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ABSTRACT
Colloidal or nanoparticle mobility under confinement is of central importance for a wide range of physical and biological processes. Here, we
introduce a minimal model of particles in a hydrodynamic continuum to examine how particle shape and concentration affect the transport
of particles in spherical confinement. Specifically, an immersed boundary-general geometry Ewald-like approach is adopted to simulate the
dynamics of spheres and cylinders under the influence of short- and long-range fluctuating hydrodynamic interactions with appropriate
non-slip conditions at the confining walls. An efficient O(N) parallel finite element algorithm is used, thereby allowing simulations at high
concentrations, while a Chebyshev polynomial approximation is implemented in order to satisfy the fluctuation–dissipation theorem. A
concentration-dependent anomalous diffusion is observed for suspended particles. It is found that introducing cylinders in a background of
spheres, i.e., particles with a simple degree of anisotropy, has a pronounced influence on the structure and dynamics of the particles. First,
increasing the fraction of cylinders induces a particle segregation effect, where spheres are pushed toward the wall and cylinders remain near
the center of the cavity. This segregation leads to a lower mobility for the spheres relative to that encountered in a system of pure spheres at
the same volume fraction. Second, the diffusive-to-anomalous transition and the degree of anomaly quantified by the power law exponent in
the mean square displacement vs time relation both increase as the fraction of cylinders becomes larger. These findings are of relevance for
studies of diffusion in the cytoplasm, where proteins exhibit a distribution of size and shapes that could lead to some of the effects identified
in the simulations reported here.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0002906., s

I. INTRODUCTION

Colloidal and nanoparticle diffusion in confined environments
arises in a wide range of scientific and engineering systems, includ-
ing living cells, mesoporous materials, and microfluidic devices.1–6

It is also of interest for energy generation processes that rely on
salinity or electrostatic gradients in pores.7–10 In the particular case
of the cytoplasm, the diffusion of biomolecules underpins a variety

of intracellular metabolic, translational, and locomotion processes,
to name a few.11–16 Interestingly, particle diffusion in these con-
fined systems is often found to be severely hindered and anoma-
lous.17–19 The mechanisms behind those observations, however,
remain poorly understood.

Several studies have examined particle mobility in living
cells20,21 by relying on Brownian dynamics (BD) simulations. In
such studies, biological macromolecules have been represented as
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spheres, and numerical simulations have found evidence of hin-
dered diffusion, in agreement with experimental results. Major-
ity of previous studies, however, have failed to consider hydrody-
namic interactions (HIs) between particles or between particles and
the confining walls, and the presence of boundaries has shown to
affect the particle mobility.22,23 Some exceptions are provided by
the work of Ando and Skolnick24 and Chow and Skolnick,25 who
included hydrodynamic interactions between particles but did not
enforce the no-slip boundary condition at the walls. More recently,
Stokesian dynamics (SD) simulations of spheres by Aponte-Rivera
et al.26,27 considered both far- and near-field (lubrication) hydrody-
namic interactions (HIs) between particles and walls. The authors
demonstrated that HIs have a pronounced influence on the local
structure and the short-time and long-time diffusive behavior of par-
ticle suspensions. The framework employed by these authors relied
on SD and was restricted to a homogeneous system of spherical
particles.27

Recently, we have introduced an efficient computational
approach in order to overcome some of the limitations of other
available numerical approaches for hydrodynamic interactions. In
particular, this approach can be easily extended to particles of
arbitrary shape dispersed in a confined geometry also of arbitrary
shape.28–30 An Immersed-Boundary (IB) method is used to repre-
sent the suspended finite-sized particles. A parallel Finite Element-
General geometry Ewald-like method (pFE-GgEm)28 is used to cal-
culate the confined Green’s functions, which relies on a Chebyshev
polynomial approximation to satisfy the fluctuation–dissipation the-
orem. In our recent work,30 we relied on this approach to compare
the structure of pure spherical and pure cylindrical particles con-
fined in a spherical cavity. It was found that cylindrical particles
diffuse slower as compared to spherical particles of the same volume
and at the same volume fraction and that for cylinders, the transi-
tion from the diffusive to the sub-diffusive regime occurs at a lower
volume fraction.

The studies mentioned above focused on pure spheres or cylin-
ders confined in a spherical cavity. The more relevant case of mix-
tures of spheres and cylinders was not considered. Indeed, in appli-
cations (e.g., cytoplasm or colloidal suspensions), one rarely deals
with systems of pure mono-disperse spheres, and it is, therefore,
of interest to consider how mixtures behave relative to their pure
counterparts. Note that limited experimental evidence with mixtures
of particles of different sizes and shapes indicates that cells exhibit
preferential accumulation of some particles near the nucleus.31,32 In
those cases, size-based segregation was explained on the basis of a
“sieving effect” that has been advanced in the dry granular segrega-
tion literature.33,34 An explanation for shape-based segregation was
not proposed in that work. Other experimental studies, including a
study of centrifugation of colloidal rods and spheres35 and a study in
which milli-meter sized glass beads and rods were subject to strong
vibration,36 have also reported segregation effects based on particle
shape and proposed that hydrodynamic forces based on the different
shapes contribute to that segregation.

