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A B S T R A C T

Adiabatic shear band (ASB) is an important failure mode of solid materials, especially for metal
materials under high strain rate loading. In this study, a thermo-elastic-plastic phase-field model,
which considers both damage softening and thermal softening, is established to simulate the
formation of multiple ASBs and the transition from ASB to the fracture. How to select and ca-
librate the material parameters in the phase-field model is seldom clearly discussed in the current
phase-field model when dealing with ASB. In this paper, the damage parameters in the phase-
field method are calibrated using data from pure shear specimens, taking into account both the
overall response of the structure and the local response in the ASB. As an application, the cali-
brated model is used to numerically study the evolution of the ASB of the hat specimen and the
process of its transition to the fracture. The simulation results successfully explain the typical
phenomena such as transient “hot spots” and double softening in the experiment. The numerical
model we developed provides a reliable quantitative description for the evolution and width
calculation of ASBs and lays a foundation for the further study of ASB.

1. Introduction

In common metal engineering materials, shear localization is one of the most important failure modes, which leads to the gen-
eration of the adiabatic shear band (ASB). In particular, ASB is widely observed at high strain rates and is considered to be a precursor
to catastrophic failure. It usually involves thermal transients of large dynamic deformation, high-speed plasticity, endogenous heat,
local temperature migration, and the local slip [1–3]. In the past decades, ASBs have been widely studied because of their importance
in shock problems. Although many theoretical models have been developed [4–6] to understand the formation and structure of ASBs,
there are still difficulties in providing insight into the evolution of complex ASBs.

Many experiments of ASBs have also been carried out and mostly are limited to metallurgical inspection of samples after the test.
To track the evolution of the ASBs, Marchand and Duffy [7] and Zhou et al. [8] used linear arrays of infrared temperature detectors to
measure the temperature distribution in the ASB. Guduru et al. [9] used a square array of 64 infrared temperature detectors to detect
on a pre-notched plate. They found for the first time that the temperature field consists of a series of transient and periodic “hot spots”
within the fully developed ASB.
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In order to reproduce more realistic experimental results, many efforts have been made to predict ASBs by developing two-
dimensional (2D) and three-dimensional (3D) numerical models. More complicated constitutive models based on damage mechanics
have been adopted [10–13], which generally requires a specific criterion to decide the initiation and propagation of the dynamics
ASBs. These models are mainly based on the evolution of local damage variables and can reflect the evolution of ASBs as a whole.
However, the width of ASBs (depending on the mesh size) cannot be accurately characterized.

On the other hand, phase-field method (or energy variational method) has attracted much attention in recent years [14–17], due
to its ability to describe the material failure, dislocation evolution, phase transition and diffusion crack propagation in the same
framework. At present, the phase-field method has been widely used in investigating crack growth, merging, bifurcation, and other
problems. It exhibits excellent prediction abilities, especially in multi-field coupled crack growth problems [18,19]. Miehe et al.
[18,20] developed the phase-field method for multi-physical problems and applied it to coupled problems such as thermal fracture
and hydraulic fracturing. Duda et al. [21] proposed a phase-field model for brittle fracture of elastic-plastic solids containing mobile
interstitial solute species. Geelen et al. [22] extended a phase field/gradient damage formula for the cohesive fracture to the dynamic
problems. Wu et al. [23] extended the phase-field regularized cohesive zone model (PF-CZM) to deal with hydrogen assisted cracking.
Recently, the potential ability of the phase-field method in simulating ASBs has attracted more attention [24–26]. They successfully
reproduced single adiabatic shear bands by the phase-field method.

