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ABSTRACT
This article focuses on a subgrid-scale (SGS) eddy viscosity model based on helicity which is derived from our previous research [Yu
et al., “Subgrid-scale eddy viscosity model for helical turbulence,” Phys. Fluids 25, 095101 (2013)] for large-eddy simulation of transition
and turbulence in compressible flows. Based on the character of the compressible boundary layer over a flat plate, we obtain from theoretical
analysis that this model can automatically distinguish laminar flow and turbulence and can also simulate turbulence well. Meanwhile, an a
priori test using direct numerical simulation (DNS) data of a spatially developing flat-plate boundary layer at Ma = 2.25 shows that the helicity
model can clearly differentiate laminar, transitional, and turbulent regions. Comparing the numerical simulation results with DNS and other
SGS models in the spatially developing boundary-layer over a flat plate, we find that the suggested model could precisely predict the onset of
transition, transition peak, skin-friction coefficient, mean velocity profile, mean temperature profile, and turbulence intensities. In the case of
a compression ramp, the model can well simulate the bypass-type transition, the separated and reattached points, and the size of the separa-
tion bubble in the corner region. Furthermore, the prominent advantage of the proposed model can predict transitional flow exactly with no
explicit filtering or dynamic procedure.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5128061., s

I. INTRODUCTION

Transition to turbulent flows exists widely in nature and
engineering machinery, particularly in turbomachinery and flying
vehicles. Large eddy simulation (LES) is an important method to
correctly predict the transition point and transition process.

Since Smagorinsky presented the first subgrid-scale (SGS)
model for large-eddy simulation (LES) in the 1970s,1 the subgrid-
scale (SGS) models and LES methods have gained great success and
development. Similar to the Smagorinsky model (SM), the most
commonly used SGS model is the eddy-viscosity model, and various
other forms of SGS eddy-viscosity models have also been proposed
so far. Using the second-order velocity structure function, Métais
and Lesieur2 proposed the second-order structure function model,
which is a generalization of the spectral eddy viscosity model in
physical space. Similarly, Cui et al.3 took the second- and third-order

structure function to develop the CZZS model. The wall-adapting
local eddy-viscosity (WALE) model was proposed by Nicoud and
Ducros,4 which is based on the square of the velocity gradient ten-
sor, and its SGS eddy viscosity could recover the proper y3 near-wall
scaling without the dynamic procedure. Vreman5 suggested a SGS
model for shear flows which has a simple formula and relatively
small dissipation in the transitional and near-wall regions. Recently,
some nonlinear eddy viscosity models have also been proposed to
simulate some special turbulent flows, such as rotating turbulence
and wall-bounded turbulence.6,7 Most of the SGS models are pro-
posed on account of kinetic energy of turbulence. Besides the SGS
models, some practical LES methods have also been suggested to
ensure that the SGS model simulates turbulence better.8 Germano
et al.9 suggested the dynamic procedure for the SGS models, which
is referred to as the Germano identity and has become the basis of
various dynamic models.10–14 For dynamic SGS models, the local
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model coefficient in the turbulent flow can be adjusted dynamically
with the simulation process. Some additional transport equations,
such as the SGS turbulent kinetic energy transport equation, were
applied to adjust the coefficient of the SGS model in LES of com-
plex turbulence.15 These modifications are used to remedy the lack
of localization of the information and to adapt the model better to
the local state of the flow.

During the transition process, the flow parameters such as the
skin-friction and heat flux will increase rapidly from the laminar
status to the peak of transition status. Therefore, correctly simulat-
ing the length of the surface where the boundary layer is laminar
might be necessary for overall drag prediction.16 Horiuti17 used the
constant coefficient Smagorinsky model (CSM) to simulate a transi-
tional channel flow and found that the CSM provides excessive dis-
sipation in the transition process, which would impede transition to
occur in the flow. Ducros et al. reformulated the structure-function
model to simulate the transition in a spatial boundary layer at
Ma = 0.5, and they got an acceptable result.18 Huai et al. applied
the dynamic Smagorinsky model (DSM) to simulate a transitional
flat-plate boundary layer for the first time, and the simulation results
show that DSM could predict transition.19 More recently, Sayadi and
Moin assessed the capabilities of several existing SGS models, such
as the CSM and Vreman model, the dynamic mixed scale similarity
model, and the dynamic one-equation kinetic energy model to pre-
dict the transition point and skin-friction all around the transition
process, and the results show that the CSM and constant coeffi-
cient Vreman model cannot capture the transition location, and the
dynamic SGS models could estimate the transition point correctly if
the grid resolution is fine enough.16

In this article, using the boundary layer over a flat plate, we ana-
lyze the helicity model (HM) deriving from our previous research20

and find that HM can predict transition process in theory. Through
a priori and a posteriori tests in the compressible boundary layer over
a flat plate and the supersonic turbulent boundary layer over a com-
pression ramp, the HM is accurately verified to simulate transition
to turbulence. We introduce the model and generalize its validity to
transitional flow theoretically in Sec. II. A priori and a posteriori tests
are performed in Secs. III and IV, respectively.