Our particular goal here is to provide a standard against which
past and future observations of segregation and diffusion can be
compared by simulating mixtures of particles of equal volume
but having a spherical or a cylindrical aspect ratio hc/rc = 2. By
doing so, we seek to rationalize past reports with new evidence
for size-based segregation and mobility gradients in systems where

dimensions and interactions are perfectly controlled, thereby elimi-
nating or avoiding some of the complexity that arises in laboratory
experiments. The outline of this paper is as follows: in Sec. II, we
describe our numerical setup and methodology. Our results on the
structure and dynamics of mixtures of spheres and cylinders are pre-
sented in Sec. III. We conclude the manuscript with a discussion
of our findings in Sec. IV, along with a possible outlook for future
studies.

II. MODEL AND METHOD
The system considered here consists of N semi-rigid particles

embedded in a viscous fluid of viscosity η that are enclosed in a
spherical cavity of radius R. The equations of motion under the
condition of zero Reynolds number and zero Stokes number are
given by

FH + FB + FC + FEV + Fext = 0, (1)

where FH is the 6N vector containing the hydrodynamic
force/torque, FB is the Brownian force/torque, FC is the force/torque
containing configuration terms, FEV represents force/torque
excluded volume contributions, and Fext includes any external
force/torque.

Evolution of the suspended particles, using Eq. (1), is achieved
using the grand mobility or resistance tensors that relate the hydro-
dynamic force/torque with the translational and rotational velocities
of the particles.37–39 Approaches such as SD40–46 and boundary inte-
gral methods (BIMs)37,47 are used extensively to solve the “mobility
problem.” The regularized Stokeslets,48 the accelerated BIM,49 and
the Immersed Boundary (IB)44,50–53 provide examples of numerical
methods developed to improve computational efficiency by sim-
plifying or avoiding the calculation of the single- and double-layer
hydrodynamic potentials of suspended particles. On the case of the
Immersed Boundary (IB) approach, the surfaces of the suspended
solids are represented by a distribution of discrete force densities on
a surface mesh (NIB immersed boundary nodes) that, together with
a surface force description and Stokes equations, leads to the evo-
lution of the suspended particles. The above mentioned approach is
used in this study.

As in the boundary element method,47 in our simulations, the
surface of each particle is discretized into a set of NIB nodes con-
stituting a mesh (see Fig. 1). In order to maintain particle shape,
volume, and surface, we define a spring potential on the surface
nodes. Next, the force balance on each particle translates into NIB
surface nodes as follows:

fHν + fBν + fCν + fEVν = 0, (2)

for every node ν = 1, . . ., NIB, where fHν is the hydrodynamic force, fBν
is the Brownian force, fCν is the constitutive force, and fEVν is the force
from all excluded volume interactions, including particle–particle
and particle–wall.

The probability distribution function for the surface mesh posi-
tions in a Lagrangian frame of reference evolves according to a
convection–diffusion equation of the Fokker–Planck type.54 We
assume a continuous probability density and use the Chapman–
Kolmogorov equation white noise to obtain an equivalent stochastic
differential equation for the motion of the mesh points,55
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FIG. 1. Snapshots of the spherical cavity of radius R containing spherical and cylin-
drical particles with ϕHI = 0.2 for fraction of cylinders ψ = NC/NT being 0.25 and
0.75. The spherical particles radius is rS, while the size of the cylindrical particles
is determined by rC and hC. The surface of the particles is given by a collection of
discrete nodes that are connected to six neighbors, similar to boundary element
discretizations, and with a characteristic node separation of a ∼ h ∼ ξ−1

IB . A repul-
sive Lennard-Jones excluded volume is included on each surface node, shown
schematically in the particles’ cross section by the black circles. The characteristic
size of the repulsion is given by σ = 2.2a.

dR = [U0 + M ⋅ F +
∂

∂R
⋅D]dt +

√
2B ⋅ dW, (3)

whereU0 denotes a 3(N ×NIB) vector of the unperturbed fluid veloc-
ity generated by external pressure differences or shear at the mesh
point positions; M is the mobility tensor that includes Stokes’ drag
and the pair-wise Stokeslets accounting for the hydrodynamic inter-
actions between mesh points; D = kBTM is the (3N × NIB) × (3N
× NIB) diffusion tensor; F is a 3(N × NIB) vector of the non-
Brownian and non-hydrodynamic forces; kB is the Boltzmann con-
stant; T is the temperature; M ⋅ F is a convection term that repre-
sents the bead velocities arising from hydrodynamic interactions; the
divergence of the diffusion tensor, ∂

∂R ⋅ D, is the first diffusive term
resulting from the configuration-dependent mobility of the confined
mesh points; dW is a random vector, the components of which are
obtained from a real-valued Gaussian distribution with zero mean
and variance dt, and it is coupled to the diffusion tensor through the
fluctuation–dissipation theorem, D = B ⋅ BT ; and finally, the second
diffusive term,

√
2B ⋅dW, represents the Brownian displacement

that results from collisions between mesh points and the surround-
ing (implicit) solvent.