Though ASBs have been successfully simulated by the phase-field method, how to calibrate and select the material parameters in
the phase-field model is seldom clearly discussed, even though it plays a dominated role in simulating fracture and failure problems.
The lack of such work is because, in such problems with strong localization, the overall response of the specimen is very different
from the mechanical behavior of the local material point. It is very challenging to obtain the damage parameters of the material by
macroscopic material experiments, such as uniaxial tension or pure shear. For brittle or quasi-brittle materials, Feng et al. [27–29]
proposed a quasi-micromechanical model of microcrack-weakened damage, which links the macroscopic response of materials with
microstructure such as microcrack. Zeng et al. [30,31] further extended it to the dynamic high-speed impact problem of brittle
ceramics. For materials with large plastic deformation, most of the previous work calibrate various damage and constitutive models,
only through fitting the macroscopic response of the material [32–34].

In this paper, a thermo-elastic-plastic phase-field damage model is established to simulate the generation and evolution of ASBs,
as well as its transition to fracture. The Johnson-cook (JC) model including strain hardening, strain rate hardening and thermal
softening is adopted to describe the yield of materials. The damage parameters in the phase-field method are calibrated using data
from pure shear specimens, taking into account both the overall response of the structure and the local response in the shear band.
The established model can quantitatively characterize and predict the width of the ASB, the temperature in the ASB and the damage
evolution process.

The paper is organized as follows: The basic principle and governing equations of the thermo-elastic-plastic phase-field model are
presented in Section 2. In Section 3, the parameters w0 and gcs are calibrated by experimental results. Then in Section 4, we use the
developed model to study the transition process from ASB to fracture. The concluding remarks are given in Section 5.

2. The thermo-elastic-plastic phase-field model

In the phase-field method, a damage variable ∈d [0, 1] is introduced to describe the failure of the material. In particular, regions
with =d 0 and =d 1 correspond to unbroken and fully broken states of the material. In this section, we propose a framework of the
thermo-elastic-plastic phase-field model. The model consists of macro and micro force balance equation, energy balance equation and
irreversible damage condition. In addition, the non-linear constitutive relation is also needed.

2.1. Thermo-elastic-plastic damage model

Consider the evolution of the deformation, temperature and fracture fields of an isotropic thermo-elastic plastic solid body �⊂Ω δ

with external boundary �∂ ⊂ −Ω δ 1 over a time period [0-tf ], as shown in Fig. 1. Herein, ∈δ {1, 2, 3} is the dimension. Let
∂ ∂ ∂Ω , Ω , Ωt u J and ∂Ωθ be the traction, displacement, heat flux and temperature boundaries, such that:
∂ ∪ ∂ = ∂ ∂ ∩ ∂ = ∅Ω Ω Ω, Ω Ωt u t u and ∂ ∪ ∂ = ∂ ∂ ∩ ∂ = ∅Ω Ω Ω, Ω ΩJ Jθ θ . Let �∂ × →t t¯: Ω [0, ]t f

δ and �∂ × →u t¯: Ω [0, ]u f
δ be pre-

scribed traction and displacement boundary conditions, and �∂ × →θ t¯: Ω [0, ]θ f
1 and �∂ × →J t: Ω [0, ]J f

1 be prescribed tem-
perature and heat flux boundary conditions.

According to the finite strain framework, the additive decomposition of the total rate of deformation D is assumed as follows:

Fig. 1. The main field variables of the thermo-elastic-plastic phase-field model.
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= + +D D D De p θ (1)

where D D,e p and Dθ are the elastic, plastic and thermal expansion parts of the deformation rate, respectively.
The thermo-elastic-plastic model is proposed based on a Cauchy stress σ obtained from the damage-reduced inherent Cauchy

stress of material σ0. The elastic response defined in terms of the Green-Naghdi rate is specified by applying the hypoelastic law to the
elastic deformation rate:

= =∇ ∇σ σ σ C Dg d( ) , Δ : eG G
0 0 0 (2)

where ∇C G
0 is the inherent elastic stiffness tensor of material for Green-Naghdi rate, which is determined by Young’s modulus E and

Possion’s ratio ν. = −g d d( ) (1 )2 is the typical degradation function [35].
The isotropic hardening J2 flow model of von Mises yield surface is adopted. This model is especially suitable for metal plasticity.