II. ANALYSIS IN THEORY
For compressible turbulent flows, the filtered Navier-Stokes

equations of LES can be written as follows:

∂ρ̄
∂t

+
∂ρ̄ũi
∂xi
= 0, (1)

∂ρ̄ũi
∂t

+
∂ρ̄ũiũj
∂xj

= − ∂

∂xj
(p̄δij − σ̃ij + τij), (2)

∂ρ̄Ẽ
∂t

+
∂(ρ̄Ẽ + p̄)ũj

∂xj
= − ∂

∂xj
(q̃j − σ̃ijũi + Jj + Qj), (3)

p̄ = ρ̄RT̃, (4)

where a bar denotes spatial filtering at scale Δ using a smooth low-
pass filter function GΔ(r) [e.g., ρ̄(x) = ∫ GΔ(r)ρ(x+ r)dr represents

the resolved density field] and a tilde denotes spatial Favre filtering
as ϕ̃ = ρϕ

ρ̄ .
In (1)–(4), ρ, ui, T, E, and R denote density, velocity, tempera-

ture, total energy, and specific gas constant, respectively. The viscous
stress tensor σ̃ij and the heat flux vector q̃j are given by the following
equation:

σ̃ij = 2μ(T̃)(S̃ij −
1
3
δijS̃kk), (5)

q̃j =
Cpμ(T̃)

Pr
∂T̃
∂xj

, (6)

where Cp, Pr are the specific heat at constant pressure and molec-

ular Prandtl number, μ = 1
Re

T̃3/2
(1+Ts/T̃∞)
T̃+Ts/T̃∞

is the molecular vis-
cosity calculated using Sutherland’s law for given Ts = 110.3 K,
Re = ρ∞U∞L/μ∞ is the Reynolds number, and S̃ij = 1

2(
∂ũi
∂xj

+ ∂ũj
∂xi
)

is the resolved strain-rate tensor.
In (1)–(4), there are some unclosed terms: the SGS stress tensor:

τij = ρ̄(ũiuj − ũiũj), (7)

the SGS heat flux:

Qj = ρ̄Cp(ũjT − ũjT̃), (8)

and the SGS turbulent diffusion

Jj =
1
2
(ρ̄ũjuiui − ρ̄ũjũiui). (9)

It is suggested that the SGS turbulent diffusion can be approximated
as Jj = τijũi.21 The SGS stress tensor τij and the SGS heat flux Qj need
to be modeled based on the resolved quantities. Most SGS mod-
els are based on eddy-viscosity assumption, and the form of SGS
stress tensor τij and the SGS heat flux Qj are given by the following
equation:

τmod
ij − 1

3
τsgskk δij = −2μsgs(S̃ij −

1
3
S̃kkδij), (10)

Qmod
j = −Cpμsgs

Prt
∂T̃
∂xj

(11)

where μsgs is SGS viscosity, and Prt is the SGS Prandtl number.
The often used SGS model is the Smagorinsky model,

μsgs = ρ̄(CsΔ)2∣S̃∣, (12)

τsgskk = 2CI ρ̄Δ2∣S̃∣2, (13)

where ∣S̃∣ =
√
(2S̃ijS̃ij) is the magnitude of resolved strain tensor, and

Cs and CI are the model coefficients.
In our previous research, we proposed a novel eddy-viscosity

model based on helicity in full turbulent flow,20 which is distin-
guished from the traditional SGS eddy-viscosity model based on
kinetic energy. The new SGS model can be called helicity model
(HM) here, and the SGS eddy viscosity of the anisotropic part of the
SGS tensor is modeled as follows:

μsgs = ρ̄CrΔ5/2S̃sr . (14)
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To secure the isotropic part of the SGS tensor τsgskk keeping the
closed status in strong compressible laminar flows, we modified the
isotropic part of the SGS tensor as follows:

τsgskk = 2ρ̄CirΔ3S̃2
sr , (15)

Thus, the helicity model for SGS stress and SGS heat flux can
be generalized as follows:

τmod
ij = −2ρ̄CrΔ5/2S̃sr(S̃ij −

1
3
S̃kkδij) +

2
3
ρ̄CirΔ3S̃2

srδij, (16)

and

Qmod
j = −Cr

Cpρ̄Δ5/2S̃sr
Prt

∂T̃
∂xj

. (17)

In (14)–(17), S̃sr = ∣2S̃ijR̃ij∣1/2 and R̃ij = 1
2(∂jω̃i + ∂iω̃j) are the sym-

metric parts of the resolved vorticity (ω̃i) gradient tensor, and Cr
and Cir are the model coefficients.

The HM is shown to be proportional to the product of the
resolved velocity strain rate tensor and the vorticity gradient ten-
sor. The detailed derivation can be seen in the author’s published
literature.20 In order to better illustrate the rationality of the helic-
ity model, we also prove the Galileo invariance of the model in
Appendix A.

For transitional flow, as noted in Sec. I, CSM fails to predict
the “point” of transition accurately, because CSM is still active in the
laminar region and supplies excessive dissipation which will damp
the development of disturbances. As a result, the transition does not
occur in the boundary layer.22 The key to ensuring effectiveness of
the SGS model in transition prediction is to differentiate the laminar
region and turbulent region automatically. According to the pre-
vious experience, the most commonly used approach to solve this
problem is the dynamic procedure. However, the dynamic proce-
dure need test filtering, which is inconvenient to apply to the flow
with complex boundaries. Through theoretical analysis, we find that
the helicity model can be used to successfully simulate transitional
flow directly.

For a wall-bounded laminar flow (e.g., a boundary layer
over a flat plate), the laminar boundary layer equations can be
approximately regarded as two-dimensional equations. For simplic-
ity (spanwise direction velocity w ≈ 0), the compressible laminar
boundary layer equations are chosen to analyze. In the equations,
x indicates the streamwise direction and y indicates the wall-normal
direction. The continuity equation and the momentum equation can
be expressed as follows:

∂ρ
∂t

+
∂ρu
∂x

+
∂ρv
∂y
= 0, (18)

∂ρu
∂t

+
∂ρuu
∂x

+
∂ρuv
∂y
= −∂p

∂x
+
∂σ11

∂x
+
∂σ12

∂y
, (19)

∂ρv
∂t

+
∂ρuv
∂x

+
∂ρvv
∂y
= −∂p

∂y
+
∂σ12

∂x
+
∂σ22

∂y
. (20)

The plate length scale L, free-stream density ρ0, and free-stream
velocity U are used to define the nondimensional independent vari-
ables which are regarded as the characteristic length, characteristic

density, and characteristic velocity, respectively. Then, in the bound-
ary layer, if the scale of the x direction is x ∼ L, the scale of the y
direction is y ∼ δ, where δ is the boundary layer thickness, and the
magnitude of the x-direction velocity is ρu ∼ ρ0U, then the results
are as follows:

1
ρ0

∂ρu
∂x
∼ ∂ũ
∂x
∼ U

L
,

1
ρ0

∂ρu
∂y
∼ ∂ũ
∂y
∼ U

δ
. (21)

In the compressible laminar boundary layer of the flat plate, when
the flow was approximately assumed as quasi-steady flow in this
case, the continuity Eq. (22) could be written as ∂(ρu)/∂x + ∂(ρv)/∂y
= 0, and the magnitude of the two terms should be equivalent,

∂ṽ
∂y
∼ 1
ρ0

∂ρv
∂y
∼ ∣ 1

ρ0

∂ρu
∂x
∣ ∼ U

L
. (22)

Based on these relations, we obtain the following:

ṽ ∼ U
L
δ,

∂ṽ
∂x
∼ Uδ

L2 , (23)

ω̃x =
∂w̃
∂y
− ∂ṽ
∂z
∼ 0, ω̃y =

∂ũ
∂z
− ∂w̃

∂x
∼ 0,

ω̃z =
∂ṽ
∂x
− ∂ũ
∂y
∼ U

δ
.

(24)

Consequently, the strain rate tensor S̃ij can be defined as follows:

S̃ij =
1
2
(∂ũi
∂xj

+
∂ũj
∂xi
) ∼

⎡⎢⎢⎢⎢⎢⎢⎢⎣

U
L

U
δ 0

U
δ

U
L 0

0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

, (25)

and the symmetric part of the vorticity gradient tensor R̃ij is as
follows:

R̃ij =
1
2
(∂ω̃i

∂xj
+
∂ω̃j

∂xi
) ∼

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 0 U
Lδ

0 0 U
δ2

U
Lδ

U
δ2 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

. (26)

Thus, we can get such relationships for ∣S̃∣ and ∣S̃sr ∣,

∣S̃∣ ∼ U
δ

, ∣S̃sr ∣ ∼ 0. (27)

For this dimension analysis, we can see that the SGS viscosity of the
helicity model is just like a switch in the transition process, and it
will remain closed in laminar states and gradually open during the
transition process.

More generally, even in unsteady compressible laminar bound-
ary layer flow over a flat plate, we can still obtain such a relation as
the following one:

S̃ij =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

∂ũ
∂x

1
2(

∂ũ
∂y + ∂ṽ

∂x ) 0
1
2(

∂ũ
∂y + ∂ṽ

∂x )
∂ṽ
∂y 0

0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

, (28)

R̃ij =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1
2
∂ω̃z
∂x

0 0 1
2
∂ω̃z
∂y

1
2
∂ω̃z
∂x

1
2
∂ω̃z
∂y 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

. (29)

Phys. Fluids 31, 125118 (2019); doi: 10.1063/1.5128061 31, 125118-3

Published under license by AIP Publishing

https://scitation.org/journal/phf


Physics of Fluids ARTICLE scitation.org/journal/phf

Then,

∣S̃∣ = ∣2S̃ijS̃ij∣1/2

=
⎡⎢⎢⎢⎢⎣

2(∂ũ
∂x
)

2
+ (∂ũ

∂y
+
∂ṽ
∂x
)

2

+ 2(∂ṽ
∂y
)

2⎤⎥⎥⎥⎥⎦

1/2

. (30)

Thus, in the compressible laminar boundary layer,

∣S̃∣ = ∣2S̃ijS̃ij∣1/2 ≠ 0, S̃sr = ∣2S̃ijR̃ij∣1/2 ≈ 0. (31)

From the analysis above, we can find that the SGS viscosity of
the Smagorinsky model is still a large value in the laminar region,
and it will produce overdissipation, damping the disturbances to
decay prior to the happening of transition. Therefore, the “point”
of transition is not predicted accurately with CSM. On the contrary,
the SGS viscosity of the helicity model is close to zero in the lami-
nar region, and the SGS dissipation will be negligible in such a case
which will guarantee the development of linear unstable waves and
the occurrence of transition.

III. A PRIORI TEST
In this section, an a priori test will be presented for the SGS vis-

cosity of the Smagorinsky model and the helicity model using direct
numerical simulation (DNS) data of a supersonic spatially devel-
oping boundary layer23 over a flat plate with a free-stream Mach
number of 2.25 and a Reynolds number (Re) of 635 000. The DNS
employs a seventh-order difference scheme for spatial discretiza-
tion and a third-order Runge-Kutta method for time advancement.
The “viscous derivatives” and viscous flux function are determined
by a sixth-order difference scheme. The computational domain (see
Fig. 1) is bounded by in-flow and out-flow boundaries, a wall bound-
ary, a far-field boundary, and the two boundaries (periodic) in the
spanwise direction. The computational domain used in this test has
a size of Lx × Ly × Lz = 6 × 0.3 × 0.175 in. in the streamwise,
wall-normal, and spanwise directions. The DNS data are filtered in
spanwise direction with top-hat filter and the filter width is Δ̄ = 8Δz ,
where Δz is mesh spacing of DNS gird in spanwise direction.

Figure 2(a) shows the normalized SGS viscosity of the
Smagorinsky model and helicity model along the streamwise direc-
tion at y+ = 15 as a function of the Reynolds number based on
the conditions at the outer edge of the boundary layer Rex. The
black circle (defined) in Fig. 2(a) represents the defined SGS vis-
cosity, which is obtained directly from its definition, as shown in
Eq. (10). In the laminar region (0 < Rex < 4 × 10−6) and transitional
region (4 × 10−6 < Rex < 4.8 × 10−6), we can see that the SGS vis-
cosity of the Smagorinsky model (μSMsgs /μ) has a large magnitude in
contrast to its value in the turbulent region, which is the main rea-
son of producing large SGS dissipation in laminar and transitional
regions. On the contrary, the SGS viscosity of the helicity model has

FIG. 2. (a) Distribution of normalized eddy viscosity (μsgs/μ) of SM and HM at
y+ = 15 as a function of streamwise Reynolds number obtained a priori using DNS
data. (b) Instantaneous contours of normalized eddy viscosity (μsgs/μ) of SM and
HM in the x-z plane at y+

≈ 15. μ is molecular viscosity.

a negligible value the same as the modeled eddy viscosity in the
laminar region, and at the same time, it can also provide a suitable
SGS dissipation with the development of transition. In the turbulent
region, they have the same behavior.

