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A B S T R A C T   

This study proposes a hybrid surrogate modelling approach with the integration of deep learning algorithm long 
short-term memory (LSTM) to identify the mechanical responses of caisson foundations in marine soils. The 
LSTM based surrogate model is first trained based on limited results generated from the SPH-SIMSAND based 
numerical simulations with a strong validation, thereafter it is applied to predict the mechanical responses of 
soil-structure interaction and the failure envelope of unknown caisson foundations with various specifications as 
testing. The results indicate that the LSTM based model is more flexible than macro-element method, because it 
can directly learn the failure mechanism of caisson foundation from the raw data, meanwhile guarantees a high 
computational efficiency and accuracy in comparison with physical and numerical modelling. LSTM based 
surrogated model shows a great potential of application in engineering practice.   

1. Introduction 

Since the suction caisson was first used as the foundation of an 
offshore wind turbine (OWT) at Frederikshave, Denmark in 2002 (Ibsen 
and Brincker, 2004), suction caisson foundations have drawn great 
attention with the increasing application in the foundation of OWT 
(Gelagoti et al., 2018; Skau et al., 2018b). The suction caisson is installed 
by pumping the trapped water within the caisson compartment after it 
has touched the seabed. Such process does not rely on any specialist 
equipment, thereby suction caisson has been commonly acknowledged 
as a cost-effective and eco-friendly foundation mode (Jin et al., 2019c; 
Zhu et al., 2018). 

Numerous research works have been conducted to investigate the 
responses of caisson foundations to the couplings between the vertical 
force, the horizontal force and the bending moment through, e.g. in-situ 
testing (Houlsby et al., 2006), physical modelling (Byrne and Houlsby, 
2001; Cassidy et al., 2002; Ibsen et al., 2014), numerical modelling 
(Skau et al., 2018a; Zafeirakos and Gerolymos, 2016) and analytical 
solutions (Li et al., 2015; Montrasio and Nova, 1997; Nova and Mon-
trasio, 1991). Simple physical model is hard to simulate the in-situ 
operation condition of caisson foundation and obtain its failure mech-
anism; meanwhile the instrument tends to be cumbersome and 

expensive. Numerical methods have thus been extensively employed to 
simulate the responses of caisson foundations (Jin et al., 2018; Jin et al., 
2019b; Liu et al., 2014), but the nonlinear and elaborate finite element 
modelling is time-consuming and requires considerable skill (Jin et al., 
2019c), which is suitable for a specific case. An analytical solution 
known as macro-element that derives from the experimental or nu-
merical results has been proposed to explore the failure envelope and 
applied in engineering design due to its simplicity. In this method, soil 
and foundation structure are considered as a macro-element, thereby the 
computation is faster and simpler in comparison with finite element 
analysis. However, for different size of caisson foundations, certain 
experimental tests and numerical simulations are needed to calibrate the 
macro-element model, which is time-consuming and expensive. 
Macro-element is also limited by fixed formation and thus cannot totally 
replicate the results of experimental or numerical results. 

An alternative method is to develop a surrogate model that is con-
structed using limited experimental or numerical results and at the same 
time it can directly learn the failure mechanism of caisson foundations 
from the raw experimental or numerical data. Thereafter this surrogate 
model can be applied to predict the mechanical responses and the failure 
envelope of a caisson foundation under various conditions such as 
different foundation size, aspect ratio, soil-structure contact surface 
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area, thereby designing the optimum specification of a caisson founda-
tion. Recently, the application of machine learning (ML) algorithms in 
geotechnical engineering have proliferated, e.g. soil parameters identi-
fication (Zhang et al., 2020a, 2020b; Zhou et al., 2016), development of 
constitutive models (Zhang et al., 2019a, 2020c), evaluation of soil 
liquefaction (Atangana Njock et al., 2020), tunneling (Chen et al., 
2019a, 2019b; Elbaz et al., 2019a, 2019b; Zhang et al., 2019; Zhang 
et al., 2020), landslides (Huang et al., 2017; Yang et al., 2019), because 
the strong nonlinear mapping ability of such algorithms provides a novel 
methodology to tackle sophisticated problems with the interaction of 
multiple parameters (Sarir et al., 2019; Zhang et al., 2019a; Zhang, 
2019). Most recently, Liu et al. (2019) proposed a deep neural network 
based failure criterion to describe the behavior of woven composites, 
and the predicted failure envelope matching well with the measured 
results. Reuter et al. (2018) compared the performance of three 
commonly used ML algorithms, i.e., artificial neural network, support 
vector machine and support vector regression (SVR) in modelling con-
crete failure surfaces, and found that the prediction error of SVR is 

lowest. The training of ML-based model is flexible and simple as long as 
put the raw data. Meanwhile, once a surrogate model is well trained, the 
simulation of a new case can be completed within several seconds, 
which provides an effective method to investigate the responses of the 
studied object under various conditions. Nevertheless, to the best 
knowledge of authors, ML based models have not been developed and 
directly used to capture the failure envelop or mechanical responses of a 
caisson foundation up to now. The long short-term memory (LSTM) has 
been proposed to predict sequential datasets and overcome gradient 
vanishing and exploding problems (Hochreiter and Schmidhuber, 
1997b), which means that it can account for the history of loading force 
or deformation. Moreover, LSTM can directly learn the failure mecha-
nism of caisson foundations from the raw data. Therefore, a LSTM based 
surrogate model deserves to be developed to investigate the responses of 
a caisson foundation. 

This study aims to develop a ML surrogate modelling approach to 
identify the failure envelope and mechanical responses of a caisson 
foundation in sand. Database is generated from an advanced numerical 
modelling combined the smoothed particle hydrodynamics with the 
SIMSAND model (SPH-SIMSAND) with a strong validation from labo-
ratory tests to physical model tests and a field test of caisson founda-
tions. A LSTM based surrogate model is first trained based on limited 
results generated from the SPH-SIMSAND, thereafter it is applied to 
model the mechanical behavior and the failure envelope of unknown 
caisson foundations with various specifications. The simulation of each 
new case using the surrogate model can be completed within several 
seconds. Therefore, the computational cost for determining the opti-
mum design of caisson foundation specification can be remarkably 
reduced. 

2. Deep learning based methodology 

2.1. Long short-term memory neural network 

The framework of a typical forward neural network is presented in 
Fig. 1. It can be observed that the datasets flow from the input layer to 
the output layer and the error is back propagated to modify the weights 
and biases for minimizing the discrepancy between predicted outputs 

Fig. 1. Schematic view of ANN and RNN.  

Fig. 2. Memory cell of LSTM.  
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and measured results (Rumelhart et al., 1986). In other words, the 
prediction of current output parameters is not affected by the previous 
information and it also does not affect the prediction of output param-
eters at the next step. Given a set of input matrix x ¼ [x1, x2, …, xn], the 
output of hidden and output layers can be obtained by: 

h¼ f ðUxþ b1Þ (1)  

o¼ gðVhþ b2Þ (2)  

where U, V ¼matrix connecting the input and hidden layers, hidden and 
output layers, respectively; b1, b2 ¼ biases vectors in the input and 
hidden layers, respectively; f, g ¼ activation functions in the hidden and 
output layers, respectively. 

The main departure of RNN is a cyclic connection topology is 
adopted, as presented in Fig. 1. It is clear that the predicted output at the 
current step depends on current values of input parameters and the in-
formation transferred from the former hidden layer, which can be ob-
tained by: 

ht ¼ f
�
UxþWht� 1þ b1

�
(3)  

where W ¼ matrix connecting hidden layers at adjacent steps. 
The history information is stored and it is applied to predict the next 

status, such history-dependent characteristic makes RNNs applicable to 
investigate problems with sequential datasets, such as language trans-
formation, speech recognition, and the prediction of load–deformation 
responses (Wang and Sun, 2018; Zhu et al., 1998). However, training 
RNNs has proved to be problematic because the back-propagated gra-
dients either grow or shrink at each time step, resulting in exploding or 
vanishing gradients (LeCun et al., 2015), that is, the learning efficiency 

of the hidden layers in the front of the architecture is poorer than the 
later hidden layers. 