The yield condition is

⋯ = − ⋯ =σ σf ε ε θ σ σ ε ε θ( ; , ̇ , , ) ( ) ( , ̇ , , ) 0p p eq Y p p (3)

and the plastic deformation rate Dp is given as follows:

= =
∂
∂

= =D r r
σ

S ελ
f

σ
λ̇ , 3

2
, ̇ ¯ ̇p

eq
p

(4)

where r is the plastic flow direction (associative plasticity). S is the deviatoric part of Cauchy stress, that is =S σ Itrace( )1
3 .

= S Sσ 3( : )/2eq is the equivalent mises stress. σY is the yield stress. =ε D Ḋ 2( : )/3p
p p is the equivalent plastic strain rate.

∫=ε ε dṫp p is the equivalent plastic strain.
The Johnson-cook (JC) model is used to describe the yield of materials, which considers the strain hardening, strain rate hard-

ening and thermal softening effects:
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0

0 (5)

where σY
0 is the yield stress of the non-damaged material, A B C N, , , and m are the material parameters, θm is the melting temperature

and θ0 is the reference temperature, 273 K here. ε0̇ is a reference strain rate, taken to be =ε ̇ 1.00
−s 1. When the material is damaged,

the yield stress σY also deteriorates, and the degradation function is g d( ). In other words, =σ g d σ( )Y Y
0.

Considering isotropic thermal expansion, the thermal deformation rate Dθ in Eq. (1) is simplified. The thermal deformation rate
is:

=D Iα θ ̇θ
θ (6)

where αθ is the thermal expansion coefficient of materials, and I is the identity tensor.

2.2. Specification of the free energy

The constitutive relationship now depends on the specific forms of the contribution of elasticity, plasticity, heat and fracture to
free energy density. We use a general form in which the free energy density is decomposed into stored deformation (elastic and
plastic), thermal and fracture parts: ψ ψ,s θ and ψ f , respectively.

= + +ψ ψ ψ ψs θ f (7)

The storage deformation energy of materials consists of two parts: elastic part and plastic part. For intact materials (without
failure), the elastic deformation energy density and plastic deformation energy density that drive damage evolution are:

∫= σ Dψ τ: de
t e

0 0 0 (8)

∫= − σ Dψ χ τ(1 ) : dp
t p

0 0 0 (9)

where ∈χ (0, 1] is the fraction of plastic work converted to heat. The remaining plastic work is used to generate new fracture
surfaces. χ is usually considered as a constant and independent the material. In this paper, we assume it as 0.9 [24,25,36].

The elastic strain energy density is usually decomposed into two parts according to the contribution to the driving of the fracture
phase field: = +− +ψ ψ g d ψ( )e e e0 0 0. The example of +ψe0 used in small strain analysis in literature is volumetric “deviatoric split of strain
energy density. In this split, the tensile volumetric and deviatoric strains contribute to the damage phase field [37,38]:

= + 〈 〉 ++
+ε εψ λ μ μ( /2 /3) tr ‖dev ‖e

e e
0

2 2 (10)

where εe is the small elastic strain tensor, εtr e and εdev e are the volumetric and deviatoric parts of it, λ and μ are Lame’s constants, and
〈 〉 = ±a a a: ( | |)/2 for any �∈a .

Another popular split, used in Refs. [35,39,40], is based on the spectral decomposition of the small strain tensor, so that
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∑= 〈 〉 + 〈∊ 〉+
+

=
+εψ λ μ( /2) tre

e

i
i
e

0
2

1

3
2

(11)

where ∊i
e are the principal strains. In this split, only pure tensile deformation contributes to the damage phase field.

Recently, some new decomposition methods have been proposed to deal with more complex problems. For example, Wu et al.
[41,42] proposed a phase-field anisotropic damage model based on the unified phase-field damage theory [43,44]. The unilateral
effect is treated by the positive/negative projection of the effective stress in the energy specification, which is suitable for brittle
fracture and quasi-brittle failure. In all the simulations in this paper, the volumetric deviatoric split method is used to consider the
resistance of materials to hydrostatic pressure and is consistent with plastic yield (hydrostatic pressure does not cause yielding).