We display in Fig. 2(b) the instantaneous contours of local SGS
viscosity of SM and HM in the x-z plane at y+ = 15. It is much clearer
to reveal the distribution of SGS viscosity in the x-z plane. In the
laminar region, the SGS viscosity of SM has a fairly large value and
the value of HM tends to zero, which is consistent with the conclu-
sion from Fig. 2(a). In the transitional region, the spatial distribution
of the SGS viscosity of HM also exhibits a rational intermittency.

From the a priori test, we obtain that the Smagorinsky model
can generate unreasonable SGS dissipation in the laminar region
(where Cs should be zero), and the transition process will be slowed
down and even not occur at all. For HM, the amount of SGS dissipa-
tion is negligible and the development of linear disturbances can be
maintained before the occurrence of transition. To verify the valid-
ity in the simulation of transitional flows with the helicity model, an
a posteriori test should be verified in the representative transitional
flows.

IV. A POSTERIORI TEST
A. The numerical method

In this section, we will give an a posteriori test of several SGS
models with a supersonic spatially developing boundary layer23

with a free-stream Mach number of 2.25 and a free-stream unit

FIG. 1. Sketch of the computational domain for simulation.
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Reynolds number (Re/in.) of 635 000, a free-stream temperature (T)
of 169.44 K, and an adiabatic wall temperature of 322 K. We also give
an a posteriori test of several SGS models with supersonic flow over
a 24○ compression ramp24 with a free-stream Mach number of 2.9
and Reynolds number (Reθ) of 2300.

In the a posteriori test, the governing equations (1)–(4) for LES
of compressible flow are solved by using a high precision nondi-
mensional finite difference solver in Cartesian coordinates, which is
named Opencfd-SC and developed by our group for the compress-
ible flows.25–27 The free-stream velocity, free-stream density, and
unit length of mesh are selected as the characteristic velocity, charac-
teristic density, and characteristic length. A sixth-order central dif-
ference scheme is employed for the discretization of the convective
terms and the viscous terms. The discretized equations are tempo-
rally integrated using an explicit third-order Runge-Kutta scheme.
In the case of supersonic flow over a compression ramp, in order to
capture shock wave accurately, we use the shock-capturing method-
ology based on adaptive spatial filtering for high-order nonlinear
computations in the corner region.28

In the tests, the main results for comparison from LES are
derived by using five SGS models, namely, constant coefficient
Smagorinsky model (CSM), dynamic Smagorinsky model (DSM),
constant coefficient helicity model (CHM), dynamic helicity model
(DHM), and wall-adapting local eddy-viscosity (WALE) model.4

The SGS viscosity of the WALE model is as follows:

μsgsWALE =
ρ̄CwΔ2(Sd

ijSd
ij)

3/2

(S̃ijS̃ij)
5/2 + (Sd

ijSd
ij)

5/4
, (32)

with Cw ≈ 10.6Cs
2 and Sd

ij being the traceless symmetric part of the
square of the velocity gradient tensor,

Sd
ij =

1
2
(∂ũi
∂xl

∂ũl
∂xj

+
∂ũj
∂xl

∂ũl
∂xi
) − 1

3
δij

∂ũm
∂xl

∂ũl
∂xm

. (33)

Considering the selected cases in this paper, we ignore the
isotropic part of the SGS tensor τsgskk , the Cr can be the determined
empirically based on its expression in incompressible turbulence,20

and Cr ≈ 0.01 here. The heat flux models of these models are all
constant coefficient heat flux models (6), and Prt = 0.9.

In the simulation of wall-bound flows, the SGS viscosity of CSM
and CHM will be constrained by the Van Driest damping function29

near the wall, and the form is shown as follows:

D = [1 − exp(− y
+

25
)]

2

. (34)

B. The results of supersonic transition and turbulent
flat-plate boundary layer

The computational domain for this case is the same as the DNS
Settings in Sec. III; the grids used for DNS and LES of the super-
sonic spatially developing boundary layer are shown in Table I. DNS
and LES use 2.8 × 108 and 1.3 × 107 grid points, respectively. The
reliability verification of the DNS data can be found in our previous
article30 and the grid sensitivity study is proved in Appendix B. In
this simulation, we apply a weak blowing and suction perturbation

TABLE I. Characteristics of the computational grids for simulations of transitional flow.

Grid Δx+ × Δy+ × Δz+ Nx × Ny × Nz

DNS 6.02 × 0.58 × 5.47 10 900 × 90 × 320
LES 40.1 × 0.58 × 17.5 1 500 × 90 × 100

to trigger the natural-type transition in the boundary layer of the flat
plate.