To overcome gradients exploding and vanishing in the conventional 
RNNs, a memory cell is thus added in the architecture of LSTM in place 
of the neurons used in conventional RNNs. Such memory cell can store 
information over extended time intervals and handle long-time-lag tasks 
(Hochreiter and Schmidhuber, 1997a) by using a novel entity termed as 
“gate”, as presented in Fig. 2. Three gates, i.e., forget, input and output 
gates are included in the memory cell to control the flow of information 
and the state of the cell. Forget gate decides which information is dis-
carded from the memory cell, input gate decides which information is 
stored in the memory cell, and output gate decides ultimate output 
values. The outputs of forget and input gates at the tth step are obtained 
by: 

f t
j ¼ σ

��
Uf xt�

j þ
�
Wf ht� 1�

j þ
�
bf
�

j

�
(4)  

it
j ¼ σ

�
½Uixt�j þ

�
Wiht� 1�

jþ ½bi�j
�

(5)  

where σ ¼ sigmoid function. In the forget gate, σ ¼ 1 and 0 represent all 
information is maintained or discarded, respectively. In the input gate, σ 
¼ 1 and 0 represent all information is selected or discarded, respectively. 

Based on the forget and input information, the memory cell state at 
the tth current step is thus updated by: 

~ct
j ¼ tanh

�
½Ucxt�j þ

�
Wcht� 1�

j þ ½bc�j
�

(6)  

ct ¼ f t � ct� 1 þ it � ~ct (7)  

where tanh is the activation function; � ¼ elementwise product;ft � ct� 1 

represents the discarded information; it � ~ctrepresents newly selected 
information. The update of memory cell status with an addition format 
can avoid the gradients vanishing and exploding. Thereafter, output of 
the hidden layer at the tth step is obtained by: 

οt
j ¼ σ

�
½Uoxt�j þ

�
Woht� 1�

j þ ½bo�j
�

(8)  

ht ¼ ot � tanhðctÞ (9) 

A multiplicative input gate unit is employed to protect the memory 
contents stored at the current step from perturbation by irrelevant in-
puts, and a multiplicative output gate unit is employed to protect other 

Fig. 3. Schematic view of hybrid SPH-SIMSAND and LSTM surrogate modelling process.  

Table 1 
Specifications of caisson foundations in the numerical model.   

Specification (L, D) 

Training 
set 

(1, 2), (1, 2.9), (1.5, 2), (1.5, 2.39), (2, 1), (2, 2), (2, 4), (2, 5.8), (2.96, 
1.5), (3, 4), (3.72, 1.24), (4, 2), (4, 4), (4, 8), (4, 11.6), (4.75, 1), (6, 
2.97), (6, 8), (6, 9.55), (8, 2.33), (8, 4), (8, 8), (8, 16), (10, 1.91), (10, 
20), (12, 5.94), (12, 16), (15, 20), (16, 8), (16, 16), (20, 20), (20, 10) 

Testing set (1, 2.83), (1.5, 2.31), (2, 5.65), (3.56, 1.5), (4, 11.32), (4.15, 1.39), (6, 
3.26), (6, 9.24)  
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units from perturbation by currently irrelevant memory contents stored 
at the current step (Hochreiter and Schmidhuber, 1997a). It should be 
noted that numerous LSTM variants have been thereafter proposed such 
as gated recurrent unit (GRU) (Cho et al., 2014). LSTM with numerous 
weights and biases that is beneficial to predict high-dimensional issues is 
selected to explore its feasibility in capturing caisson foundations 
responses. 

2.2. Proposed hybrid surrogate model 

The development of a hybrid surrogate model is categorized into two 
phases: offline and online modelling. The objective of the offline 
modelling is to bridge the numerical modelling platform of SPH- 
SIMSAND by Yin et al., 2018b and deep learning algorithm LSTM. 
Hence, a LSTM based surrogate model that can entirely replace the 
numerical modelling to reduce computational cost is further developed. 
This phase starts from the calibration of numerical model including the 
parameters of SPH and SIMSAND constitutive model for a given soil type 
(Jin et al., 2016, 2017, 2019a; Yin et al., 2013, 2016, 2018a), thereafter 
several cases with different specifications of caisson foundations are 
computed for creating a synthetic database. It should be noted that the 
loading paths are consistent among all cases. Herein, 80% of datasets are 
used to train the LSTM based surrogate model, and the remaining 20% of 
datasets are used to test the model. The online modelling aims to utilize 
the surrogate model to predict the mechanical responses and the failure 
envelope of a caisson foundation with a random specification under 
various loading paths. Meanwhile the SPH-SIMSAND is also used to 
simulate the same case to validate the accuracy of the surrogate model. 

The framework of training a LSTM based model is presented Fig. 3. 
The input parameters consist of the length L and diameter D of a caisson 
foundation, the horizontal displacement ut and rotational angle θt at the 
current step, the sequence of history values of horizontal force Ht� 1 and 
bending moment Mt� 1. The output parameters are the horizontal force 

Ht and bending moment Mt. The training performance of the LSTM based 
model is evaluated by the mean square error (MSE) values on both 
training and test sets, meanwhile 10-fold cross-validation method is 
applied to enhance model robustness, thereby the loss function can be 
obtained by: 

MSE¼
1

10r
X10

i¼1

Xr

j¼1

�
ym

i � yp
i
�2 (10)  

where ym
i ¼measured result at the ith point; yp

i ¼ predicted result at the 
ith point; r ¼ a total of datasets in one cross-validation set. 

2.3. Evaluation indicators 

Two commonly used indicators “Mean Absolute Percentage Error 
(MAPE)” and “Nash–Sutcliffe model Efficiency coefficient (NSE)” are 
employed to evaluate the performance of the LSTM based model. MAPE 
is an unbiased measure to compute the average prediction error of the 
model, and NSE can assess the accuracy and precision of the model 
(Nash and Sutcliffe, 1970). The expression of two measures can be ob-
tained by 

MAPE¼
1
n
Xn

i¼1

�
�
�
�
ym

i � yp
i

ym
i

�
�
�
� (11)  

NSE¼ 1 �
Pn

i¼1

�
yp

i � ym
i

�2

Pn
i¼1ðym

i � ym
i Þ

2 (12)  

where n ¼ a total of datasets; μ ¼ mean value of yp
i /ym

i ; δ ¼ standard 
deviation of yp

i /ym
i . The combination of MAPE and NSE enables to 

comprehensively evaluate the model performance. Low value of MAPE 
and high value of NSE indicate an excellent model performance. 

Fig. 4. Results of SPH-SIMSAND numerical modelling: (a) u–H; (b) θ–M; (c) H–M/D; (d) failure envelope.  
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3. Database design 

3.1. Data source 

This study directly utilizes the numerical results of SPH-SIMSAND 
conducted by Jin et al., 2019b. In such research work, the parameters 
of the SIMSAND model were first calibrated using triaxial tests on Bas-
karp sand. Meanwhile a cone penetration test and model tests on a 
reduced scale, and a full scale field test of caisson foundation were 
simulated to validate SPH-SIMSAND. The excellent agreement between 

the numerical and experimental results indicates the reliability of 
SPH-SIMSAND modelling method to investigate the responses of a 
caisson foundation. Therefore, the results from such numerical model-
ling are used to establish database in this study. 