The main challenge in simulating a stochastic process using
Eq. (3) is the fact that the mobility tensor, M, cannot be constructed
explicitly under confinement for arbitrary geometries. This implies
that the fluctuating velocity, U, the divergence of the diffusion ten-
sor,∇ ⋅D, and the diffusion tensor decomposition,B, must be imple-
mented in a way such that the scheme is matrix-free. To address
this issue, we have developed an efficient O(N) numerical algorithm,
parallel Finite Element-General Geometry Ewald-like Method (pFE-
GgEm).28 The algorithm uses (i) the General geometry Ewald-like
method (GgEm)56 for a matrix-free product of the mobility ten-
sor with any vector, M ⋅ F; (ii) a mid-point algorithm, proposed by
Fixman,57 that avoids the explicit calculation of ∇ ⋅ D; and (iii) a
Chebyshev polynomial approximation for the B ⋅ dW product that
uses GgEm to avoid the explicit calculation of D. The algorithm is
able to handle arbitrarily shaped confining walls.

Each particle in the simulation is represented by a discretized
surface, and the force distribution on these moving particles is
discretized into distribution of regularized point-forces. Using the
Immersed Boundary (IB) method,58 the force distributions at these
particles is discretized into a distribution of regularized point-forces.
In particular,

ρ f
IB(x) =

NIB

∑
ν=1

fC
ν δIB(x − xν), (4)

where fC
ν represents the constitutive force acting on νth surface node

(point force with an excluded volume of radius a), NIB represents the
number of surface nodes that are used to represent the suspended
finite-size particles, δIB is the modified Gaussian regularization func-
tion. The regularization parameter ξIB in δIB is related to the charac-
teristic length h for the node spacing on the particle surface, i.e., ξIB
∼ h−1

∼ a−1. By doing this, we ensure that the regularized force on
each node is spread over the length scale of the associated surface
elements to prevent fluid from “penetrating” the particles. Further
details about simulations are available in Refs. 28 and 30.

Here, we consider particles to be “semi-rigid,” and the nodes
on a particle are linked to each other by a spring, whose stiffness sets
the rigidity of the particles. To conserve the shape of the particle,
surface nodes are also connected to the center-of-mass of the particle
by a spring. We assume each of these springs is linear, and the force
acting on the point ν by the point μ is given by

fC
νμ = k(rνμ − q0)

xνμ
rνμ

, (5)

where k and q0 are the spring constant and the equilibrium spring
length, respectively, for each specific node pair, xνμ = xν − xμ and rνμ
= |xνμ|.

The volume of spheres and that of cylinders are the same. Each
surface node is linked to the neighboring node as well as to the
center-of-mass point of the particle using an elastic spring with stiff-
ness k. A spring network is formed for every particle, which results
in an internal nodal force that resists deformation and maintains
its shape. At the same time, a repulsive Lennard-Jones (LJ) poten-
tial is used for particle–particle and particle–wall excluded volume
interactions. The ratio between mesh and particle size controls the
number of surface nodes on each particle. Increasing the number of
nodes improves accuracy but also increases the computational cost.
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In a previous study,30 we showed that a spring stiffness k = 200 is
sufficient to simulate “semi-rigid” particles, where despite the high
concentration of particles, excluded volume interactions do not alter
the particle shape. In addition, we found that particle discretiza-
tion at the level of NIB = 20 is enough to avoid fluid penetration,
satisfy Stokes’ law, and provide the correct diffusional behavior. In
this work, however, we use spheres and cylinders discretized with
NIB = 88 to ensure extremely high accuracy.

In what follows, the characteristic units are a for length,
a2ζ/kBT for time, kBT for the energy, and kBT/a for the force. ζ
the node friction coefficient is related to the fluid viscosity η and
a through Stokes’ law, i.e., ζ = 6πηa, and the unit diffusivity, D0, is
defined as the diffusivity of a sphere in an infinite fluid with viscosity
η, i.e., D0 = kBT/6πηa.

III. RESULTS
We consider different particle mixtures of spheres and cylin-

ders suspended in a Newtonian viscous fluid within a spherical cav-
ity of radius R = 15. The spherical particle has a radius rs = 3, leading
to a hydrodynamic volume of VHI = 4/3πr3

s . The cylinders have an
aspect ratio of 2, i.e., hc = 2rc, where rc = 2.62 is the radius and hc is
the height.

