = 12 . 34 . We study two scenarios for a layer

f 2 mm thick to simulate microgravity and normal gravity condi-

ions, respectively: one is 0g, i.e., Bd = 0 , and the other is 1g, i.e.,

d = 1 . 2 . We also note that in Eq. (10e) the term Bi θ represents

he heat transfer in the gas phase and the term B ev θ describes the

ooling effect due to evaporation. While we may define a global

iot number by combining the two Biot numbers, we retain the

wo Biot numbers to examine their individual effects. Another rea-

on is that in a well-controlled physical experiment heat loss to

he ambient gas is generally small, meaning a small Biot number,

sually Bi < 1. A value of Bi = 0 represents a perfectly insulated in-

erface. By contrast, the evaporative Biot number is relatively large.

We use the average evaporation rate obtained in Ref. [30] (their

ig. 4 ) to estimate the evaporative heat transfer coefficient h ev and

he evaporative Biot number B ev . Specifically, Eq. (8) allows for an

stimate of h ev for a given average evaporation rate if we assume

 s − T ∞ 

≈ T h − T ∞ 

(which is not true since T s < T h ). In this sense,

he value of h ev is underestimated to some extent. Given that we

re at the lower temperature range (i.e., 25 ~ 35 ◦C) and according

o Fig. 3 , it is a reasonable assumption if we set B ev ≈ 2.0. Hence,

n simulations, we vary the Biot number from 0.05 to 1 while set-

ing B ev = 0 without evaporation or B ev = 2 with evaporation. As

uch, for a given set of dimensionless groups (i.e., Bd, Bi , and B ev )

he only control parameter becomes the Marangoni number Ma ,
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Table 2 

Discretization errors on four non-uniform grids. The parameters are Bd = 0 , Bi = 0 . 2 , B ev = 0 , and Ma = 200 . 

Grid No. N r × N φ × N z (CVs) θmin εθ (in %) u max εu (in %) Kinetic Energy( E ) εE (in %) 

1 100 × 20 × 20 0.8338 0.25 1.707 × 10 −2 5.73 6.106 × 10 −4 4.19 

2 150 × 30 × 30 0.8326 0.11 1.765 × 10 −2 2.52 5.974 × 10 −4 1.94 

3 200 × 40 × 40 0.8321 0.05 1.793 × 10 −2 0.98 5.875 × 10 −4 0.25 

4 250 × 50 × 50 0.8317 - 1.811 × 10 −2 - 5.860 × 10 −4 - 
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hich corresponds to an actual control parameter in physics ex-

eriments – the applied temperature difference 	T . Our main goal

s to elucidate the features of the flow and examine how the flow

attern changes with Ma , and particularly determine the critical

arangoni number Ma c beyond which the basic flow undergoes a

ransition to 3D pattern. 

. Numerical simulation 

.1. Simulation code 

Numerical simulations are performed in the cylindrical coor-

inate system ( r, φ, z ) using PHOENICS 2018 [39,40] , a commer-

ial computational fluid dynamics (CFD) software. PHOENICS is

 general-purpose CFD code simulating steady or unsteady, two-

r three-dimensional turbulent or laminar, single-phase or multi-

hase, compressible or incompressible flows. The numerical proce-

ure is of the finite-volume type in which the original partial dif-

erential equations are converted into algebraic finite-volume equa-

ions with the aid of discretization assumptions for the transient,

onvection, diffusion and source terms. For that purpose, the solu-

ion domain is subdivided into several control volumes on a mono-

lock mesh using a conventional staggered-grid approach. All field

ariables except velocities are stored at the grid nodes, while the

elocities themselves are stored at staggered cell-face locations

hich lie between the nodes. The finite-volume equations for each

ariable are derived by integrating the partial differential equations

ver each control volume. Fully implicit backward differencing is

mployed for the transient terms, and central differencing is used

or the diffusion terms. The convective terms are discretized us-

ng hybrid (central or upwind) differencing. The integration proce-

ure results in a coupled set of algebraic finite-volume equations

hat express the value of a variable at a grid node in terms of the

alues at neighboring grid points and the nodal value at the old-

ime level. The finite-volume equations are solved iteratively using

IMPLEST algorithm of Spalding, which is embodied in PHOENICS

or the solution of single-phase. The algorithm is a segregated so-

ution method that employs pressure-velocity coupling to enforce

ass conservation by solving a pressure-correction equation and

aking corrections to the pressure and velocity fields. 