To better modeling the damage initiation, we introduce the energy density threshold w0. It can be understood as the storage
deformation energy required for the microstructure evolution before the damage initiation, such as recrystallization. Only the sum of

+ψe0 and plastic energy storage except w0 contributes to damage evolution and is degraded by function = −g d d( ) (1 )2. Therefore, the
stored deformation energy density can be expressed as:

= + + − + 〈 + − − 〉− + +
+ψ ψ ψ ψ χ w g d ψ ψ χ wmin[ , (1 ) ] ( ) (1 )s

e e p e p0 0 0 0 0 0 0 (12)

Let the specific heat c be a constant, and the thermal part of the free energy density is given [45]:

= −ψ ρcθ θ
θ

lnθ

0 (13)

where ρ is the mass density.
The fracture energy density is given by the classical phase field theory [46,24]

= + ∇ψ
g
l

d l d
2

( ‖ ‖ )f
cs

c
c

2 2 2
(14)

where gcs is the effective critical energy release rate, lc is a length scale parameter that can characterize crack width. We will later
explain that in the evolution of the ASBs of metallic materials, gcs and w0 are essential for the damage evolution, and will be explained
in detail in Section 3.

2.3. Governing equations

The solution domain of the elastic-plastic fracture problem considering the evolution of temperature and phase field is as follows

�� ≔ ∈ × = ∂u u uH t t t{ (Ω; ) [0, ] (·, ) ¯ (·, ) on Ω },u
u

δ
f

1 (15a)

�� ≔ ∈ × = ∂θ H t θ t θ t{ (Ω; ) [0, ] (·, ) ¯ (·, ) on Ω },θ
f θ

1 1 (15b)

� ≔ ∈ ×d H t{ (Ω;[0, 1]) [0, ]},d
f

1 (15c)

Then the regularized variational formulation reads: Find � � �∈ × ×u θ d( , , ) u θ d that is the stationary point of
∫=u u u uS θ L θ dt[ , ̇, , Γ]: [ , ̇, , Γ]l

t
l0c

f
c , with

∫ ∫ ∫
∫

≔ − + + + ∇ − + + −

+ ∇

∂ ∂{ }u u u u D u b u J t u J nL θ ρ ψ θ d ρ ρcθ γ dV d d
g
l

d l d dV

[ , ̇, , Γ] 1
2

̇· ̇ ( ( , ), ) · ̇ · ¯· Γ ¯· Γ
2

( ‖ ‖ )

l
cs

c

c

Ω Ω Ω

Ω
2 2 2

t J
c

(16)

where b is the body force vector per unit mass, γ is the body heat source per unit volume, Γ is the set of discontinuities and J is the
internal heat flux which is assumed to be proportional to the temperature gradient: = − ∇J k θ· . Here k is the thermal conductivity.
The strong form of the boundary value problem can be derived from Eq. (16):

+ = ×σ b uρ ρ tdiv ¨ in Ω [0, ]f (17a)

+ ∇ = ×Jρcθ γ ṫ · in Ω [0, ]f (17b)

− = − 〈 + − − 〉 ×+g
l

d l d d ψ ψ χ w t
2

( Δ ) (1 ) (1 ) in Ω [0, ]cs

c
c e p f
2

0 0 0 (17c)

= ∂ ×σ n t t· ¯ on Ω [0, ]t f (17d)

= ∂ ×J n J t· on Ω [0, ]J f (17e)

∂
∂

= ∂ ×
n
d t0 on Ω [0, ]f (17f)

In order to satisfy the condition of irreversible damage, we introduce a local historical field variable � to record the historical
maximum of phase field driving energy density:
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� = 〈 + − − 〉
∈

+x x x xt ψ s ψ s χ w s( , ) max ( , ) ( , ) (1 ) ( , )
s t e p[0, ] 0 0 0 (18)

Thus the evolution equation of the phase field can be rewritten as follows

�− = − ×
g
l

d l d d t
2

( Δ ) (1 ) in Ω [0, ]cs

c
c f
2

(19)

The above formula determines the evolution of damage phase-field. It can be seen that � acts as the driving force, gcs acts as the
”damping” of evolution, and lc is located in front of the diffusion term, which represents the diffusion of damage to the surrounding
area and has a very important influence on the evolution of the width of the shear band.