In our semi-rigid particle model, there are two ways to define
the particle concentration in a cavity of volume V. A hydrody-
namic volume fraction can be defined as ϕHI = NTVHI/V ; a sec-
ond one is based on the excluded volume, ϕEV = NTVEV/V, where
for spheres and cylinders, we have VEV = 4/3π(rS + a)3 and VEV
= π(rC + a)2

(hC + 2a), respectively. In the remainder of the article,
we will use the hydrodynamic volume fraction ϕHI (referred to as
ϕ in the rest of the paper) to denote the concentration of the parti-
cles. In this work, we explore ϕ = [5%, 10%, 15%, 20%]; this would
correspond to ϕEV = [12%, 24%, 36%, 48%]. Figure 1 shows several
details of our simulations and representative snapshots for ϕ = 0.2
with different cylinder fractions.

A. Structure of sphere and cylinder mixture
We begin by analyzing the structure of mixtures through the

local particle number density. To calculate it, the spherical cavity
is discretized into m evenly spaced spherical shells along the radial
direction, leading to a shell radius of the ith shell that is given by bi
= (i + 0.5)R/m. The particle number density is then given by n(ri)
= ⟨N(ri)/V i⟩, where N(ri) is the number of particles in the ith shell
with volume V i and is at a distance ri from the center of the cavity; ⟨⟩
represents the ensemble average over time. We calculate the number
density for all particles, only spheres, and only cylinders, and denote
them by nT , nS, and nC, respectively.

Figure 2 displays the number density for particles within the
cavity for various particle concentrations ϕ and different fractions
of cylinders for each ϕ. Figure 2(a) shows the bare number density
nT(r) for all particles within the cavity for various particle concen-
trations ϕ and different fractions of cylinders ψ. Cases with ψ = 0%
and 100% refer to packings with pure spheres and cylinders, respec-
tively. A common observation is that a peak in nT(r) appears close
to the wall along with another peak close to the center of the cav-
ity. These undulations in density nT are nearly absent for the case
of ϕ = 5% and grow with an increase in the volume fraction. For

ϕ = 10%, 15%, the peak near the center grows taller with ψ. At the
highest concentration of ϕ = 20% considered here, we observe a lay-
ered structure with two distinct peaks at r = 3 and 10, along with
a depletion zone in the regions r < 2 and 5 < r < 7. This depleted
region is highlighted by the gray shaded region. Note that the posi-
tion of the peak close to the center is nearly similar for the pure
sphere and cylinder cases, and it shifts inwards for intermediate
ψ cases, hinting that the mixed cases exhibit a different structure
from the pure cases. These observations are consistent with previ-
ous studies.27,30 It is important to mention that the layered structure
has a strong dependence on the cavity size and more precisely on
the relative size of the cavity and that of the particles, as shown
previously.27,30

For a better comparison between all particle concentrations, in
Fig. 2(b), we show the scaled number density nT/max(nT) for vari-
ous particle concentrations ϕ and different fractions of cylinders ψ.
Once again, cases with ψ = 0% and 100% are also shown. For a low
concentration, ϕ = 5%, the peak in scaled number density near the
wall as well as at the center is independent of ψ, while it decreases
with ψ in the bulk. For a particle concentration ϕ = 10%, the scaled
density is higher at the center compared to the wall, which gets nar-
rower with an increase in ψ. A similar observation can be drawn for
the case with ϕ = 15%. Interestingly, for these two particle concen-
trations (especially for ϕ = 15%), the density of particles near the
wall and the center of the cavity is most symmetric for the case of
ψ = 0%, i.e., the one with pure spheres. The difference between the
two peaks actually increases with an increase in ψ, hinting that the
alignment of cylinders can affect the way in which particles pack.
This observation also implies that the addition of cylinders enhances
the heterogeneity in the local packing or density. At the highest par-
ticle concentration ϕ = 20%, for the layered structure, the differences
between the heights of the two peaks (at the center and wall of the
cavity) actually decrease with ψ.

To further understand the local particle density, we analyze the
relative density of spheres and cylinders. Figure 2(c) displays the
number density of spheres relative to the total density as a func-
tion of r for various values of ϕ and ψ = 25%, 50%, and 75% for
each case. We observe that the scaled sphere density relative to the
total number density nS/nT is highest close to the wall and decreases
with an increase in the fraction of cylinders. nS/nT decreases with
an increase in the fraction of cylinders in the bulk and is always
greater than zero for low particle concentrations ϕ = 5% and 10%.
nS/nT becomes zero for higher particle concentrations ϕ = 15% and
20% at large cylinder fraction (75%); only cylinders are found in
this range of r, as confirmed by nC/nT being equal to 1, as shown
in Fig. 2(d). These two observations demonstrate that only cylin-
ders are present in the interior of the cavity and that spheres are
close to the wall. Another point to note is that the numerical val-
ues of the scaled densities for ψ = 25% and 50% in the bulk are
more “separated” compared to the differences between ψ = 50%
and 75%.