Because of the lightness of a caisson foundation, the horizontal and 
overturning moment bearing capacities are important for the design. Jin 
et al., 2019b thus investigated the failure envelope of caisson founda-
tions with various specifications in the H-M plane. Numerical radial 
displacement tests in which the ratio between the applied displacements 
or the combined rotation-displacement increments is kept constant are 
adopted as the main loading control over the course of numerical 
modelling (Gottardi et al., 1999). This study aims to identify the me-
chanical responses and failure envelop of caisson foundations with 
various specifications, thereby a total of 40 numerical models with 
176000 datasets are constructed and the detailed specifications of 
studied caisson foundations are presented in Table 1. Herein, 32 nu-
merical modelling results with 140800 datasets are used to train the 
LSTM based model, and the remaining 8 numerical modelling results 
with 35200 datasets are used to test the performance of the LSTM based 
model. All datasets are ultimately stored in comma-separated values 
(CSV) file for fast importing into Python. 

As an example, a typical simulating result of a caisson foundation 
with an outer diameter (D) of 2 m and a skirt length (L) of 2 m is pre-
sented in Fig. 4. It can be observed that a total of 22 loading paths 
including a pure rotation and a pure horizontal displacement paths are 
considered in each case, where the horizontal displacement increases 

Fig. 5. Data smoothing: (a) u–H; (b) θ–M.  

Table 2 
Main hyper-parameters during training LSTM.  

Hyper- 
parameter 

Description Value 

Nh Number of hidden layers 3 
Nn Number of nodes in the hidden layer 80; 80; 50 
Activation Activation function to use tanh; ReLU; ReLU 
Dropout Fraction of the units to drop 0 
Optimizer Algorithm for optimizing weights 

and biases 
Adam 

η Learning rate in the optimizer 0.0002–0.002; period ¼
20 

Batch_size Number of training samples 200 
Epoch Number of iterations during training 200  

Fig. 6. Loss values yielded by LSTM model with dropout layer on the: (a) 
training set; (b) testing set. 
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from 0 to 0.8 m with an interval of 0.04 and the rotation maintains in the 
range of 0 to 0.2 rad (see Fig. 4(a) and (b)). Each loading path includes 
200 data points. To determine the bearing capacity, the loading paths 
are plotted in the H-M plane, and the ultimate bearing capacity is 
determined by the inflexion of loading paths, i.e., failure loci, as pre-
sented in Fig. 4(c). It should be noted that the ultimate bearing capacity 
is hard to reach for some loading paths. To unify the basis of determi-
nation, the ultimate bearing capacities of such cases are represented by 
the ends of loading paths (Jin et al., 2019c), based on which the final 
failure envelope can be obtained by connecting the failure loci, as pre-
sented in Fig. 4(d). 

3.2. Data preprocessing 

It can be seen that the simulating loading paths of SPH-SIMSAND are 
noisy, as presented in Fig. 4. The large variance of sequential data has an 
adverse impact on the training process and the model performance (Xu 

et al., 2019). This study thus introduces a sliding window approach to 
smooth data before such datasets applied to train the LSTM based model. 
The value of smoothed xn can be obtained by: 

xn¼
1
t

Xn

i¼n� tþ1
xi (13)  

where t ¼window size. The average value of datasets within a window is 
assigned as the new value of the studied parameter. The datasets within 
a window consist of current and the former (t–1) values. It should be 
noted that the first (t–1) and the last (t–1) points cannot form a complete 
window, thereby values of such points maintain constant. Larger win-
dow size can generate smoother sequential curve, but it is much more 
likely to deviate from the original curve. Considering the variance of 
u–H and θ–M relationships presented in Fig. 4 is small, the window size 
is thus set as two in this study for maintaining the reliability and 
smoothness of the datasets. The smoothed relationships of u–H and θ–M 
are presented in Fig. 5. It can be observed that the magnitude and trend 
of sequential curves are roughly identical to the original results pre-
sented in Fig. 4, meanwhile the smoothness is improved dramatically. 

The different scales of input and output parameters also affect model 
performance. After smoothing all datasets, a remedy is to normalize all 
datasets into a same scale [–1, 1] to eliminate the scale effect using Eq. 
[14]. 

xnorm¼
x � xmin

xmax � xmin
ðxmax � xminÞ þ xmin (14)  

where xmax and xmin ¼ measured maximum and minimum of the 
parameter x; xmax and xmin ¼ 1 and � 1, respectively. The ultimate 
database can be downloaded at the Appendix. 

4. Offline training of a hybrid surrogate model 

4.1. Determination of hyper-parameters 

Training the LSTM based model means numerous hyper-parameters 
need to be determined in advance. The main hyper-parameters over the 
course of training are summarized in Table 2. Herein, grid search 
method is used to search for the optimum architecture of LSTM 
including the number of hidden layers, the number of nodes and the 
activation function in each layer. Considering the dropout layer can 
overcome the overfitting problems, the performance of LSTM based 
models with various dropout rates (0, 0.2, 0.4, 0.6, 0.8) is thus inves-
tigated. Adaptive moment estimation (Adam) optimizer is utilized in 
this study due to its superiority (Ruder, 2016). The learning rate of 
Adam controls the updated step size of weights and its default value is 
0.001. This parameter needs to be finely tuned for a complex problem 
with numerous saddle points (Smith, 2017). Considering the highly 
non-linear responses of a caisson foundation, a cyclical learning rate 
proposed by Smith, 2017 is used to finely optimize the weights and 
biases of LSTM. Batch size represents the number of samples to be fed at 
each training step. Because each loading path consists of 200 datasets as 
mentioned in the section 3.1, the batch size is thus set as 200n (n ¼ 1, 2, 
…) to ensure that datasets from an entire loading path can be simulta-
neously used to train model. This study investigates the performance of 
LSTM based models with batch size of 200, 400, 800, 1000 and 4400 (a 
total of datasets in a case is 4400). The number of epochs requires to be 
sufficiently large to ensure the loss value can converge at a constant 
value. Herein, orthogonal initializer is used to generate an initial 
random orthogonal weights matrix and zeros initializer is used to 
generate an initial zero biases vector. 

Regarding the implementation, Keras, that is a high-level deep 
learning library based on Python programming language, is leveraged to 
design the architecture of the LSTM based model. Tensorflow as the back 
engine supports to implement operations in Keras such as tensor cal-
culus. The matrix construction and computation are achieved by using 

Fig. 7. Loss values yielded by LSTM model with different batch size on the: (a) 
training set; (b) testing set. 

Table 3 
Indicator values for the training and testing sets.  

Parameter Training set Testing set 

MAPE NSE MAPE NSE 

H 18.36% 0.99 25.07% 0.93 
M 36.57% 0.99 42.15% 0.92  
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NumPy library. Data mining and analysis toolbox Pandas is employed to 
import CSV datasets file. 

The results of grid search indicate that the LSTM model with three 
hidden layers can produce the lowest loss value. The number of nodes in 
each layer is 80, 80 and 50, respectively, and the corresponding acti-
vation functions are tanh, ReLU and ReLU, respectively. Therefore, the 
number of weights and biases are 104820 and 842, respectively. Over 
the course of training, the learning rate first increases from 0.0002 to 
0.002 within 10 epochs and thereafter decreases from 0.002 to 0.0002 
within 10 epochs, thereby each period includes 20 epochs. Such strategy 

improves the optimization process to escape from the local optima and 
saddle points. The loss value roughly maintains steadily and converges 
at a constant value within 200 epochs, thereby the maximum number of 
epochs is set as 200. 