Figures 3(a) and 3(b) show the distributions of the skin-friction
coefficient [Cf = τw/(ρ∞U2

∞/2)] along the streamwise direction as
a function of the Reynolds number based on the conditions at the
outer edge of the boundary layer Rex. Figure 3(a) shows the dis-
tribution of skin-fraction coefficient compared with the theoretical
value and DNS result of Pirozzoli et al.23 The theoretical value pre-
dicted by the Blasius turbulence equation is based on the momentous
thickness and Van Driest transform. It can be seen that in the full-
turbulence region (Rex > 5 × 10−6), the present DNS result is in good
agreement with the theoretical value and that of Pirozzoli et al. Com-
pared with the DNS result of Pirozzoli et al., the onset of transition in
the present DNS is somewhat delayed which is caused by the differ-
ent type of transition. Pirozzoli et al. adopted the bypass-type tran-
sition with large disturbance to get a longer turbulence region. On
the contrary, in order to test the application of the helicity model in

FIG. 3. Distributions of the skin-friction coefficient along the streamwise direction
as a function of the Reynolds number based on the conditions at the outer edge of
the boundary layer Rex . (a) The present DNS compared with the theoretical value
and the result of Pirozzoli et al.23 and (b) the results of SGS models compared to
DNS data.
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the transition problem, the natural-type transition with small distur-
bance is adopted in this paper. Figure 3(b) shows the distribution of
the skin-fraction coefficient of the flat plate for five SGS models com-
pared to DNS. The skin-friction of the DNS (black points) increases
quickly when the boundary layer transition begins at approximately
Rex > 4 × 10−6, reaches its maximum at approximately Rex > 4.6
× 10−6, and then gradually approaches the steady turbulent value
as the boundary layer flow develops into full developed turbulence.
Apparently, CSM (delta) cannot simulate transition from Fig. 3(b).
Owing to the surplus SGS dissipation produced by CSM in the lam-
inar region, the disturbances will decay quickly, which causes the
flow not to transition as expected. In the meanwhile, CHM (solid)
can predict the point of transition and transition peak accurately
as explained in the previous part, and it can make HM differentiate
laminar flow and turbulent flow automatically. For WALE (dashed-
dotted line), the “point” of transition can also be predicted, but
the skin-friction of Rex > 4.6 × 10−6 is unsatisfactorily predicted.
When the dynamic procedure is used, the SGS viscosity is automati-
cally determined in the laminar and transitional regions. Both DSM
(long-dashed line) and DHM (dashed-double-dotted line) predict
the “point” of transition well. In summary, the skin-friction coef-
ficient predicted by CHM is more consistent with the DNS data than
other SGS models.

The distribution of the Van Driest transformed velocity (Uvd

= ∫ U
0

√
ρ/ρwdU) as a function of y+ in the full turbulent region

(Rex = 5.58 × 10−6) for these SGS models and DNS is shown in Fig. 4.
The dimensionless parameter uτ adapted in Fig. 4(a) is calculated

FIG. 4. Distribution of Van Driest transformed mean streamwise velocity in the full
turbulence region, Rex = 5.58 × 10−6. (a) Dimensionless parameter uτ is com-
puted from LES data and (b) dimensionless parameter uτ is computed from DNS
data.

from LES data; it can be seen that the profile from DNS is perfectly
matched with a combination of the wall law and the logarithm law.
Also, it can be easily seen that the profile from CHM is more closer to
the DNS profile than that from other SGS models. More specifically,

FIG. 5. Profiles of turbulence intensities normalized by friction velocity uτ vs y+ in
the full turbulence region, Rex = 5.58 × 10−6: (a) streamwise turbulence intensity
Urms, (b) normalwise turbulence intensity V rms, (c) spanwise turbulence intensity
W rms, and (d) turbulence intensity UV rms.
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in the viscous sublayer and the buffer region (y+ < 30), all models
correspond well with the DNS data, and the velocity varies linearly
with y+ in the domain of y+ < 6 as expected. In the lag-law region
(20 < y+ < 100), most of the SGS models have a slight overestimation
of Uvd; however, the result of CHM has obvious advantages in con-
trast with WALE, DSM, etc. In the outer part of the boundary layer,
the profile of CHM collapses perfectly with the DNS data, which is
more competitive than other models. The dimensionless parameter
uτ adapted in Fig. 4(b) is calculated from DNS; in the outer part of
the boundary layer, all the results of the models fit tightly on the
DNS result. In the log-law region, except that the profile from CHM
showed consistency with the DNS data, the performance of other
models is slightly overestimated.

Figures 5(a)–5(c) show the profiles of the resolved turbulence
intensities ũrms

i = ⟨(ũi − ⟨ũi⟩)2⟩1/2 obtained from CHM, compared
with the filtered DNS result and that of WALE, DSM, and DHM in
the full turbulence region, Rex = 5.58 × 10−6. Figure 5(a) displays
the streamwise turbulence intensity Urms, and we can see that the
CHM result shows good agreement with the DNS data, and other
models perform similarly. Figure 5(b) shows the normalwise turbu-
lence intensity Vrms, and it can be seen that all the SGS models have
poor performance, and the performance of CHM and DHM is bet-
ter than that of other models and DHM is also better than DSM.
Figure 5(c) shows the spanwise turbulence intensity Wrms, and all
results of four models are close to the DNS result together. At the
same time, the performance of the WALE model in the near-wall

FIG. 6. Distribution of Van Driest transformed mean streamwise velocity at the
early transitional stage, Rex = 4.38 × 10−6. (a) Dimensionless parameter uτ is
computed from LES data and (b) dimensionless parameter uτ is computed from
DNS data.

region is better than that of other models. The performance of the
two dynamic models is similar. In general, CHM performs well in
the prediction of turbulence intensities.

Figure 5(d) shows the profiles of the resolved Reynolds stress
uvrms and the total Reynolds stress (uvrms+τsgs12 ) from the LES result. It
can be seen that in the near-wall region (y+ < 10) that all the models
performed well, and the prediction of the resolved Reynolds stress
by DHM and CHM is slightly higher than that by DNS. However, in
the buffer region (10 < y+ < 30), it can be seen that WALE can no
longer fit the DNS data. This means that the wall adaptive behavior
of WALE can indeed make the model perform well in the near-wall
region, while CHM can simulate the behavior of the near-wall region
after adapting the Van Driest damping function. In the prediction of
the total Reynolds stress, the prediction of DHM and CHM is slightly
higher than that of DSM.

In the early region of transition between Rex = 4 × 10−6 and
Rex = 5 × 10−6, we also supply the comparison of these models in the
transitional region.