2.4. Rate-dependent form of phase-field evolution

In order to adopt explicit time integral, a time-dependent form according to Ref. [14,15,35] is used to determine the phase field
evolution:

�
=

⎧
⎨
⎩

− − − <
+d

d d l d ḋ (1 ) ( Δ ) , 1

0, otherwise
η

g
l c

1
2

2cs
c

(20)

where η is the viscous parameter. It has an important influence on the evolution of phase field, which has been discussed in detail in
our previous articles [14,38].

The initial condition of the problem can be expressed as

= = = =u u u v θ θ d d(·,0) , ̇ (·,0) , (·,0) , (·,0) ,0 0 0 0 (21)

where u v θ, ,0 0 0 and d0 are the initial displacement, velocity, temperature and damage field, respectively. The above phase-field
model is implemented in the commercial finite element software package Abaqus/Explicit by writing the user subroutine VUEL and
VUMAT. Details of the implementation can be found in our previous article [14,38].

3. Parametric calibration of w0 and gcs

In the phase-field model proposed in Section 2, there are two main unknown parameters: w0 and gcs. Among them, w0 determines
the energy density required for damage initiation, while gcs determines the speed of damage evolution. In the following, we will firstly
demonstrate the effect of these two parameters through element testing, and then present the method of determining their values
according to experimental data.

3.1. Element testing

In order to investigate more clearly the effects of w0 and gcs on the response of materials and structures at high strain rates, we
firstly tested the uniaxial tension of different materials at different strain rates, w0 and gcs. Note that the element test is performed
here, and hence the local stress-strain response at the material point is obtained. It is different from the overall response of the
structure and the macroscopic stress-strain curve we usually get from the experiment. To keep the strain rate of each uniaxial tension
constant, considering the large deformation of the structure, the axial velocity of uniaxial tension is =v L ε eċ

ε t
0 ċ . Where L0 is the

initial axial length of the uniaxial tensile test model, =ε ̇ constantc is target axial strain rate. The material parameters used in the
present study are listed in Tables 1 and 2. The viscous parameter η is taken as = × ∗−η 5.0 10 kN s/mm8 2. For more information on
the effects of viscous parameter on the results, see our previous articles [14]. In Fig. 2, the stress-strain curves of three materials ((a)
Ss304L; (b) Cu and (c) Ti6Al4V) under uniaxial tension test with one element are given.

For the same material (such as Ss304L in Fig. 2(a)), the same w0 will lead to the same peak stress and initial softening strain. The
value of w0 is the strain energy density stored in the material from the free state to the peak stress state. The value of gcs determines
the speed of stress drop (i.e. the speed of damage evolution). The larger the value of gcs, the slower the damage evolution. The
response of Ti6Al4V is similar, except that the falling portion of the stress-strain curve is more ”steep” and the strain at the beginning
of the damage is smaller, as shown in Fig. 2(c). Therefore, Ti6Al4V is more brittle, compared with Ss304L and Cu.

We also validate our code by comparing it with the JC plastic model built in Abaqus, as shown in Fig. 2(a). It can be seen that in
the ascending segment of the stress-strain curve, our model agrees well with the program calculations built in Abaqus. Since the JC

Table 1
Material parameters of JC model for metals [13,47,48].