.2. Model validation 

We begin with the estimation of discretization errors. We per-

ormed computations on four non-uniform grids consisting of

 r × N φ × N z control volumes (CVs), where N r , N φ , and N z de-

ote the number of control volumes in the radial, azimuthal, and

xial direction, respectively. The fine grid is near the walls and the

ree surface whereas the coarse grid is in the middle of the solu-

ion domain. Taking the finest grid 250 × 50 × 50 as an estimated

rid-independent solution, we compute the relative difference in

he solutions ε (in %) as compared to the solution obtained on

he finest grid, for the minimum temperature of the liquid layer

 θmin ), the maximum velocity ( u max ), and the total momentum ( E ).

s shown in Table 2 , these differences are less than 1% on the

00 × 40 × 40 CV grid. Therefore all the subsequent computations

re performed on this grid. 
Before presenting numerical results there is a need to validate

he present numerical model by comparing simulation results with

reviously reported experimental data. To that end, the numer-

cal code has been accommodated to simulate an experimental

tudy [41] . The experiment consists of an evaporating thin liquid

ayer ( h = 2 mm) of 0.65 cSt silicone oil ( P r = 6 . 7 ) subjected to

 lateral temperature difference 	T = 2 ◦C . We used a combined

iot number equal to 0.2 (i.e., Bi + B ev = 0 . 2 ), which is estimated

rom the experimental data. The surface temperature profile ob-

ained from the numerical simulation with these parameters is

ompared with the experimental measurement by a thermocou-

le. The comparison in Fig. 4 shows a very good agreement. The

btained steady-state unicellular flow pattern also agrees with the

IV (Particle Image Velocimetry) result (not shown). We also pro-

ide an additional comparison with experimental observations in

ection 4.3 , where we demonstrate the present numerical model

ncludes the essential ingredients capable of describing the emer-

ence of pattern formation in an evaporating thin layer of FC-72. 

. Results and discussion 

.1. Steady axisymmetric flow 

.1.1. Thermocapillary-driven flow 

The axisymmetry of the geometry and steady axisymmetric

oundary conditions allow for a steady axisymmetric basic flow.

t is in particular true for relatively small Marangoni numbers. As

n example, we use the setting of Bd = 0 , Bi = 0 . 2 , B ev = 0 and

a = 300 to illustrate the characteristic features of the purely ther-

ocapillary flow in the absence of evaporation. 

Due to the presence of the heated sidewall, which is at constant

emperature ( θ = 1 ), a positive temperature gradient arises close to

he sidewall. The temperature gradient induces locally high ther-

ocapillary stresses, which give rise to a fluid motion from the

ot (periphery) to the cold (middle) region on the free surface.

he flow penetrates the bulk through viscous coupling to the mo-

ion on the free surface, forming a counter-rotating cell in the layer

ear the sidewall, as shown in Fig. 5 . It is also shown that the

entral region of the layer is almost motionless. The center of the

ortex appears to move toward the center of the layer when the

arangoni number is further increased. This thermocapillary flow

tructure is similar to the flow occurring in an open rectangular

avity whose vertical endwalls are maintained at different temper-

tures (e.g., [42,43] ). 

The flow is driven by thermocapillarity, so we define an effec-

ive driving temperature difference as 1 − θmin , with θmin a mini-

um temperature on the free surface ( θmax = 1 ). The coupling be-

ween the temperature gradient on the free surface and the sur-

ace flow is clearly shown in Fig. 6 . It is seen that the surface

emperature decreases rapidly, reaching a minimum temperature

min where the effective length l eff ( ≈ 2.5) is located. These large

emperature gradients induce relative large radially inward surface

ow in the region near the sidewall. The surface temperature dis-

ribution is then followed by a plateau with a weak (local) max-

mum developing at r ≈ 2 which reduces the driving forces over

his large portion of the surface; the outward surface flow becomes

eak and vanishingly small near the axis. The flow reversion is
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Fig. 5. Surface temperature field (top), temperature and velocity fields (bottom) on 

the cross-section. The parameters are Bd = 0 , Bi = 0 . 2 , B ev = 0 , and Ma = 300 . The 

effective driving temperature difference is indicated as ( 1 − θmin ) over an effective 

distance l eff . 

Fig. 6. The radial velocity ( u r ) profile (solid line, left axis) and the temperature 

(dash-dotted line, right axis) distribution on the free surface. The parameters are 

the same as in Fig. 5 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. The radial velocity profile and the temperature distribution on the free sur- 

face for two Biot numbers, Bi = 0 . 1 and Bi = 0 . 2 , for Bd = 0 and Ma = 300 . 