4.2. Underfitting and overfitting examination 

The examination of underfitting and overfitting is a key step to 
guarantee the reliability of the LSTM based model. Learning curves of 
both loss values on the training and testing sets have been successfully 

Fig. 8. Predicted loading using LSTM based surrogate model for the training set L ¼ 4, D ¼ 8, in comparison with numerical results: (a) u–H; (b) θ–M; (c) H–M/D.  
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used to evaluate the underfitting and overfitting problems (Hassan et al., 
2020), because it can reflect how well a behavior of neural network is 
improved with the increasing number of training samples or complexity 
of neural network (Murata et al., 1993). Large loss values on both 
training and testing sets represent that the LSTM based model exists 
underfitting problem. The large loss value on the training set and the low 
loss value on the testing set represent that the LSTM based model has 
overfitting problem. This study thus uses learning curve to examine the 
potential underfitting and overfitting issues. 

Numerous research works have demonstrated that dropout family 
methods give significant advantages over other regularization methods 

such as L1 and L2 penalties(Moradi et al., 2019; Srivastava et al., 2014). 
Therefore, a dropout method is used to avoid potential overfitting of 
LSTM in this study. The effect of dropout rates on the prediction per-
formance of LSTM based models can be observed in Fig. 6. In compar-
ison with the model with dropout rates of 0, 0.2, 0.4, 0.6 and 0.8, it is 
clear that the loss values on both training and testing sets increase with 
the increasing dropout rates. Meanwhile the increasing dropout rates 
can cause the variation of loss values. The minor effectiveness of the 
dropout layer indicates that the LSTM based model can well suppress the 
overfitting problem over the course of training and provide accurate 
prediction. Therefore, the dropout rate is set as 0 in this study. 

Fig. 9. Predicted loading using LSTM based surrogate model for the testing set L ¼ 6, D ¼ 9.24, in comparison with numerical results: (a) u–H; (b) θ–M; (c) H–M/D.  
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Fig. 7 presents the evolution of loss values on both training and 
testing sets produced by LSTM based models with various number of 
batch size. Loss value in logarithm is used to highlight the difference of 
model performance because of the small loss value. The loss value 
roughly holds steadily as the epochs reaches 200, and it clearly increases 
with the increasing number of batch size. The increasing training sam-
ples bring about difficulties in optimizing weights and biases to reduce 
loss value, but the model trained with larger batch size possesses better 
generalization ability, thereby the prediction error on both training and 
testing sets decreases continuously throughout the training process. The 
model trained with small batch size ensures to shrink the difference 
between the most measured and predicted results, thereby the loss value 
is small, but such model suffers from poor generalization ability. 
Consequently, the LSTM model with optimized weights and biases 
which presents an excellent prediction performance on cross-validation 
sets may produce large error on both training and testing set, thereby it 
can be seen from Fig. 7 that the loss value varies as the number of batch 
size decreases. Considering the model trained with batch size of 200 
produces the lowest loss value and the variation is acceptable, thereby 
the batch size of 200 is applied to train the LSTM based model in this 

Fig. 10. Comparison between loading paths of testing sets yielded by SPH-SIMSAND and LSTM.  

Fig. 11. Notation convention of failure envelope.  
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Fig. 12. Comparison between failure envelopes of testing sets yielded by SPH-SIMSAND and LSTM.  
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study. Meanwhile the loss value decreases continuously for both training 
and test sets, and the convergence value is roughly identical. Such fac-
tors indicate that the constructed LSTM model can well overcome 
underfitting and overfitting problems. 

4.3. Evaluation of surrogate model performance 

All of optimum values of hyper-parameters are determined as 
mentioned in the former two sections. Table 2 summarizes such values 
and the model is trained based on this set of parameters. The indicator 
values for describing the prediction performance of the model are pre-
sented in Table 3. For the training set, MAPE values are low on both 
horizontal force and moment predictions, meanwhile NSE values are 
roughly identical to 1. The LSTM based model shows an excellent per-
formance in capture loading paths of caisson foundations. 

For brevity, the predicted loading path of one training set with L ¼ 4 
m and D ¼ 8 m is presented as a typical example to illustrate the training 
performance of the LSTM based model, as shown in Fig. 8. Such results 
are obtained within several seconds. Remarkably, the LSTM based 
model is capable of replicating the u–H, θ–M and H–M/D relationships 
with negligible error. The results presented in Fig. 8(a)–(b) and (e)–(f) 
indicate that the softening behavior can be captured by the LSTM based 
model. The excellent repeatability provides a basis for the LSTM based 
surrogate model to replace numerical modelling for investigating the 
mechanical responses of caisson foundations with lower computational 
cost. 

5. Online prediction using LSTM surrogate model 

5.1. Loading paths prediction 

To test the reliability of the LSTM based surrogate model to guar-
antee its application in engineering practice, the responses of additional 
eight caisson foundations are investigated using the LSTM based model 
developed in the former section, meanwhile the SPH-SIMSAND platform 

is also used to simulate the same cases for comparison. Fig. 9 presents 
the predicted loading paths of a caisson foundation with L ¼ 6 m and D 
¼ 9.24 m. It can be observed that the LSTM based model has an excellent 
performance in reproducing the u–H relationship, but the prediction 
errors of initial θ–M and H–M/D relationships are large, which is 
attributed to the loss function, i.e., MSE value. Such indicator focuses on 
eliminating the discrepancy of large output values, whereas the small 
output values are less important, thereby the trained LSTM based model 
shows larger prediction error in predicting initial loading paths. The in- 
depth study of loss function selection to achieve the tradeoff of pre-
dicting large and small values, and further improve the model general-
ization ability is important, but is out of the scope of this paper. These 
studies will be conducted in a future dedicated work. Overall, the pre-
diction performance of the LSTM based model on the mechanical re-
sponses of unknown caisson foundations is reliable. 

Fig. 10 presents the predicted H–M/D relationships of the remaining 
seven testing sets. The loading paths generated from the LSTM based 
model show good agreement with the numerical results. Small MAPE 
and high NSE values are generated on the testing set, as presented in 
Table 3. The simulations using the LSTM based model are completed 
without using any internal variables to capture the responses of caisson 
foundations. Such model is thus ready to be used to predict the failure 
envelope of caisson foundations with various specifications on a given 
soil type in engineering practice. 

5.2. Prediction of failure envelope in the H–M plane 

As presented in Fig. 4(d), the failure envelope in the H–M plane has 
an elliptical shape. Following Villalobos et al., 2009, Jin et al., 2019c 
proposed an ellipse formulation with only three parameters a, b and ϕ to 
describe the failure envelope of a caisson foundation in the H–M plane. 
Fig. 11 illustrates the notation convention of failure envelope, in which a 
and b are the major and minor axis of the ellipse, respectively, and ϕ is 
the rotation of the ellipse. The formulation can be obtained by: 

A1X2þA2XY þ A3Y2 þ A4 ¼ 0 (15)  

8
>><

>>:

A1 ¼ a2ðsin ϕÞ2 þ b2ðcos ϕÞ2

A2 ¼ 2
�
b2 � a2�sin ϕ cos ϕ

A3 ¼ a2ðcos ϕÞ2 þ b2ðsin ϕÞ2

A4 ¼ � a2b2

(16)  

where X and Y denote the horizontal force H � 104 and normalized 
moment M/D � 104 in this study. 

The failure loci of eight testing cases obtained from the numerical 
modelling and the LSTM based model is plotted together in Fig. 12. The 
predicted points are close to the numerical results. Using Eqs. 15 and 16 
to fit these failure loci, it can be observed that the fitted failure envelope 
based on failure loci obtained from the LSTM based models exhibit good 

Table 4 
Values of parameters used in failure envelope.  