ρ0 [kg/m3] E [GPa] ν A [GPa] B [GPa] C N m θm [°C]

Ss304L 7900.0 210.0 0.29 0.1 1.072 0.05 0.34 1.0 1083.0
Ti6Al4V 4430.0 110.0 0.33 0.862 0.331 0.012 0.34 0.8 1630.0

Cu 8920.0 120.0 0.2 0.09 0.292 0.025 0.31 1.09 1063.0
HY100 Steel 7746.0 207.0 0.3 0.758 0.402 0.011 0.26 1.13 1500.0

T. Wang, et al. Engineering Fracture Mechanics 232 (2020) 107028

5



plastic model built in Abaqus does not consider the damage effect, there is no softening regime. However, our algorithm can well
capture both the hardening stage of JC plastic model and damage softening of the metal.

3.2. Pure shear test and parameter calibration

As we pointed out earlier, the material model is the stress-strain response at the local material point (input), while the response of
the whole structure is obtained in the experiment (output). Because of the high localization of the shear band, the response of the
material in the shear band is quite different from that of the whole structure, so the whole response of the structure cannot be directly
used to represent the local response of the material. The reasonable model input parameters, especially w0 and gcs, can be determined
by one-to-one mapping between them. Here, we take HY100 steel as an example and calibrate the whole shear stress-shear strain
curve of pure shear test of Marchand and Duffy [7] to obtain reasonable parameters of local material points. The pure shear model is
realized by torsion of thin-walled cylinder. The geometric and load diagrams of the model are shown in Fig. 3. A defect was added to
the center of the cylinder to specify the position of the shear band initiation. The minimum mesh size of the model is 0.01 mm, which
is much smaller than the length scale parameter lc = 0.1 mm.

The overall distribution of damage and temperature are presented in Fig. 4(a) and (b). The nominal strain rate is 1600 −s 1. It can
be seen that in the middle of the model, an ASB is formed across the whole ring. The maximum temperature in the shear band is
244.45 °C . The local deformation of the shear band under several nominal shear strains is shown in Fig. 4(c)-(g). Initially, the shear
deformation on the whole model is homogeneous. When the nominal shear strain reaches a certain value (as =γ 0.47NOM in Fig. 3),
shear localization occurs near the defect and rapidly expands into a a circular shear band. Afterwards, severe shear localization occurs
with loading. The area outside the shear band keeps uniform deformation, and the width of the shear band will not continue to
increase with the loading.

Fig. 5 shows the response curves of the whole structure and the local response in the shear band, and compares them with the

Table 2
Other material parameters for metals [13,47,48].

k [ °W/m C] c [ °J/kg C] αθ [ °−10 / C6 ] gcs [N/mm] w0 [J/mm3]

Ss304L 16.2 500.0 17.3 2.0 0.15
Ti6Al4V 6.6 670.0 9.0 1.0 0.14

Cu 147.0 380.0 16.7 1.2 0.105
HY100 Steel 34.0 502.0 14.0 8.0 0.33

Fig. 2. The stress-strain curves of the three materials at different strain rates, w0 and gcs: (a) Ss304L; (b) Cu and (c) Ti6Al4V, as well as the
comparison of Abaqus built-in JC model.

Fig. 3. Detailed information of torsion specimen of the hexagonal flange, including geometric dimensions and load diagram [7]. All length di-
mensions are in mm.
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experimental results. By choosing the appropriate w0 and gcs (in this case, w0 = 0.33 gJ/mm , cs
3 = 8.0 N/mm), the stress-strain curve

of the whole structure and the local response in the shear band can be in good agreement with the experimental results. Especially in
the softening section of the overall stress-strain curve, our model can still be in good agreement with the experimental values. At this
stage, the ASB evolves rapidly. This shows that it is reasonable to take w0 and gcs as the parameters of damage and shear band
evolution in this paper. In addition, through the local strain in shear band - nominal shear strain curve, the initial strain of the rapid
localization of the shear band can be clearly observed (i.e., the turning point ‘A’ of the curve in Fig. 5(b)).

The width of ASB is an important measure of it. The shear band width predicted by the damage based method often depends on
the mesh size. Here, we investigate the distribution of shear band width and phase-field value under different mesh size h and
different characteristic width lc, as shown in Fig. 6. It can be seen that the width of shear band is dependent on the length scale
parameter lc. Therefore, for the shear band problem, lc can be used as an intrinsic material parameter to describe the characteristic
width of the adiabatic shear band.