Fig. 8. A comparison of the interfacial temperature distributions and radial velocity 

profiles with and without evaporation, both for 0g and 1g, for Bi = 0 . 2 , and Ma = 

100 . 
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due to a change of sign in the surface temperature gradient, at the

point θ = θmin . 

4.1.2. Influence of the Biot number 

An important influential parameter on the thermocapillary flow

is the Biot number Bi , which characterizes the heat transfer in the

ambient gas. An adiabatic free surface, i.e., Bi = 0 , is not allowed

since the temperature would be uniform in the whole domain cor-

responding to the imposed wall temperature θ = 1 and, therefore

there would be no fluid motion. On the contrary, for very large val-

ues of Bi the surface temperature tends to be imposed by the am-

bient gas, i.e., θ s → 0. Hence, increasing the Biot number reduces

the interfacial temperature and increases the temperature gradi-

ents on the free surface, which enhances the thermocapillary flow.

Fig. 7 shows the temperature distribution along the free surface

and the radial velocity profile for two Biot numbers. Even a slight

increase in the Biot number, i.e., from 0.1 to 0.2, can result in a

notable decrease in the surface temperature and an increase of the

surface flow. Again, the radial velocity profile is dictated by the

temperature distribution on the free surface, as discussed before. 

4.1.3. Evaporative cooling effect 

Owing to the high volatility of FC-72 liquid, the evaporative

cooling, which is described by a high evaporative Biot number
 ev ( = 2), has significant effects on the thermocapillary flow. As

an be seen clearly in Fig. 8 , the latent heat of evaporation sub-

tantially reduces the interfacial temperature with a tendency to

ake the temperature closer to the saturation temperature, much

igher temperature gradients are created near the sidewall com-

ared to the situation without evaporation, which greatly enhances

he flow. The enhanced surface flow near the sidewall amplifies the

hermocapillary-driven vortex with its center shifting inward. The

ow inversion on the free surface occurs at θ = θmin . The reversed

ow is, however, very weak due to the presence of a temperature

lateau; the effect of evaporation is insignificant in this region ex-

ept for shrinking the plateau. 

.1.4. Thermocapillary-buoyant flow 

The combined thermocapillarity, buoyancy, and evaporation are

lso shown in Fig. 8 . In the present setting, the buoyancy-driven

ow has little effect on the temperature distribution on the free

urface. Buoyancy forces slightly augment the thermocapillary flow

oth in the radially inward flow (close to the sidewall) and in the

utward flow (in the central region), so the flow is predominantly

riven by thermocapillary forces, slightly altered by buoyancy ef-

ects. 

In normal gravity with a dynamic Bond number of Bd = 1 . 2 ,

ne would expect a pronounced effect of buoyant body forces on
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Fig. 9. The ratio E φ / E 0 as a function of the Marangoni number for Bd = 0 , Bi = 0 . 2 , 

and B ev = 0 . 
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Fig. 10. Critical Marangoni number Ma c as a function of the Biot number Bi for 0g 

and 1g, and without evaporation (black) and with evaporation (red), along with the 

best-fit curves. 
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he thermocapillary-driven flow. The reason for such a small effect

s the reduced temperature difference across the layer between the

ottom wall ( θw 

) and the upper surface ( θ s ). Since θw 

− θs < 0 . 4

cf. Fig. 8 ), the effective dynamic Bond number is de facto reduced

y at least 60%, leading to Bd eff ≈ 0.5. 

To close this subsection, we should mention that the flow char-

cteristics are very much dependent on the Marangoni number

nd, therefore all the above description is limited to the axisym-

etric flow, i.e., a low-Marangoni-number flow. 

.2. Flow transition 

.2.1. Prediction of the transition 

By increasing the Marangoni number, the numerical simula-

ions reveal the emergence of a new steady-state flow; the ax-

symmetric flow undergoes a symmetry breaking, giving rise to

 fully three-dimensional (3D) steady flow. To predict a critical

hreshold of stability (i.e., the critical Marangoni number Ma c ) be-

ond which the transition takes place, we calculate the ratio of

 φ / E 0 , with E φ ( ≡ ∫ 
u 2 
φ

dV ) the azimuthal kinetic energy and E 0 

 ≡ ∫ 
(u 2 r + u 2 

φ
+ u 2 z ) dV ) the total kinetic energy of the flow. When

his ratio is less than a certain percent, say 1%, the computed flow

s considered axisymmetric, otherwise, it is within the 3D flow

egime. Fig. 9 gives an example of how Ma c is determined as a

unction of the ratio E φ / E 0 . In this setting, the critical Marangoni

umber Ma c is predicted to be about 340. While we emphasize the

teady-state nature of the 3D flow, we haven’t attempted to deter-

ine the nature of the bifurcation – namely whether it is super-

ritical or subcritical. Such an attempt would involve considerable

umerical computations of the flow very close to the transition

oint, which is certainly beyond the scope of the present work.

owever, a linear stability analysis (e.g., [44,45] ) of the basic state

an be applied to precisely determine the instability threshold and

dentify the underlying mechanisms. 