L D SPH-SIMSAND LSTM based model 

a ( �
104) 

b ( �
104) 

ϕ (�) a ( �
104) 

b ( �
104) 

ϕ (�) 

1 2.83 0.50 0.17 26.30 0.52 0.18 28.96 
1.5 2.31 0.54 0.15 37.27 0.57 0.18 39.06 
2 5.65 1.39 0.31 19.95 1.59 0.29 21.86 
3.56 1.5 1.49 0.15 62.98 1.54 0.17 63.31 
4 11.32 3.88 0.66 19.48 3.84 0.69 17.74 
4.15 1.39 2.06 0.18 67.5 2.23 0.23 67.75 
6 3.26 3.47 0.99 52.84 3.63 0.89 55.51 
6 9.24 5.20 1.29 31.69 5.20 1.51 32.39  

Fig. 13. Values of parameters used in failure envelope: (a) major axis a; (b) minor axis b; (c) rotation ϕ.  
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agreement with numerical results. The corresponding a, b and ϕ values 
generated by the numerical modelling and the LSTM based model are 
presented in Table 4. Scatter plots of the predicted and actual a, b and ϕ 
values are presented in Fig. 13 with the MAPE and NSE values. It is 
obvious that all points are close to the line with slope of 1. MAPE values 
of a and ϕ are only around 5%, the larger MAPE value (13.14%) in 
predicting b is attributed to the smaller value of b. All NSE values are 
larger than 0.95. Such results clearly demonstrate the capacity of the 
LSTM based model in predicting the failure envelop of unknown caisson 
foundations with various specifications. It can reproduce the mechanical 
responses of caisson foundations with low computational cost and high 
accuracy, which is a significant improvement over numerical and 
analytical methods. 

6. Conclusions 

This study presents the development of a hybrid surrogate model 
with the integration of numerical modelling technique SPH-SIMSAND 
and deep learning algorithm long short-term memory (LSTM) to iden-
tify the mechanical responses and failure envelope of a caisson foun-
dation in sand. The LSTM based surrogate model was first trained based 
on limited results generated from the numerical modelling, thereafter it 
was applied to simulate the mechanical behavior and the failure enve-
lope of unknown caisson foundations with various specifications. The 
underfitting and overfitting problems that commonly exist during the 
development of machine leaning based models have been well tackled, 
which ensures the robustness and generalization ability of the LSTM 
based model. 

The predictive ability on the sequential data allowed the LSTM based 
model to accurately reproduce the mechanical responses of a caisson 
foundation including the relationships between horizontal displacement 
and force, rotation and moment, horizontal force and moment. Such 
surrogate model has the capacity to memorize and interpret history- 
dependent events without using additional parameters. It means that 
LSTM based model is more flexible than macro-element method, 
because it can directly learn the failure mechanism of caisson foundation 
from the raw data. The failure envelopes of caisson foundations can be 
rapidly obtained using the LSTM based surrogate model, which agree 
well with the actual results. Therefore, LSTM based model also gua-
rantees a high computational efficiency and accuracy in comparison 
with physical and numerical modelling. 

Overall, LSTM based surrogated model shows a great potential of 
application in engineering practice. Engineers can first obtain several 
responses of caisson foundations using experiments or numerical 
modelling, thereafter a LSTM based model is built with such datasets 
and further use the LSTM based model to obtain the responses of caisson 
foundations under different conditions. Thereby an optimum design of 
caisson foundation can be obtained with less experimental or compu-
tational costs. 

The proposed method of developing the LSTM based model can be 
extended to more conditions (i.e. different soil properties, different 
vertical forces applied to the caisson foundation) if database is available. 
Future work will focus on the application of the method and the model 
using experimental observations. 

Appendix 

The datasets and the optimum LSTM based model used in this study 
can be freely downloaded at following link. There are three documents 
entitled as “databasesmooth.csv”, “Caisson_Mech_Response.h5” and 
“validation.py”. The data can be stored in the “databasesmooth.csv”, 
and “Caisson_Mech_Response.h5” is the optimum LSTM based surrogate 
model. “Validation.py” is the main code. Researchers and engineers can 
directly run this code to replicate the results presented in this study and 
apply it in engineering practice. 

https://www.researchgate.net/publication/338983602_LSTM_ 

based_model_for_predicting_caisson_foundations_responses. 

Declaration of competing interest 

We declare that we have no known competing financial interests or 
personal relationships that could have appeared to influence the work 
reported in this manuscript “A LSTM Surrogate Modelling Approach for 
Caisson Foundations”. 

CRediT authorship contribution statement 

Pin Zhang: Conceptualization, Methodology, Software, Validation, 
Formal analysis, Investigation, Data curation, Writing - original draft, 
Visualization. Zhen-Yu Yin: Resources, Conceptualization, Methodol-
ogy, Resources, Writing - review & editing, Supervision, Project 
administration, Funding acquisition. Yuanyuan Zheng: Methodology, 
Writing - review & editing. Fu-Ping Gao: Methodology, Writing - review 
& editing. 

Acknowledges 

This research was financially supported by the Research Grants 
Council (RGC) of Hong Kong Special Administrative Region Government 
(HKSARG) of China (Grant No: PolyU R5037-18F) and the Key Special 
Project for Introduced Talents Team of Southern Marine Science and 
Engineering Guangdong Laboratory (Guangzhou) (No: 
GML2019ZD0503). 

References 

Atangana Njock, P.G., Shen, S.-L., Zhou, A., Lyu, H.-M., 2020. Evaluation of soil 
liquefaction using AI technology incorporating a coupled ENN/t-SNE model. Soil 
Dynam. Earthq. Eng. 130, 105988. 

Byrne, B., Houlsby, G.T., 2001. Observations of footing behaviour on loose carbonate 
sands. Geotechnique 51 (5), 463–466. 

Cassidy, M., Byrne, B., Houlsby, G.T., 2002. Modelling the behaviour of circular footings 
under combined loading on loose carbonate sand. Geotechnique 52 (10), 705–712. 

Chen, R.P., Zhang, P., Kang, X., Zhong, Z.Q., Liu, Y., Wu, H.N., 2019a. Prediction of 
maximum surface settlement caused by EPB shield tunneling with ANN methods. 
Soils Found. 59 (2), 284–295. 

Chen, R.P., Zhang, P., Wu, H.N., Wang, Z.T., Zhong, Z.Q., 2019b. Prediction of shield 
tunneling-induced ground settlement using machine learning techniques. Front. 
Struct. Civ. Eng. 13 (6), 1363–1378. 

Cho, K., Van Merri€enboer, B., Gulcehre, C., Bahdanau, v., Bougares, F., Schwenk, H., 
Bengio, Y., 2014. Learning Phrase Representations Using RNN Encoder–Decoder for 
Statistical Machine Translation arxiv 1406.1078.  

Elbaz, K., Shen, S.-L., Zhou, A., Yuan, D.-J., Xu, Y.-S., 2019a. Optimization of EPB shield 
performance with adaptive neuro-fuzzy inference system and genetic algorithm. 
Appl. Sci. 9 (4). 

Elbaz, K., Shen, S.L., Zhou, A.N., Yin, Z.Y., Lyu, H.M., 2019b. Prediction of disc cutter life 
during shield tunnelling with AI via incorporation of genetic algorithm into GMDH- 
type neural network. Engineering (in press).  

Gelagoti, F., Georgiou, I., Kourkoulis, R., Gazetas, G., 2018. Nonlinear lateral stiffness 
and bearing capacity of suction caissons for offshore wind-turbines. Ocean Eng. 170, 
445–465. 

Gottardi, G., Houlsby, G.T., Butterfield, R., 1999. Plastic response of circular footings on 
sand under general planar. Geotechnique 49 (4), 453–469. 