These results serve to establish the equilibrium segregation of
spheres to the walls induced by a subtle difference in particle shape
but for the same particle volume. As a side note, we mention here
that the difference in particle volume may not be the only reason for
the observed segregation in experiments.32

Next, we analyze the orientational order parameter for differ-
ent particle concentrations and cylinder fractions. The orientational
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FIG. 2. Particle number density in the mixture of spherical and cylindrical particles within a spherical cavity of radius R = 15 as a function of radial distance. The radii of
spheres and cylinders are rS = 3 and rC = 2.62, respectively. The cylinder has an aspect ratio of 2, i.e., hC = 2rC = 5.24. (a) Number density of all particles scaled with the
maximum density nT/max(nT) for particle concentrations ϕ = 5%, 10%, 15%, and 20% (from left to right). (b) Relative number density of all particles scaled with the maximum
density nT/max(nT) for particle concentrations ϕ = 5%, 10%, 15%, and 20% (from left to right). For each particle concentration, different fractions of cylinders ψ are displayed
along with the pure sphere (0%) and pure cylinder (100%) cases. (c) Relative number density of only spherical particles scaled with the total density nS/nT for various particle
concentrations ϕ = 5%, 10%, 15%, and 20% (from left to right). (d) Relative number density of only cylindrical particles scaled with the total density nC/nT for various particle
concentrations ϕ = 5%, 10%, 15%, and 20% (from left to right).

order parameter is defined as λ = 1
2 ⟨3 cos2 θ−1⟩, where cos θ = m ⋅ n

/(∥m∥ ⋅ ∥n∥), m is the vector parallel to the centerline of the cylinder
and n is the vector connecting the cavity center and the cylinder’s
center-of-mass. A parameter λ is often used in liquid crystalline

systems to quantify the nematic ordering;59,60 λ = 0 corresponds to
a random/disordered configuration, whereas λ is unity for ordered
morphologies, with the cylinder axis being coaxial with the radial
direction of the spherical cavity (radial phase), and λ = −1/2 when
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all cylinders are aligned transversal to the radial direction (concen-
tric phase). Figure 3 displays λ for various particle concentrations
with different fractions of cylinders. A common observation is that,
very close to the wall, the order parameter is λ = −1/2 irrespective
of the volume fraction, indicating a concentric phase close to the
wall. We also find that λ fluctuates around zero in the bulk for low
volume fractions, i.e., ϕ = 5%, 10%, indicating a disordered config-
uration of cylinders. For moderate concentrations, ϕ = 15%, λ is
zero close to center and is negative with an increase in r, reaching
a minimum and increasing further with r to reach a maximum value
of 0.5; λ then decreases with r reaching −0.5 close to the wall. For
the highest concentration, we find that λ = −1/2 both at the cen-
ter and close to the wall, and we also find a depletion zone with no
particles for r < 2. For this concentration, we find another ordered
state with λ ∼ 1 in the region 7 < r < 10. The ordered morphology
arises from segregation in the cavity. At the highest volume fraction
ϕ = 20%, the cylinders display ordered morphologies, i.e., perpen-
dicular to the radial direction very close to the wall and parallel to
the radial direction for 7 < r < 10. With an increase in ψ, the cylin-
ders push the spheres to the wall in order to minimize free volume
and gain orientational order.

Excluded volume potential calculations yield 10.88kBT for a
single sphere, 2.3kBT for a cylinder oriented perpendicular to the
cavity wall, and 1.01kBT for a cylinder oriented parallel to the cavity
wall. These numbers imply that the cylinder oriented parallel to the
cavity wall (λ = −0.5) would be the most preferable configuration,
which explains λ = −0.5 irrespective of the volume fraction ϕ and
fraction of cylinders ψ.

We have shown that the confinement induces a structure that
propagates from the cavity wall toward the center, whose length
scale is not only controlled by the particle concentration but also
by their shape. At low volume fractions, both the spheres and the
cylinders are found in the bulk with cylinders oriented parallel to
the cavity wall and a disordered configuration in the bulk. As the
volume fraction increases, the cylinders at the wall still prefer to be
oriented parallel to the cavity wall. An ordered configuration begins
to emerge adjacent to this layer, that aligns almost perpendicular to
the layer at the wall. Next, in an ordered state that is concentrically
aligned along the radial direction (similar to that at the wall), these
cooperative effects in the ordering of cylinders in the bulk cause the
spheres to segregate to the cavity wall. Also note that, even though
we demonstrate the layering of particles in the density profiles and
structure in the orientational order parameter, the system is not crys-
talline; instead, it is still fluid-like, and particles diffuse throughout
the system, as discussed in Sec. III B.