.2.2. Critical Marangoni number 

A systematic parametric study is carried out to investigate the

ffects of influential parameters on the critical Marangoni number.

s shown before, one of the most important parameters is the Biot

umber. Therefore, we plot in Fig. 10 the variation of the critical

arangoni number Ma c vs. the Biot number Bi under different con-

itions. The Biot number Bi is assumed to be relatively small, rang-

ng from 0.05 to 1, while the evaporative Biot number B ev is taken

o be 2, based on our ground and space experiment. 

It is clearly shown that the critical Marangoni number depends

trongly on the Biot number in the absence of evaporation since

a c remarkably follows a power law, i.e., Ma c ∼ Bi −2 / 3 ( Bi ≤ 1). For
 larger Biot number, say Bi > 1, a saturation regime is reached

herein the critical Marangoni number remains roughly constant

 Ma c ≈ 120). This explains why the critical Marangoni number

aries slightly with Bi in the case of evaporation; the evaporative

ooling results in a combined Biot number greater than 2. 

In dynamic thermocapillary liquid layers, viscous and thermal

iffusion has a stabilizing effect by providing restoring forces [3,8] .

he numerical results shown in Fig. 10 give some insight into the

echanisms of instability. The enhanced thermocapillary-driven

ow due to evaporation greatly contributes to the destabilization,

eading to a lower bound of the critical Marangoni number approx-

mating 120. Counter-intuitively, buoyancy effects stabilize the ba-

ic flow, especially for very small values of Bi (i.e., Bi < 0.1). For

arger values of Bi , the effects of buoyancy are virtually invisible

cf. Fig. 10 ). 

.2.3. Effective critical Marangoni number 

We introduce the effective Marangoni number based on an ef-

ective thermocapillary-driven velocity u eff, 

a eff = 

u eff h 

α
, (11) 

ith u eff being given by a balance of stresses in the radial direction

n the free surface ( Eq. (4) ), 

 eff = 

γ	T 	θ

μl eff 

, (12) 

here 	θ ( ≡ 1 − θmin ) is the effective driving temperature differ-

nce over the distance l eff (cf. Fig. 5 ). We then arrive at a relation-

hip between the effective critical Marangoni number Ma c 
eff 

and

he critical Marangoni number Ma c , 

 a c eff = 

	θ

l eff 

M a c . (13)

e must point out however that Ma eff is not a controlled param-

ter, unlike Ma . Introducing it aims to gain a better understanding

f the role of evaporation in the instability mechanisms. 

Fig. 11 shows the variation of Ma c 
eff 

as a function of Bi un-

er different conditions. In contrast to Fig. 10 , the effective criti-

al Marangoni number now increases with the Biot number. More

mportantly, Ma c 
eff 

under evaporation is significantly larger than its

ounterpart without evaporation. These results suggest the latent

eat of evaporation also plays a stabilizing role. The stabilizing be-

avior is attributed to the reduced interfacial temperature in the



8 W. Liu, P.G. Chen and J. Ouazzani et al. / International Journal of Heat and Mass Transfer 153 (2020) 119587 

Fig. 11. Effective critical Marangoni number Ma c 
eff 

as a function of the Biot number 

Bi for 0g and 1g, and without evaporation (black) and with evaporation (red), along 

with the best-fit curves. 

Fig. 12. Variation of 	θ / l eff as a function of the Biot number for different condi- 

tions under study, along with the best-fit curves. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 13. Temperature and velocity fields on a cross section in a fully 3D thermocap- 

illary flow. The parameters are Bi = 0 . 2 , Bd = 0 , B ev = 0 , and Ma = 500 . 
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region where the temperature exhibits a plateau (cf. Fig. 8 ). Hence,

evaporation plays a twofold role: on the one hand, the evaporative

cooling creates locally higher radial interfacial temperature gradi-

ent (near the sidewall) which enhances the thermocapillary-driven

flow – evaporation destabilizes the flow; on the other hand, evap-

oration stabilizes it by removing heat from the interface, especially

in the central part of the liquid layer. Such an interplay has already

been pointed out in [37] for evaporating sessile drops deposited on

a heated surface, though the underlying mechanisms are not the

same. 