Hassan, M.M., Gumaei, A., Alsanad, A., Alrubaian, M., Fortino, G., 2020. A hybrid deep 
learning model for efficient intrusion detection in big data environment. Inf. Sci. 
513, 386–396. 

Hochreiter, S., Schmidhuber, J., 1997a. Long short-term memory. Neural Comput. 9, 
1735–1780. 

Hochreiter, S., Schmidhuber, J., 1997b. Long short-term memory. Neural Comput. 9 (8), 
1735–1780. 

Houlsby, G.T., Kelly, R.B., Huxtable, J., Byrne, B.W., 2006. Field trials of suction caissons 
in sand for offshore wind turbine. Geotechnique 56 (1), 3–10. 

Huang, F., Huang, J., Jiang, S., Zhou, C., 2017. Landslide displacement prediction based 
on multivariate chaotic model and extreme learning machine. Eng. Geol. 218, 
173–186. 

Ibsen, L.B., Barari, A., Larsen, K.A., 2014. Adaptive plasticity model for bucket 
foundations. J. Eng. Mech. 140 (2), 361–373. 

Ibsen, L.B., Brincker, R., 2004. Design of a New Foundation for Offshore Wind Turbines, 
22nd International Modal Analysis Conference. MI, USA., Detroit.  

Jin, Y.-F., Wu, Z.-X., Yin, Z.-Y., Shen, J.S., 2017. Estimation of critical state-related 
formula in advanced constitutive modeling of granular material. Acta Geotechnica 
12 (6), 1329–1351. 

P. Zhang et al.                                                                                                                                                                                                                                   

https://www.researchgate.net/publication/338983602_LSTM_based_model_for_predicting_caisson_foundations_responses
https://www.researchgate.net/publication/338983602_LSTM_based_model_for_predicting_caisson_foundations_responses
http://refhub.elsevier.com/S0029-8018(20)30311-5/sref1
http://refhub.elsevier.com/S0029-8018(20)30311-5/sref1
http://refhub.elsevier.com/S0029-8018(20)30311-5/sref1
http://refhub.elsevier.com/S0029-8018(20)30311-5/sref2
http://refhub.elsevier.com/S0029-8018(20)30311-5/sref2
http://refhub.elsevier.com/S0029-8018(20)30311-5/sref3
http://refhub.elsevier.com/S0029-8018(20)30311-5/sref3
http://refhub.elsevier.com/S0029-8018(20)30311-5/sref4
http://refhub.elsevier.com/S0029-8018(20)30311-5/sref4
http://refhub.elsevier.com/S0029-8018(20)30311-5/sref4
http://refhub.elsevier.com/S0029-8018(20)30311-5/sref5
http://refhub.elsevier.com/S0029-8018(20)30311-5/sref5
http://refhub.elsevier.com/S0029-8018(20)30311-5/sref5
http://refhub.elsevier.com/S0029-8018(20)30311-5/sref6
http://refhub.elsevier.com/S0029-8018(20)30311-5/sref6
http://refhub.elsevier.com/S0029-8018(20)30311-5/sref6
http://refhub.elsevier.com/S0029-8018(20)30311-5/sref7
http://refhub.elsevier.com/S0029-8018(20)30311-5/sref7
http://refhub.elsevier.com/S0029-8018(20)30311-5/sref7
http://refhub.elsevier.com/S0029-8018(20)30311-5/sref8
http://refhub.elsevier.com/S0029-8018(20)30311-5/sref8
http://refhub.elsevier.com/S0029-8018(20)30311-5/sref8
http://refhub.elsevier.com/S0029-8018(20)30311-5/sref9
http://refhub.elsevier.com/S0029-8018(20)30311-5/sref9
http://refhub.elsevier.com/S0029-8018(20)30311-5/sref9
http://refhub.elsevier.com/S0029-8018(20)30311-5/sref10
http://refhub.elsevier.com/S0029-8018(20)30311-5/sref10
http://refhub.elsevier.com/S0029-8018(20)30311-5/sref11
http://refhub.elsevier.com/S0029-8018(20)30311-5/sref11
http://refhub.elsevier.com/S0029-8018(20)30311-5/sref11
http://refhub.elsevier.com/S0029-8018(20)30311-5/sref12
http://refhub.elsevier.com/S0029-8018(20)30311-5/sref12
http://refhub.elsevier.com/S0029-8018(20)30311-5/sref13
http://refhub.elsevier.com/S0029-8018(20)30311-5/sref13
http://refhub.elsevier.com/S0029-8018(20)30311-5/sref14
http://refhub.elsevier.com/S0029-8018(20)30311-5/sref14
http://refhub.elsevier.com/S0029-8018(20)30311-5/sref15
http://refhub.elsevier.com/S0029-8018(20)30311-5/sref15
http://refhub.elsevier.com/S0029-8018(20)30311-5/sref15
http://refhub.elsevier.com/S0029-8018(20)30311-5/sref16
http://refhub.elsevier.com/S0029-8018(20)30311-5/sref16
http://refhub.elsevier.com/S0029-8018(20)30311-5/sref17
http://refhub.elsevier.com/S0029-8018(20)30311-5/sref17
http://refhub.elsevier.com/S0029-8018(20)30311-5/sref18
http://refhub.elsevier.com/S0029-8018(20)30311-5/sref18
http://refhub.elsevier.com/S0029-8018(20)30311-5/sref18


Ocean Engineering 204 (2020) 107263

13

Jin, Y.-F., Yin, Z.-Y., Shen, S.-L., Hicher, P.-Y., 2016. Selection of sand models and 
identification of parameters using an enhanced genetic algorithm. Int. J. Numer. 
Anal. Methods GeoMech. 40 (8), 1219–1240. 

Jin, Y.-F., Yin, Z.-Y., Zhou, W.-H., Horpibulsuk, S., 2019a. Identifying parameters of 
advanced soil models using an enhanced transitional Markov chain Monte Carlo 
method. Acta Geotechnica 14 (6), 1925–1947. 

Jin, Z., Yin, Z.Y., Kotronis, P., Jin, Y.F., 2018. Numerical investigation on evolving failure 
of caisson foundation in sand using the combined Lagrangian-SPH method. Marine 
Georesources & Geotechnology 37 (1), 23–35. 

Jin, Z., Yin, Z.-Y., Kotronis, P., Li, Z., 2019b. Advanced numerical modelling of caisson 
foundations in sand to investigate the failure envelope in the H-M-V space. Ocean 
Eng. 190 (15), 106394. 

Jin, Z., Yin, Z.-Y., Kotronis, P., Li, Z., Tamagnini, C., 2019c. A hypoplastic macroelement 
model for a caisson foundation in sand under monotonic and cyclic loadings. Mar. 
Struct. 66, 16–26. 

LeCun, Y., Bengio, Y., Hinton, G., 2015. Deep learning. Nature 521 (7553), 436–444. 
Li, Z., Kotronis, P., Escoffier, S., Tamagnini, C., 2015. A hypoplastic macroelement for 

single vertical piles in sand subject to three-dimensional loading conditions. Acta 
Geotechnica 11 (2), 373–390. 

Liu, X., Gasco, F., Goodsella, J., Yua, W.B., 2019. Initial failure strength prediction of 
woven composites using a new yarnfailure criterion constructed by deep learning. 
Compos. Struct. 230, 111505. 

Liu, M., Yang, M., Wang, H., 2014. Bearing behavior of wide-shallow bucket foundation 
for offshore wind turbines in drained silty sand. Ocean Engineering 82, 169–179. 

Montrasio, L., Nova, R., 1997. Settlements of shallow foundations on sand geometrical 
effects. Geotechnique 47 (1), 49–60. 