B. Local mobility of the particles in the cavity
As mentioned earlier, recent experiments61–65 and simula-

tions26,27 suggest that confinement can lead to anisotropic self-
diffusion, which is not the case for unconfined suspensions. In an
unconfined suspension, the mobility depends only on the volume
fraction and the absolute position of particles does not contribute
and all relative separations between particles are equally probable.
To examine this, mobilities (short-time diffusivity) in both the radial
and tangential directions are calculated using the Einstein–Stokes

FIG. 3. Orientational order parameter λ of cylindrical parti-
cles within a spherical cavity of R = 15 as a function of radial
distance for particle concentration ϕ = (a) 5%, (b) 10%, (c)
15%, and (d) 20%. The radius of cylinders are rC = 2.62 and
the height hC = 2rC = 5.24.
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relation,63

⟨Δx2
R(t)⟩(ri) = 2MR(ri)dt, (6)

⟨Δx2
T(t)⟩(ri) = 4MT(ri)dt, (7)

for short time t → 0; Δx = x(t + dt) − x(t), ΔxR = Δx ⋅ x/|x|, ΔxT
= Δx − ΔxR denote the radial and tangential displacements, respec-
tively. MR(ri) and MT(ri) correspond to the instantaneous radial and
tangential mobilities at radial location ri in an infinitesimal time
interval dt. Instantaneous radial and tangential mobilities are aver-
aged in each shell during a simulation and then over ten indepen-
dent realizations. It is important to note that when the segregation
is observed, the segregated region still consists of particles (either
spheres or cylinders).

Figure 4 displays both the radial MR and tangential MT com-
ponents of mobility within the cavity for mixtures of spherical and
cylindrical particles as a function of radial distance for various parti-
cle concentrations. Note that the two components are normalized
by the mobility of a spherical particle at infinite dilution M00. A
few observations can be drawn: mobilities along both directions are
not constant along the radial direction; instead, the particles diffuse
fastest at the cavity center and slowest at the cavity wall due to lubri-
cation forces between wall and particles. Second, both MR and MT
decrease with the increase in particle concentration due to enhanced
many-body hydrodynamic interactions with ϕ. Next, the peaks and
trough in mobility appear at the same radial position, correspond-
ing to the local particle density as shown in Fig. 2, thereby revealing
a correlation between structure and dynamics. The strength of these
undulations enhance with volume fraction that becomes particularly
apparent for the case of ϕ = 20%, where a layered structure for both
MR and MT corresponds to a similar density profile as observed in
Fig. 2, e.g., the dip in mobility at 2 < r < 7 corresponds to the peak in
nT in the same radial range. Also note that for the case of ϕ = 20%,
especially at ψ = 75%, 100%, there is a discontinuity in the data due
to the depletion zone observed in the particle density profile. Both
MR and MT display the expected decrease with an increase in ϕ close
to the wall for all cylinder fractions. For ϕ = 5% and 10%, we observe
an expected decrease in mobility with an increase in ϕ in the bulk
as well. In contrast, for higher particle concentrations (ϕ = 15%),
the mobility does not exhibit a decrease with ϕ in the bulk, and the
mobility for ϕ = 20% at radial location r ∼ 5 becomes equal or even
larger than that for ϕ = 15%. Also note that the undulations (or wavy
behavior) observed in the radial mobility are stronger compared
to those in the tangential component, signifying that the structure
(density) has a stronger impact on the radial mobility. Physically, in
a locally dense environment, the presence of neighboring particles
will strongly hinder the radial motion as compared to the tangential
motion. This explains why the presence of a particle (or absence of it
in a depleted zone) causes larger variations in radial than tangential
mobility.

The effects of changing cylinder fraction ψ for a constant vol-
ume fraction ϕ are considered next. In Fig. 7, the data plotted in
Fig. 4 are replotted to emphasize the effect of ψ on both com-
ponents of mobility for a constant ϕ. Figure 7 illustrates that an
increase in ψ systematically decreases the mobility MR even for
the smallest particle concentration ϕ = 5%. This trend is clearly
observed for all volume fractions close to the wall. However, in
the bulk, the observed trend is less clear for the highly concen-
trated cases (ϕ = 15%, 20%). Especially for ϕ = 20%, the mobility

FIG. 4. Radial mobility MR (left) and tangential mobility MT (right) for mixture
of cylindrical particles with rC = 2.62 and hC = 2rC = 5.24 and spherical with
rS = 3 confined in a spherical cavity of R = 15 for various particle concentrations, ϕ,
and different fraction of cylinders ψ. Both components of mobility are normalized
by the mobility of spherical particles in the bulk at infinite dilution M00 for t → 0.
Note that for both mobilities, the data for r /a < 2.3 are missing for ϕ = 20%, and
the reasoning for this is that due to the layering structure, there are not enough
particles to sample. The results with statistical error (error bars) are presented in
Fig. 6.

in the region close to the center is insensitive to ψ, and in a small
region, the mixture mobility is larger than that of pure spheres.
Taken together, these observations reveal that the change in shape,
i.e., the breaking of geometrical symmetry, affects the short-time
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diffusion. Recall that the cylindrical and spherical particles have
equal volume, and the mobilities are normalized by the bulk mobil-
ity of a spherical particle. In summary, the short-time mobility in
a confined suspension is position-dependent, anisotropic, and het-
erogeneous by heterogeneity in the structure induced by confine-
ment. Here, we find that introducing cylinders enhances all these
features.