Figures 6(a) and 6(b) show the mean velocity profiles of the
location at the early transitional stage (Rex = 4.38 × 10−6). The
dimensionless parameter uτ adapted in Fig. 6(a) is calculated from
LES data; from Fig. 6(a), we can see a great difference with the results
of the full turbulent region in Fig. 4, and the profiles of mean veloc-
ity have a sharp shift-down in the log-law region. At the same time,
CHM can capture the typical flow character accurately at this loca-
tion, and its profile is tightly consistent with the DNS data. On the
contrary, WALE has an evident overestimation in the log-law region.

FIG. 7. Profiles of turbulence intensities and resolved Reynolds stress uvrms nor-
malized by friction velocity uτ vs y+ at the early transitional stage, Rex = 4.38
× 10−6. (a) Turbulence intensities urms, vrms, and wrms and (b) resolved Reynolds
stress uvrms.
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The dimensionless parameter uτ adapted in Fig. 6(b) is calculated
from DNS, and in the outer part of the boundary layer, all the results
of the models fit tightly on the DNS result. The velocity profile of
WALE in the near-wall region and the log-law region is lower than
the DNS data.

Figure 7(a) shows the profiles of the resolved turbulence inten-
sities ũrms

i = ⟨(ũi − ⟨ũi⟩)2⟩1/2 obtained from CHM, compared with
the filtered DNS result and that of WALE, DSM, and DHM in the
early transitional stage, Rex = 4.38 × 10−6. From Fig. 7(a), it can be
seen that the performance of DHM is better than that of other mod-
els, and the performance of CHM, WALE, and DSM on vrms and
wrms is in good agreement with the filtered DNS results. However,
WALE overestimates the calculation of urms. Figure 7(b) shows the
profiles of the resolved Reynolds stress uvrms and the total Reynolds
stress (uvrms + τsgs12 ) from the LES result. It can be seen that in the
near-wall region (y+ < 10), CHM performs better than other models.
In the buffer region (10 < y+ < 30) and log-law region (30 < y+ < 50),
compared with the two dynamic models, CHM performs worse than
dynamic models, but better than WALE. We think that the WALE
model is based on the near-wall behavior in the turbulence region,
and at the early transitional stage, the WALE model could not pre-
dict well the behavior of the near-wall. CHM may have accurately
predicted the near-wall behavior at the early transitional stage due
to the adoption of the appropriate Van Driest damping function. In
the prediction of total Reynolds stress (uvrms + τsgs12 ), the prediction
results of CHM in the near-wall region are larger than that of the
dynamic model.

FIG. 8. Distribution of Van Driest transformed mean streamwise velocity at the
transition peak, Rex = 4.64 × 10−6. (a) Dimensionless parameter uτ is computed
from LES data and (b) dimensionless parameter uτ is computed from DNS data.

Figures 8(a) and 8(b) show the mean velocity profiles of the
location at the transition peak (Rex = 4.64 × 10−6). The dimension-
less parameter uτ adapted in Fig. 8(a) is calculated from LES data;
from Fig. 8(a), we can see that the velocity profile is similar to the
full turbulent region, and the WALE model is slightly different from
DNS. The dimensionless parameter uτ adapted in Fig. 8(b) is calcu-
lated from DNS, and it can be seen that the performance of WALE
in the log-law region is better than that of other models after using
uDNSτ as a dimensionless parameter, except for a little difference in
the outer part of the boundary layer.

Figures 9(a) and 9(b) show the profiles of the resolved turbu-
lence intensities ũrms

i = ⟨(ũi−⟨ũi⟩)2⟩1/2 obtained from CHM, WALE,
DSM, DHM, and filtered DNS at the transition peak (Rex = 4.64
× 10−6). As can be seen from Fig. 9(a), the performance of CHM is
the best compared with other models, and the performance of DHM
and DSM is roughly the same, while the performance of WALE is
relatively poor compared with other models. Meanwhile, it can be
seen from Fig. 9(b) that all the models seem to perform poorly, and
the performance of CHM in the near-wall region (y+ < 10) is also as
close as possible to the results of DNS. In the other region (y+ > 10),
all the models are quite different from the results of DNS. The same
as the prediction at the early transitional stage, the prediction result
of CHM is slightly larger than that of the dynamic model in the
prediction of the total Reynolds stress.

In general, the constant coefficient model (CHM) is superior to
the dynamic model in the prediction of the turbulence region. The
possible reason is that the constant coefficient model (CHM) is bet-
ter than the dynamic model in the upstream region (the resolved

FIG. 9. Profiles of turbulence intensities and resolved Reynolds stress uvrms nor-
malized by friction velocity uτ vs y+ transition peak, Rex = 4.64 × 10−6. (a)
Turbulence intensities urms, vrms, and wrms and (b) resolved Reynolds stress uvrms.
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Reynolds stress at the early transitional stage and transition peak),
which results in a better performance of CHM in the downstream
region (turbulence region). There is a little difference between the
two dynamic models, which can well simulate the near-wall behav-
ior of the full turbulent region and accurately identify the occurrence
of transition. WALE can simulate the near-wall behavior well in
the full turbulent region, but it is not as good as other models at
the early stage of transition and the transition peak. The issue with
the WALE model may be related to the choice of the model coef-
ficient and the numerical scheme. Here, the model coefficient is
chosen as Cw ≈ 10.6C2

s in Ref. 31, and we do not rectify the model
coefficient according to our simulation.

In compressible flows, the prediction of temperature is also
important for testing the SGS model. Here, we also give the results
of temperature in transitional and turbulent regions.

FIG. 10. Distributions of the time-averaged mean quantities as a function of y/δ
at (a) early transitional stage, Rex = 4.38 × 10−6; (b) transition peak, Rex = 4.64
× 10−6; and (c) full turbulence, Rex = 5.58 × 10−6 in inner scaling.