Moradi, R., Berangi, R., Minaei, B., 2019. A survey of regularization strategies for deep 
models. Artif. Intell. Rev. https://doi.org/10.1007/s10462-019-09784-7. 

Murata, N., Yoshizawa, S., Amari, S., 1993. Learning curves, model selection and 
complexity of neural networks. In: Hanson, S.J., Cowan, J.D., Giles, C.L. (Eds.), 
Advances in Neural Information Processing Systems, 5. Morgan Kaufmann, San 
Mateo, CA, pp. 607–614, 1993.  

Nash, J.E., Sutcliffe, J.V., 1970. River flow forecasting through conceptual models part I - 
a discussion of principles. J. Hydrol. 10 (3), 282–290. 

Nova, R., Montrasio, L., 1991. Settlements of shallow foundations on sand. Geotechnique 
41 (2), 243–256. 

Reuter, U., Sultan, A., Reischl, D.S., 2018. A comparative study of machine learning 
approaches for modeling concrete failure surfaces. Adv. Eng. Software 116, 67–79. 

Ruder, S., 2016. An Overview of Gradient Descent Optimization arXiv preprint, arXiv: 
1609.04747v04742.  

Rumelhart, D.E., Hinton, G.E., Williams, R.J., 1986. Learning representations by back- 
propagating errors. Nature 323 (9), 533–536. 

Sarir, P., Shen, S.-L., Wang, Z.-F., Chen, J., Horpibulsuk, S., Pham, B.T., 2019. Optimum 
model for bearing capacity of concrete-steel columns with AI technology via 
incorporating the algorithms of IWO and ABC. Eng. Comput. 1–11. 

Skau, K.S., Chen, Y., Jostad, H.P., 2018a. A numerical study of capacity and stiffness of 
circular skirted foundations in clay subjected to combined static and cyclic general 
loading. Geotechnique 68 (3), 205–220. 

Skau, K.S., Grimstad, G., Page, A.M., Eiksund, G.R., Jostad, H.P., 2018b. A macro- 
element for integrated time domain analyses representing bucket foundations for 
offshore wind turbines. Mar. Struct. 59, 158–178. 

Smith, L.N., 2017. Cyclical learning rates for training neural networks. In: IEEE Winter 
Conference on Applications of Computer Vision (WACV), Santa Rosa, California. 

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R., 2014. 
Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. 
Res. 15, 1929–1958. 

Villalobos, F.A., Byrne, B.W., Houlsby, G.T., 2009. An experimental study of the drained 
capacity of suction caisson foundations under monotonic loading for offshore 
applications. Soils Found. 49 (3), 477–488. 

Wang, K., Sun, W., 2018. A multiscale multi-permeability poroplasticity model linked by 
recursive homogenizations and deep learning. Comput. Methods Appl. Mech. Eng. 
334, 337–380. 

Xu, P., Du, R., Zhang, Z., 2019. Predicting pipeline leakage in petrochemical system 
through GAN and LSTM. Knowl. Base Syst. 175, 50–61. 

Yang, B., Yin, K., Lacasse, S., Liu, Z., 2019. Time series analysis and long short-term 
memory neural network to predict landslide displacement. Landslides 16 (4), 
677–694. 

Yin, Z.-Y., Huang, H.-W., Hicher, P.-Y., 2016. Elastoplastic modeling of sand–silt 
mixtures. Soils Found. 56 (3), 520–532. 

Yin, Z.-Y., Jin, Y.-F., Shen, J.S., Hicher, P.-Y., 2018a. Optimization techniques for 
identifying soil parameters in geotechnical engineering: comparative study and 
enhancement. Int. J. Numer. Anal. Methods GeoMech. 42 (1), 70–94. 

Yin, Z.-Y., Jin, Z., Kotronis, P., Wu, Z.-X., 2018b. Novel SPH SIMSAND–based approach 
for modeling of granular collapse. Int. J. GeoMech. 18 (11). 

Yin, Z.-Y., Xu, Q., Hicher, P.-Y., 2013. A simple critical-state-based double-yield-surface 
model for clay behavior under complex loading. Acta Geotechnica 8 (5), 509–523. 

Zafeirakos, A., Gerolymos, N., 2016. Bearing strength surface for bridge caisson 
foundations in frictional soil under combined loading. Acta Geotechnica 11 (5), 
1189–1208. 

Zhang, N., Shen, S.-L., Zhou, A., Xu, Y.-S., 2019a. Investigation on performance of neural 
networks using quadratic relative error cost function. IEEE Access 7, 
106642–106652. 

Zhang, P., 2019. A novel feature selection method based on global sensitivity analysis 
with application in machine learning-based prediction model. Appl. Soft Comput. 
85, 105859. 

Zhang, P., Chen, R.P., Wu, H.N., 2019b. Real-time analysis and regulation of EPB shield 
steering using Random Forest. Autom. ConStruct. 106, 102860. 

Zhang, P., Wu, H.N., Chen, R.P., Chan, T.H.T., 2020. Hybrid meta-heuristic and machine 
learning algorithms for tunneling-induced settlement prediction: A comparative 
study. Tunnelling and Underground Space Technology 99, 103383. 

Zhang, P., Yin, Z.-Y., Jin, Y.-F., Chan, T.H.T., 2020a. A novel hybrid surrogate intelligent 
model for creep index prediction based on particle swarm optimization and random 
forest. Eng. Geol. 265, 105328. 

Zhang, P., Yin, Z.Y., Jin, Y.F., Chan, T., 2020b. Intelligent modelling of clay 
compressibility using hybrid meta-heuristic and machine learning algorithms. 
Geosci. Front. (in press).  

Zhang, P., Yin, Z.Y., Jin, Y.F., Ye, G.L., 2020c. An AI-based model for describing cyclic 
characteristics of granular materials. Int. J. Numer. Anal. Methods GeoMech. 1–21. 

Zhou, W.-H., Garg, A., Garg, A., 2016. Study of the volumetric water content based on 
density, suction and initial water content. Measurement 94, 531–537. 

Zhu, F., Bienen, B., O’Loughlin, C., Morgan, N., Cassidy, M.J., 2018. The response of 
suction caissons to multidirectional lateral cyclic loading in sand over clay. Ocean 
Eng. 170, 43–54. 

Zhu, J.-H., Zaman, M.M., Anderson, S.A., 1998. Modeling of soil behavior with a 
recurrent neural network. Can. Geotech. J. 35, 858–872. 