C. Long-time mobility of the particles
The displacement of a Brownian particle in a confined system is

hindered, and thus, the mean square displacement (MSD) over time
is lower than that observed in a bulk system.25,27 Our recent work
on pure suspensions30 showed that a change in shape from spheri-
cal to cylindrical at constant volume fraction leads to slower particle
diffusion. The question that arises here is how does the fraction of
cylinders in a mixture affect long-time dynamics.

Figure 5(a) shows the average MSDs for mixtures at different
particle concentrations. The MSD of each system is calculated from
ten independent simulations in which the particles diffuse for more
than 300 particle diffusion times within the cavity. A few observa-
tions can be drawn. First, the MSDs grow linearly as short times,
t → 0, and reach a plateau in the long-time limit, t → ∞. Sec-
ond, at intermediate times, particle motion becomes sub-diffusive
for systems with ϕ ≥ 10%.

To analyze the diffusion behavior in detail, we express the MSD
as the generalized Stokes–Einstein relation:

⟨(R(t) − R(0))2
⟩ =Miti, (8)

where R is the 3Np particle coordinate vector, Mi is the generalized
particle mobility coefficient, and i is the power law exponent that
characterizes whether the particle motion is sub-diffusive (α < 1),

diffusive (α = 1), or super-diffusive (α > 1). For the case of (α = 1),
the mobility M0 is the diffusion coefficient.

Figures 5(b)–5(e) show our findings for the mean square dis-
placement. Short-time mobility [Fig. 5(b)] and sub-diffusive mobil-
ity [Fig. 5(c)] decrease with an increase in the cylinder fraction
ψ and particle concentration ϕ. The dependence of M0/M00 and
Mα/M00 on particle concentration ϕ is monotonic; however, the
dependence on cylinder fraction is weak at smaller cylinder frac-
tion ψ and becomes strong beyond 50%, showing a smooth to “rigid”
transition at ψ = 50%. Note that for the case of ϕ = 5%, sub-diffusion
is not observed at any cylinder fraction ψ. On the other hand, the
sub-diffusive exponent α [Fig. 5(d)] that characterizes the strength
of sub-diffusive behavior decreases with both ϕ and ψ. In the case
of short-time and sub-diffusive mobilities M0/M00 and Mα/M00, the
dependence on ψ is monotonic; however, the correlation gets less
pronounced with an increase in the particle concentration. Finally,
the transition time, defined as the time at which the system tran-
sitions from the short-time diffusive to the intermediate time sub-
diffusive regime, is displayed in Fig. 5(e). We observe that for ϕ = 0.1,
the transition time decreases strongly with the cylinder fraction and
becomes nearly independent of cylinder fraction for higher particle
concentrations.

From a physical perspective, the particle dynamics can be
characterized by different time scales that correspond to different
regimes of the motion of particle.66 At short times, molecular dif-
fusion dominates, and hence, particle motion is diffusive. As the
diffusing particle probes the surrounding fluid and other particles,
it distorts the suspension structure that leads to correlated motion,
and eventually hydrodynamic interactions (HI) begin to dominate.
At finite concentrations, interparticle hydrodynamic interactions
(HI) dominate leading to a slowdown of exchange of particle posi-
tions and their motion, leading to the sub-diffusive behavior at