Fig. 4. The simulation results of pure shear cases. The overall distribution of (a) damage and (b) temperature, and the local deformation under
several shear strains are presented: (c) =γ 0.25NOM , (d) =γ 0.36NOM , (e) =γ 0.47NOM , (f) =γ 0.55NOM , (g) =γ 0.67NOM . The nominal strain rate is
1600 −s 1.

Fig. 5. Calibration process of parameters w0 and gcs. (a) The global stress-strain curves under different w0 and gcs and their comparison with
experiment results; (b) shear strain curves in local shear band versus global shear strain. The experiment results are obtained from [7].
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4. Application in the transition from ASB to fracture

In this section, we use the impact test of the hat specimen as the application of the model, and further study the transition from
ASB to fracture. Tungsten alloys are often used as kinetic energy penetrators because of their high density and strength. Under
compression, ASB is the main failure mode of tungsten alloy. The further study of ASB is helpful to improve the performance of
tungsten alloy armor piercing projectile.

The test is carried out by split Hopkinson pressure bar, and its schematic diagram is shown in Fig. 7(a). The specimen was placed
on a 448 mm long, 20 mm diameter Hopkinson pressure bar. A 90 mm long and 20 mm diameter striker bar was fired with a gas gun.
The impact speed range is 20–50 m/s to ensure elastic deformation of the pressure bar and striker bar. In this paper, the initial impact
velocity is 27.6 m/s. The section shape and size of the hat specimen are shown in Fig. 7(b). The radii of the interior and exterior
corners are 0.15 mm and 0.12 mm respectively. Because of the high singularity of the corner, the two corners act as the starting point
of the ASB and the fracture, and the effect is the same as that of the notch tip of the pre-notched plate.

According to the experimental conditions, the finite element model as shown in Fig. 7(c) is established. To improve the calcu-
lation efficiency, 1/4 model and symmetry boundary condition are used. The simply supported boundary condition is adopted at the
end of the pressure bar. The pressure bar, striker bar and hat specimen are all made of tungsten alloy, and the material parameters are
shown in Table 3.

The simulated phase-field evolutions at different times are shown in Fig. 8. The isosurface with d = 0.99 is shown in the figure to
see the 3D fracture morphology more clearly. In this paper, we consider that the ASB with phase-field variable ⩾d 0.99 is transformed
into a fracture. At this time, the shear band can hardly bear the load. It can be found that with the evolution of the ASB, at two
corners, the ASB first transforms into fracture. As the loading continues, the fracture at the interior corners propagates faster than that

Fig. 6. Simulation of pure shear process with different feature width lc and mesh size h. (a) The curve of the circumferential displacement changing
with the axial coordinate, and the place where the displacement suddenly jumps is the ASB; (b) the curve of phase-field value changing with axial
coordinate.

Fig. 7. Impact test of hat specimen: (a) schematic diagram of impact test of hat specimen, (b) section size of hat specimen (all length dimensions in
the drawing are in mm) [49], and (c) FEM model of impact test of hat specimen (1/4 model).
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at the exterior corner. The final fracture does not penetrate the hat specimen. The total length of the fracture extending from the
interior and exterior corner accounts for 0.7 times of the distance between the two corners. This is in good agreement with the
previous simulation and experiment results, in which the measured length of the ASB is 71% of the gauge section at V0 = 27.6 m/s
[49,50].

The temperature rise in the process of ASB’s evolution is an important factor for its transformation into fracture. Temperature
distributions across and along ASB are shown in Fig. 9. It can be found that there is a low temperature rise (about 200 °C) before the
ASB develops into a fracture. However, in the process of the transformation from the ASB into fracture, it is accompanied by the rapid
rise of temperature. The temperature rise is about 1000 °C, which is close to the melting point of tungsten alloy. Fig. 9(a) also shows
that there is an overall temperature rise in the specimen near the striker bar, which indicates that the specimen enters into plasticity
as a whole near the striker bar.