The distributions of the mean-averaged quantities as a func-
tion of y/δ in the location of different flow states are plotted in
Figs. 10(a)–10(c), and the comparison with the DNS results reveals
that the LES results are well reproduced in a large part of the bound-
ary layer and the LES results exhibit a very little weakness in the u
and T distributions around y/δ < 0.3. Overall, the model profiles
conform well to the DNS data, and CHM seems to be the best in
estimating averaged quantities, while WALE seems to be the worst,
especially in the early transition stage.

The mean total temperature ⟨Tt⟩ is defined as

⟨Tt⟩ = ⟨T⟩ +
1
2
γ − 1
γR
(⟨ui⟩2 + ⟨u′iu′i⟩). (35)

Figure 11(a)–11(c) show the distribution of normalized time-
averaged total temperature Tt/T∞ as a function of wall-normal

FIG. 11. Distribution of normalized time-averaged total temperature T t /T∞ as a
function of the wall-normal distance in outer scaling. (a) Early transitional stage,
Rex = 4.38 × 10−6; (b) transition peak, Rex = 4.64 × 10−6; and (c) full turbulence,
Rex = 5.58 × 10−6.
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FIG. 12. Sketch of the computational domain of the com-
pression ramp.

distance in outer scaling. As it can be seen in Fig. 11, the total tem-
perature is not constant throughout the boundary layer. In fact, in
the outer layer, the total temperature has been overshot, showing an
overshoot that does not exceed 2% for all cases. This overshoot is
expected to increase with positive heat flux, namely, the heated wall.
This figure reflects the correlation between the SGS heat flux model
and turbulent Prandtl number. Based on the figure, we could infer
that the simple SGS heat flux model is not advantageous.

C. The results of supersonic flow over a 24○
compression ramp

Figure 12 shows the schematic diagram of the computing case,
and the supersonic flow over a 24○ compression ramp is chosen
in this case,27,32 which is the same as the experimental model of
Bookey et al.33 and research of Wu and Martin.24 The computa-
tional domains are 0 ≤ y ≤ 35 mm in the wall-normal direction
and 0 ≤ z ≤ 14 mm in the spanwise direction, and the stream
domain is −335 ≤ x ≤ 49.56 mm. To trigger the bypass-type transi-
tion, we impose the blowing and suction perturbation on the wall in
−305 ≤ x ≤ −285 mm. In this section, we supply two sets of grids,
one is used by DNS, and the other one is used by LES. The grid
parameters are listed in Table II. In the upstream flat-plate region
(−335 ≤ x ≤ −35 mm), the downstream grid point is denser than the
upstream grid point. In the corner region (−35 ≤ x ≤ 49.56 mm), the
much smaller streamwise grid spacing is used to resolve the small
scales of STBLI and separation flows. For the LES, the streamwise
grid spacing is uniform.

Figure 13(a) shows the distribution of the skin friction coeffi-
cient Cf for the results of LES and DNS. The reliability verification
of the DNS data can be found in our previous article.34 This figure
shows that Cf has a drastic increase near the region x = −200 mm,
which denotes the occurrence of transition, unlike natural transi-
tion on a flat plate in Sec. IV B; this transition type here is bypass
transition apparently. From the figure, we can see that the HM can
also predict well the transition process in the case of bypass-type
transition. In the corner region (−35 ≤ x ≤ 35), the skin friction coef-
ficient Cf goes down rapidly downstream and then shows a negative
value, indicating that the separation occurs here. The skin friction
coefficient Cf goes up rapidly and shows positive value again at
x = 0 mm, indicating the reattachment of the flow. We can see that all

TABLE II. Characteristics of the computational grids for simulations of supersonic flow
over a 24○ compression ramp.

Case Grid number Δx+ (x = −335) Δx+ (x ≥−35) Δy+
w Δz+

DNS 4000 × 160 × 200 6.52 2.90 0.58 4.06
LES 540 × 100 × 40 40.60 40.60 0.87 20.30

LES results are close to the DNS data. In order to carefully compare
the performances of each model in the separation flow, Fig. 13(b)
shows the distribution of the skin friction coefficient Cf in the cor-
ner region, where the horizontal coordinates are normalized by δ
(the boundary-layer thickness). As can be seen from this figure, the
size of the separation bubble calculated by DSM is obviously smaller
than the DNS data, the separation bubble calculated by other models
is in good agreement with DNS data, and WALE seems a little better
than other SGS models (see Table III).

FIG. 13. (a) Distribution of the skin-friction coefficient along the streamwise direc-
tion and (b) distribution of the skin friction coefficient in the corner region, where
the horizontal coordinates are normalized by δ.

TABLE III. The bubble size predicted by models and their % error compared to DNS.

Separation Reattachment Separation
Case point point bubble Error (%)

DNS −2.31 0.67 2.98 0
DSM −2.07 0.70 2.77 −7.0
WALE −2.47 0.78 3.25 9.0
CHM −2.48 0.79 3.27 9.7
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FIG. 14. (a) Distribution of streamwise velocity at x/δ = −1 and (b) distribution of
temperature at x/δ = −1.

FIG. 15. (a) Distribution of streamwise velocity at x/δ = 2 and (b) distribution of
temperature at x/δ = 2.

Figure 14 shows the distributions of streamwise velocity U and
temperature T at x/δ = −1. In this region, the flow is separated, and
we can see that the profiles of streamwise velocity U and temper-
ature T calculated by CHM are closer to the DNS data than those
of other models. Figure 15 displays the distributions of streamwise
velocity U and temperature T at x/δ = 2. Which is the location aflter
the reattachment point. Shown in Figs. 15(a) and 15(b), CHM gives
well the results in contrast to other models. From the simulation
results in Figs. 14 and 15, we can infer that CHM can simulate the
separation-reattachment process well in the region of the corner.