P. Zhang et al.                                                                                                                                                                                                                                   

http://refhub.elsevier.com/S0029-8018(20)30311-5/sref19
http://refhub.elsevier.com/S0029-8018(20)30311-5/sref19
http://refhub.elsevier.com/S0029-8018(20)30311-5/sref19
http://refhub.elsevier.com/S0029-8018(20)30311-5/sref20
http://refhub.elsevier.com/S0029-8018(20)30311-5/sref20
http://refhub.elsevier.com/S0029-8018(20)30311-5/sref20
http://refhub.elsevier.com/S0029-8018(20)30311-5/optqXjRPPpRnQ
http://refhub.elsevier.com/S0029-8018(20)30311-5/optqXjRPPpRnQ
http://refhub.elsevier.com/S0029-8018(20)30311-5/optqXjRPPpRnQ
http://refhub.elsevier.com/S0029-8018(20)30311-5/sref21
http://refhub.elsevier.com/S0029-8018(20)30311-5/sref21
http://refhub.elsevier.com/S0029-8018(20)30311-5/sref21
http://refhub.elsevier.com/S0029-8018(20)30311-5/sref22
http://refhub.elsevier.com/S0029-8018(20)30311-5/sref22
http://refhub.elsevier.com/S0029-8018(20)30311-5/sref22
http://refhub.elsevier.com/S0029-8018(20)30311-5/sref23
http://refhub.elsevier.com/S0029-8018(20)30311-5/sref25
http://refhub.elsevier.com/S0029-8018(20)30311-5/sref25
http://refhub.elsevier.com/S0029-8018(20)30311-5/sref25
http://refhub.elsevier.com/S0029-8018(20)30311-5/sref26
http://refhub.elsevier.com/S0029-8018(20)30311-5/sref26
http://refhub.elsevier.com/S0029-8018(20)30311-5/sref26
http://refhub.elsevier.com/S0029-8018(20)30311-5/optM06VVwUwSQ
http://refhub.elsevier.com/S0029-8018(20)30311-5/optM06VVwUwSQ
http://refhub.elsevier.com/S0029-8018(20)30311-5/sref27
http://refhub.elsevier.com/S0029-8018(20)30311-5/sref27
https://doi.org/10.1007/s10462-019-09784-7
http://refhub.elsevier.com/S0029-8018(20)30311-5/sref29
http://refhub.elsevier.com/S0029-8018(20)30311-5/sref29
http://refhub.elsevier.com/S0029-8018(20)30311-5/sref29
http://refhub.elsevier.com/S0029-8018(20)30311-5/sref29
http://refhub.elsevier.com/S0029-8018(20)30311-5/sref30
http://refhub.elsevier.com/S0029-8018(20)30311-5/sref30
http://refhub.elsevier.com/S0029-8018(20)30311-5/sref31
http://refhub.elsevier.com/S0029-8018(20)30311-5/sref31
http://refhub.elsevier.com/S0029-8018(20)30311-5/sref32
http://refhub.elsevier.com/S0029-8018(20)30311-5/sref32
http://refhub.elsevier.com/S0029-8018(20)30311-5/sref33
http://refhub.elsevier.com/S0029-8018(20)30311-5/sref33
http://refhub.elsevier.com/S0029-8018(20)30311-5/sref34
http://refhub.elsevier.com/S0029-8018(20)30311-5/sref34
http://refhub.elsevier.com/S0029-8018(20)30311-5/sref35
http://refhub.elsevier.com/S0029-8018(20)30311-5/sref35
http://refhub.elsevier.com/S0029-8018(20)30311-5/sref35
http://refhub.elsevier.com/S0029-8018(20)30311-5/sref36
http://refhub.elsevier.com/S0029-8018(20)30311-5/sref36
http://refhub.elsevier.com/S0029-8018(20)30311-5/sref36
http://refhub.elsevier.com/S0029-8018(20)30311-5/sref37
http://refhub.elsevier.com/S0029-8018(20)30311-5/sref37
http://refhub.elsevier.com/S0029-8018(20)30311-5/sref37
http://refhub.elsevier.com/S0029-8018(20)30311-5/sref38
http://refhub.elsevier.com/S0029-8018(20)30311-5/sref38
http://refhub.elsevier.com/S0029-8018(20)30311-5/sref39
http://refhub.elsevier.com/S0029-8018(20)30311-5/sref39
http://refhub.elsevier.com/S0029-8018(20)30311-5/sref39
http://refhub.elsevier.com/S0029-8018(20)30311-5/sref40
http://refhub.elsevier.com/S0029-8018(20)30311-5/sref40
http://refhub.elsevier.com/S0029-8018(20)30311-5/sref40
http://refhub.elsevier.com/S0029-8018(20)30311-5/sref41
http://refhub.elsevier.com/S0029-8018(20)30311-5/sref41
http://refhub.elsevier.com/S0029-8018(20)30311-5/sref41
http://refhub.elsevier.com/S0029-8018(20)30311-5/sref42
http://refhub.elsevier.com/S0029-8018(20)30311-5/sref42
http://refhub.elsevier.com/S0029-8018(20)30311-5/sref43
http://refhub.elsevier.com/S0029-8018(20)30311-5/sref43
http://refhub.elsevier.com/S0029-8018(20)30311-5/sref43
http://refhub.elsevier.com/S0029-8018(20)30311-5/sref44
http://refhub.elsevier.com/S0029-8018(20)30311-5/sref44
http://refhub.elsevier.com/S0029-8018(20)30311-5/sref45
http://refhub.elsevier.com/S0029-8018(20)30311-5/sref45
http://refhub.elsevier.com/S0029-8018(20)30311-5/sref45
http://refhub.elsevier.com/S0029-8018(20)30311-5/sref46
http://refhub.elsevier.com/S0029-8018(20)30311-5/sref46
http://refhub.elsevier.com/S0029-8018(20)30311-5/sref47
http://refhub.elsevier.com/S0029-8018(20)30311-5/sref47
http://refhub.elsevier.com/S0029-8018(20)30311-5/sref48
http://refhub.elsevier.com/S0029-8018(20)30311-5/sref48
http://refhub.elsevier.com/S0029-8018(20)30311-5/sref48
http://refhub.elsevier.com/S0029-8018(20)30311-5/sref49
http://refhub.elsevier.com/S0029-8018(20)30311-5/sref49
http://refhub.elsevier.com/S0029-8018(20)30311-5/sref49
http://refhub.elsevier.com/S0029-8018(20)30311-5/sref50
http://refhub.elsevier.com/S0029-8018(20)30311-5/sref50
http://refhub.elsevier.com/S0029-8018(20)30311-5/sref50
http://refhub.elsevier.com/S0029-8018(20)30311-5/sref51
http://refhub.elsevier.com/S0029-8018(20)30311-5/sref51
http://refhub.elsevier.com/S0029-8018(20)30311-5/optwhsohYpx43
http://refhub.elsevier.com/S0029-8018(20)30311-5/optwhsohYpx43
http://refhub.elsevier.com/S0029-8018(20)30311-5/optwhsohYpx43
http://refhub.elsevier.com/S0029-8018(20)30311-5/sref52
http://refhub.elsevier.com/S0029-8018(20)30311-5/sref52
http://refhub.elsevier.com/S0029-8018(20)30311-5/sref52
http://refhub.elsevier.com/S0029-8018(20)30311-5/sref53
http://refhub.elsevier.com/S0029-8018(20)30311-5/sref53
http://refhub.elsevier.com/S0029-8018(20)30311-5/sref53
http://refhub.elsevier.com/S0029-8018(20)30311-5/sref54
http://refhub.elsevier.com/S0029-8018(20)30311-5/sref54
http://refhub.elsevier.com/S0029-8018(20)30311-5/sref55
http://refhub.elsevier.com/S0029-8018(20)30311-5/sref55
http://refhub.elsevier.com/S0029-8018(20)30311-5/sref56
http://refhub.elsevier.com/S0029-8018(20)30311-5/sref56
http://refhub.elsevier.com/S0029-8018(20)30311-5/sref56
http://refhub.elsevier.com/S0029-8018(20)30311-5/sref57
http://refhub.elsevier.com/S0029-8018(20)30311-5/sref57

	A LSTM surrogate modelling approach for caisson foundations
	1 Introduction
	2 Deep learning based methodology
	2.1 Long short-term memory neural network
	2.2 Proposed hybrid surrogate model
	2.3 Evaluation indicators

	3 Database design
	3.1 Data source
	3.2 Data preprocessing

	4 Offline training of a hybrid surrogate model
	4.1 Determination of hyper-parameters
	4.2 Underfitting and overfitting examination
	4.3 Evaluation of surrogate model performance

	5 Online prediction using LSTM surrogate model
	5.1 Loading paths prediction
	5.2 Prediction of failure envelope in the H–M plane

	6 Conclusions
	Appendix
	Declaration of competing interest
	CRediT authorship contribution statement
	Acknowledges
	References