Interestingly, the effective critical Marangoni number scales al-

most linearly with the Biot number when Bi > 0.2. This can be

traced back to the ratio 	θ / l eff, the effective driving temperature

gradient, which is nearly an increasing linear function of the Biot

number ( Fig. 12 ), while Ma c remains almost unchanged ( Fig. 10 ).

Also, Fig. 11 further confirms the stabilizing influence of buoyancy

forces, which now can be explained with a smaller 	θ / l eff due to

buoyancy effects, as shown in Fig. 12 . 

We have also performed simulations with liquid-layer heights

h varying from 2 to 4 mm to examine the gravity (buoyancy) ef-

fect. Increasing the liquid height, namely increasing buoyancy ef-
ect, leads to augment the surface flow not only in the radially in-

ard flow (close to the sidewall) but also in the outward flow (in

he central region). As a result, the flow transition is not so much

ffected since Ma c = 140 for h = 4 mm, compared to Ma c = 134 for

 = 2 mm. The results also show that buoyancy in the liquid layer

as a stabilizing effect. 

.3. Beyond the transition 

Further increasing the Marangoni number beyond its critical

hreshold leads to symmetry-breaking which gives rise to fully 3D,

teady-state, convective flows. Fig. 13 illustrates such a flow at

a = 500 , far beyond the critical point, i.e., Ma c ≈ 340. In contrast

o Fig. 5 , thermocapillary-driven flow now exhibits drastic changes

n the vortex structures; stable multiple vortex patterns form in

he layer with flow crossing through the central axis ( r = 0 ). 

To illustrate a typical pattern formation developed in an evap-

rating thin layer of FC-72 at high Marangoni numbers, we per-

ormed two 1g-simulations, one at Ma = 17465 and Bd = 1 . 2 ,

hich correspond to a real ground FC-72 experiment ( h = 2 mm)

nder an applied temperature difference around 2 ◦C, and the other

t Ma = 6113 and Bd = 0 . 15 , corresponding to the experimental

onditions conducted at h = 0 . 7 mm and 	T ≈ 2 ◦C. A compar-

son of the numerical predictions with the images produced us-

ng infrared thermography is shown in Fig. 14 . The numerical sim-

lations revealed the spontaneous formation of various patterns,

epending mainly on the depth of the liquid layer. As shown in

ig. 14 , a thinner evaporating layer exhibits smaller-scale thermal

atterns on the surface, in qualitative agreement with the experi-

ental observations. This favorable comparison demonstrates that

he present numerical model contains the physical mechanisms

hat drive the development of pattern formation in an evaporating

olatile liquid layer. 

At these high Marangoni numbers, the question arises as to

hether the flow remains laminar flow behavior as has been as-

umed in the present work. To estimate the critical Reynolds num-

er Re c for the transition of laminar steady-state flow to oscillatory

ne, which is still far from the turbulent flow, we make use of the

eported results in the literature (e.g., Refs. [46,47] ). It turns out

hat the critical Reynolds number Re c lies in the range of 1500–

500 for the onset of oscillatory flow. A Marangoni number of

7465 for a FC-72 liquid ( P r = 12 . 34 ) leads to Re = Ma/P r ≈ 1415 ,

hereby justifying the assumption of laminar flow. 

Given that the present numerical simulation is based on a one-

ided model of evaporation which ignores the dynamics of the gas

hase, the question as to whether such kind of 3D flows is stable

nd when and how it eventually becomes a time-dependent flow

e.g., in the form of hydrothermal waves propagating azimuthally
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Fig. 14. A comparison of the surface temperature field obtained between from nu- 

merical simulations (left panel) and using infrared thermography in ground experi- 

ments with FC-72 (right panel). The parameters of simulation are (top): Bi = 0 . 2 , 

Bd = 1 . 2 , B ev = 2 . 0 , and Ma = 17465 , corresponding to the experimental condi- 

tions conducted with h = 2 mm and 	T ≈ 2 ◦C; (bottom): Bi = 0 . 2 , Bd = 0 . 15 , 

B ev = 2 . 0 , and Ma = 6113 , corresponding to the experimental conditions conducted 

with h = 0 . 7 mm and 	T ≈ 2 ◦C. 
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n the pool) is not addressed. Answering this question remains a

omputationally challenging task. Furthermore, if we attempt to

ake any quantitative comparison with experimental observations

t would also be necessary to consider a more elaborate two-phase

odel that accounts for heat, mass, and momentum transport in

he gas [34] . Indeed, in their study of the convective instability of

he liquid layer subject to a horizontal temperature gradient, Grig-

riev and Qin [19] pointed out the shortcomings of the one-sided

odel and advocated accounting for the transport of heat and va-

or through the gas phase, particularly when the applied temper-

ture gradient becomes larger. 