In addition, we also notice that the temperature distribution is not continuous, but there are some periodic discontinuous “hot
spots”. For the first time, Guduru et al. [9] found that the temperature field in the ASB consists of a series of transient and periodic
“hot spots” fully developed along the ASB. This is different from the traditional continuous distribution of temperature field. Our
simulation also shows that, as shown in Fig. 9(b), a series of “hot spots” are distributed in the ASB. These “hot spots” can be
considered as the precursor of the transition of ASBs into fracture.

As we mentioned earlier, the width is an important measure of the ASB. In order to quantitatively study the width of ASB, we
draw the distribution of displacement magnitude across ASB at different times in Fig. 10. The whole process from uniform de-
formation to shear localization, and then transition to fracture can be clearly seen from the figure. In the ASB, the displacement has an
obvious mutation. The range of displacement jump is the width of ASB. This way of characterizing the width of the ASB is natural,
which is more reasonable than the previous way of characterizing the width of the ASB by the temperature rise [49]. In their
characterization, it is necessary to consider a given temperature rise as a material parameter. The width of the simulated ASB is
45 μm, which is in good agreement with the previous experimental results (about 40 μm) [49,50]. In addition, we can see that the
width of the shear band does not continue to increase with the time evolution and the further increase of deformation in the shear
band.

We also take a gauge point near the interior corner of the specimen and output the curves of stress, thermal softening factor and
damage softening factor with time, as shown in Fig. 11. It is found that both thermal softening and damage softening have an
important influence on the evolution of ASBs in tungsten alloy. Moreover, thermal softening precedes damage softening. Before
damage softening, the yield strength of the material is reduced by about 10% due to thermal softening. In the later stage, the thermal
softening and damage softening are carried out simultaneously, resulting in the rapid evolution and transformation of the ASBs into

Table 3
Material parameters of JC model for tungsten alloys [49,50].

E [GPa] ν A [GPa] B [GPa] C N m θm [°C]
370.0 0.3 1.984 1.875 0.03 0.95 0.835 1085.0

ρ0 [kg/m3] k [ °W/m C] c [ °J/kg C] αθ [ °−10 / C6 ] gcs [N/mm] w0 [J/mm3]
17650.0 175.0 150.0 0.29 8.0 0.6

Fig. 8. Distribution of ASBs simulated at different moments (the isosurface with d = 0.99 is shown, and the view is transparent): (a) t = 35 μs; (b)
t = 39 μs; and (c) t = 43 μs.
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fractures. That is, two softening mechanisms work together. We call it double softening. After the joint action of thermal softening
and damage softening, the stress at the gauge point decreased to nearly 0 at about 30 μs, and obvious fracture began to appear. That
is, the adiabatic shear band is transformed into a fracture. It should be noted that the stress drop in the figure at about 5 μs is caused
by the stress wave reflection on the contact surface between the hat specimen and the pressure bar, which leads to the stress
unloading.

5. Concluding remarks

In this paper, the complex dynamics of spontaneous adiabatic shear band evolution is numerically studied. A thermo-elastic-
plastic phase-field model has been developed to describe the different stages of ASBs’ formation. The Johnson-cook (JC) model
including strain hardening, strain rate hardening, and thermal softening is adopted to describe the yield of materials. Damage
parameters based on phase-field evolution were introduced and calibrated by experiment results.

The simulation results show that our developed model can well reproduce the formation and evolution of ASBs in typical ex-
periments. As an application, the calibrated model is used to simulate the evolution of the ASB of the hat specimen and the process of
its transition to the fracture. The simulation results successfully explain the typical phenomena such as transient “hot spots” and
double softening in the experiment.

In conclusion, the model developed in this paper can well predict the initiation, evolution, and interaction of ASBs in metallic
materials, and the relevant model parameters can be calibrated by experimental results.
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