V. CONCLUSIONS
Based on the helicity model proposed in our previous work, we

make some improvements, and a theoretical analysis for this model
is supplied in this paper. From the analysis, we find that the helicity
model can differentiate laminar and turbulent regions automatically
in compressible flows. Using the DNS data of a supersonic spatially
developing flat plate boundary layer with a free-stream Mach num-
ber of 2.25, we make an a priori test for the proposed model. The test
results reveal that the helicity model unlike the traditional Smagorin-
sky model can provide a suitable SGS turbulent dissipation in lami-
nar and transitional regions, which is the guarantee for development
of disturbances in the laminar boundary layer and occurrence of
transition. From theoretical analysis and the a priori test, we can also
conclude that the helicity model with a constant coefficient has a
special SGS viscosity, which is just like a switch to control the SGS
model in different stages of the flows.

In the a posteriori test, we choose the natural-type transition
case (flat plate boundary layer) and bypass-type transition (compres-
sion ramp) to verify the validity of the helicity model. In the flat plate
boundary layer, we make tests of the distribution of the skin-friction
coefficient, mean velocity profile, mean temperature profile, turbu-
lence intensities, and some other mean quantities. The results show
that the helicity model has obvious advantages among these com-
pared models. In the flow over a compression ramp, the location of
transition, mean velocity and temperature profiles at the separated
and reattached points, and the location and size of the separation
bubble can also be predicted well by the helicity model.
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APPENDIX A: GALILEAN INVARIANCE
It is well known for a long time that the Navier-Stokes equa-

tions are Galilean invariant. To keep the LES equations Galilean
invariant, the SGS viscosity must be ensured Galilean invariant.

We define E = {e1, e2, e3} and E∗ = {e∗1 , e∗2 , e∗3 } as two unit
orthonormal bases, and there exists an orthogonal transformations
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as follows;

e∗i = Cijej, (A1)

where the matrix Cij is called the direction-cosine matrix and the
repeated indexes satisfy the Einstein notation.

We write the Galilean transformation for two arbitrary coordi-
nates as follows:

x∗i e
∗

i = xiei + Ut + b, (A2)

where U i is the relative velocity and bi is the relative distance at the
initial time of two coordinates. Substituting relation (A1) into (A2)
and considering any one term of the relation, we can easily get the
following equation:

xi = −bi −Uit + Ckix
∗

k = −bi −Uit∗ + Ckix
∗

k . (A3)

Here, t∗ is the time of the relative coordinate and t∗ = t. The
derivative of both sides of relation (A2) with respect to time is as
follows:

v∗i e
*
i = Ui + viei, (A4)

where v and v∗ are the velocity of two coordinates. Substituting
relation (A1) into (A4), we can get the following equation:

v∗i Cijej = (Ui + vi)ei. (A5)

Hence, the relative velocity can be expressed as follows:

v∗i = (vk + Uk)CT
ki = (vk + Uk)Cik. (A6)

The velocity gradient can be expanded as follows:

∂v∗i
∂x∗j
= ∂v∗i
∂xk

∂xk
∂x∗j

= CimCjk
∂vm
∂xk

= Cim
∂vm
∂xk

CT
kj. (A7)

Hence, the following equations can be easily deduced as follows:

S∗ij = CSijCT , ∣S∣∗ = ∣S∣. (A8)

So far, the Galilean invariance of the Smagorinsky model can be
proved.

Similarly, the following equation exists for the gradient of
vorticity:

∂ω∗i
∂x∗j

= C∂ωi

∂xj
CTdet(C), (A9)

where det denotes the determinant of matrix R. So, we can prove that

R∗ij =
1
2
⎛
⎝
∂ω∗i
∂x∗j

+
∂ω∗j
∂x∗i

⎞
⎠
= CRijCTdet(C). (A10)

Hence,

S∗sr = ∣2S∗ijR∗ij ∣ = Ssr . (A11)

So we can prove that the helicity model we proposed also satisfies the
Galilean invariance.

FIG. 16. Two-point correlation functions at (a) y+ = 2 and (b) y+ = 15.

APPENDIX B: GRID SENSITIVITY STUDY
To ensure that the computational domain is sufficiently wide

in the spanwise direction Z, the two-point correlation functions are
given.

Figure 16 show the two-point correlation functions at y+ = 2
and y+ = 15; it can be seen that the distributions decrease to zero,
which means that the domain is wide enough in the spanwise
direction Z.

In Fig. 17, we give a comparison of the results of some models
on a coarser grid (see Table IV). From the results, it can be seen
that the performance of models on the coarse grid is worse than that
on the fine grid, and the results obtained on the fine grid are also
applicable to the coarse grid.

APPENDIX C: THE DYNAMIC PROCEDURE
In the dynamic procedure, the model’s coefficient Cs is dynam-

ically extracted from the resolved flow field. A test box-filter is
denoted as (̂⋅), whose width is twice the grid-filter width. Then, we
can get the model’s coefficient Csd as

Csd =
⟨MijLdij⟩
⟨MklMkl⟩

, (C1)

where Mij = αij − β̂ij and Ldij = Lij − 1
3Lkkδij. Taking the dynamic

Smagorinsky model as an example,

Lij =
⋀
ρ̄ũiũj −

1
ˆ̄ρ
⋀
ρ̄ũi
⋀
ρ̄ũj, (C2)
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FIG. 17. (a) Distributions of the skin-friction coefficient along the streamwise direc-
tion as a function of the Reynolds number based on the conditions at the outer
edge of the boundary layer, Rex , and (b) distributions of Van Driest transformed
mean streamwise velocity in the full turbulence region, Rex = 5.58 × 10−6.

TABLE IV. Characteristics of a coarser grid.

Grid Δx+ × Δy+ × Δz+ Nx × Ny × Nz

DNS 6.02 × 0.58 × 5.47 10 900 × 90 × 320
LES 44.8 × 0.87 × 18.9 1 300 × 75 × 90

αij = −2(2Δ)2 ˆ̄ρ∣ˆ̃S∣(ˆ̃Sij −
1
3
δij ˆ̃Skk), (C3)

and

βij = −2Δ2ρ̄∣S̃∣(S̃ij −
1
3
δijS̃kk). (C4)

Meanwhile, the model’s coefficient Csd is guaranteed to be of no
negative value.
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