Finally, the question regarding whether the predicted transition

oints (i.e., Ma c ) are detectable in an experiment needs to address.

he answer is somewhat disappointing. The prediction of the criti-

al Marangoni numbers, presented in Fig. 10 , requires a minute ap-

lied temperature difference 	T , on the order of 0.1 ◦C at the most,

or the thermocapillary-driven flow to be axisymmetric. So small

emperature differences are difficult or even impossible to realize

n practice. This is why we didn’t observe any axisymmetric flows

n our experiments (with FC-72); the applied temperature differ-

nces are far beyond the predicted ones. With a much less volatile

uid, for instance, 5cSt silicon oil ( P r = 68 ), our numerical model,

owever, predicts a feasible temperature difference, i.e., 	T ≈ 1 ◦C.

. Summary and concluding remarks 

We have carried out a numerical study on an evaporating liq-

id layer (FC-72) enclosed in a cylindrical cell and surrounded

y a passive gas. The numerical simulations are based on an en-

anced one-sided model of evaporation that ignores the dynamics

f the gas phase but includes the effect of conductive heat trans-

ort through the gas phase and the effect of the latent heat asso-

iated with a phase change at the interface. These effects are de-

cribed by the heat transfer Biot number Bi and the evaporative

iot number B ev , respectively. Calculations have been performed to

lucidate the flow features and predict the flow transition from ax-

symmetric to fully 3D patterns. 

For a sufficiently small Marangoni number, the flow remains

teady and axisymmetric. It can be characterized by a primary vor-

ex near the sidewall, which is predominantly driven by thermo-

apillarity and slightly modified by buoyancy effects (in 1g). Both
he conductive heat transport through the gas phase and the latent

eat of evaporation reduce the interfacial temperature and increase

he thermal gradient on the free surface near the sidewall, result-

ng in locally higher thermocapillary stresses. Due to a larger value

f B ev relative to Bi , the evaporative cooling effect significantly en-

ances the thermocapillary flow. 

When the Marangoni number is higher than a certain thresh-

ld, the basic flow undergoes a transition to a fully 3D, steady-

tate flow. The numerical results show that the critical Marangoni

umber Ma c decreases with increasing Biot number Bi , following

 power-law (i.e., Ma c ∼ Bi −2 / 3 ) in the absence of evaporation. In-

luding evaporation leads to a saturation regime wherein Ma c re-

ains almost unchanged, giving thus a lower bound of the critical

arangoni number ( ≈ 120). Hence, both the conductive heat flux

hrough the gas phase and the evaporative cooling play a desta-

ilizing role, while buoyancy in the liquid layer has a stabilizing

ffect, though its effect is insignificant. Evaporation-induced desta-

ilizing is due to the amplified thermal gradient in the radial di-

ection (near the sidewall). The numerical results also show that

vaporation stabilizes the flow by removing heat from the inter-

ace, resulting in a lower interfacial temperature in the central re-

ion of the liquid layer. There is a certain amount of competition

etween stabilizing and destabilizing role played by evaporation.

urther research is needed to shed light on this issue. 

The present study showed evidence that the presence of evapo-

ation causes significant cooling of the liquid surface and therefore

hanges radically the hydrodynamic behavior in the liquid via the

arangoni phenomenon. However, we caution that we have used

onstant Biot numbers in numerical simulations, which can be a

ource of high uncertainty when studying these transfer mecha-

isms, particularly for volatile liquids like FC-72. In that regard,

e may follow a numerical study of Gatapova and Kabov [48] , in

hich they proposed a way of calculating the heat transfer co-

fficient at the liquid-gas interface and obtained numerically the

ependence of the Biot number on flow parameters and spatial

ariables. Similarly, the magnitude of the evaporation rate depends

n an uncertain parameter, i.e., the evaporation coefficient, or the

vaporative Biot number B ev , and therefore there is a need of de-

eloping reliable methods to estimate this coefficient. 
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