FIG. 5. (a) Mean square displacement as a function of time for mixture of spherical and cylindrical particles that are confined in a spherical cavity with R = 15 for various
particle concentrations ϕ with varying fraction of cylinders. Solid and dashed lines are the results for ψ = 25%, and 75% fraction of cylinders; (b) short-time mobility scaled
with the mobility of spherical particles in bulk at infinite dilution M00 plotted against ψ, (c) sub-diffusive (at intermediate time) mobility scaled with the mobility of spherical
particles in bulk at infinite dilution M00 plotted against ψ, (d) sub-diffusive exponent α plotted against ψ, and (e) time scale to make transition between diffusive to sub-diffusive
behavior plotted as a function of fraction of cylinders for various values of ϕ.
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intermediate times. At t → ∞, for all values of ϕ and ψ, the con-
finement due to the cavity wall leads to the long-time plateau. Pre-
vious work has shown that crowding exacerbated by short-range
hydrodynamic interactions (lubrication) is a key contributor to the
sub-diffusive behavior.30 With an increase in ϕ, the crowding leads
to slowing of diffusion at short times. At intermediate times, when
particles begin to move relative to each other, the net effect of HI
is enhanced with an increase in the volume fraction (due to multi
body interactions), and hence, the extent of sub-diffusive behavior
becomes more pronounced. Further, to explain the smooth to rigid
transition as observed in both M0/M00 and Mα/M00, we refer to the
scaled density profiles with an increase in ψ. We observe that the
scaled densities nT/max(nT) for ψ = 0% and 25% are similar but
then drop drastically for ψ ≥ 50%, which affects the mobility in
both the diffusive and sub-diffusive cases. For the case of ϕ = 5%,
since the cylinders are in a disordered state in the bulk, i.e., λ = 0,
the dependence of these quantities on ψ is minimal. Some struc-
ture begins to appear, as evidenced by orientational order parameter
for high volume fractions ϕ = 15%, 20%, especially for ψ = 75%,
100%, leading to a drastic slowdown of the particles that mani-
fests itself in a drastic slowdown in mobilities for ψ ≥ 75%. On the
other hand, during the transition time between the diffusive and the
sub-diffusive regimes (i.e., roughly the time needed for particles to
diffuse a distance nearly equal to their radius), collisions between
particles slow down their motion, leading to sub-diffusive behavior.
It follows that the transition time decreases with an increase in the
particle concentration ϕ. At low ϕ, changing the shape from spheres
(ψ = 0%) to (ψ = 100%) to cylinders, the larger aspect ratio of the
latter should cause them to feel each other at shorter time scales,
compared to what is seen for spheres and hence yield a transition
time that decreases with ψ. At larger ϕ, the system is so dense that
even for different packings, i.e., sphere–sphere, sphere–cylinder, and
cylinder–cylinder cases, the particle interaction time scales become
similar.

IV. CONCLUSIONS
We have examined the structure and dynamics of mixtures

of finite size in mixtures of spherical and cylindrical particles con-
fined in a spherical cavity. An Immersed Boundary-General geom-
etry Ewald-like Method (IB-GgEm) approach was used in the cor-
responding calculations, thereby taking into account hydrodynamic
interactions between particles and between particles and confin-
ing walls. By systematically varying the cylinder fraction at differ-
ent particle concentrations, it was found that particle shape has
a pronounced effect on both the structure and short- and long-
time dynamics of confined Brownian suspensions. As the volume
fraction increases, the effect of cylinder fraction becomes more
evident. At short times, the diffusion of particles in the confined
cavity is anisotropic and depends strongly on the distance from
the cavity center. At long times, the mean-squared displacement
reaches a plateau, and at intermediate times, a sub-diffusive behav-
ior is observed, which shows a pronounced dependence on cylinder
fraction ψ.

Our results suggest that introducing non-spherical particles
affects the local structure and local dynamics and global dynamics in
different ways. At a local level, particles are found to segregate based

on shape, with cylinders adopting conformations with high orien-
tational order. At a global level, cylinders give rise to pronounced
differences in the short-time mobility, the sub-diffusive behavior
at intermediate time scales, and the transition time from diffusive
to sub-diffusive behavior. Particle concentration has a strong effect

FIG. 6. Statistical errors in mobility calculations: radial mobility MR (left) and tan-
gential mobility MT (right) for mixture of cylindrical particles with rC = 2.62 and
hC = 2rC = 5.24, and spherical with rS = 3 confined in a spherical cavity of R
= 15 for various particle concentrations, ϕ, and different fraction of cylinders ψ.
Both components of mobility are normalized by the mobility of spherical particles
in the bulk at infinite dilution M00 for t → 0. The error bars represent the statistical
error.
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on such transitions. To start with, the mobility shows a smooth
to stiff transition at 50% cylinder fraction for all particle concen-
trations and the sharpness of this transition increases with parti-
cle concentration. Second, the sub-diffusive slope and sub-diffusive
exponent show mixed features as a function of cylinder fraction. The
slope shows a smooth to stiff transition similar to that of the short-
time mobility. The exponent decreases smoothly with an increase in
the cylinder fraction. In both cases, the dependence on the cylin-
der fraction is insensitive to particle concentration. Finally, the
transition time from the diffusive to sub-diffusive regime depends
strongly on the cylinder fraction for low particle concentrations (ϕ
= 0.1); that dependence weakens with an increase in the particle
concentration.

In terms of practical applications of this work, we have demon-
strated that a subtle change in shape, i.e., keeping the same volume
but breaking the symmetry, can bring about profound differences
in the structural and dynamic properties of a confined suspension.
As mentioned in the Introduction, a basic understanding of dif-
fusion, and in particular the anomalous diffusion, is highly rele-
vant to several scientific and practical applications such as living
cells, mesoporous materials, and energy generation processes.1–3,9,10

The approach developed here could shed further light on the dif-
fusion of highly concentrated biomolecules.11–15 Our work should
be of special relevance to the understanding of diffusion in the
cytoplasm, where proteins exhibit a wide distribution of sizes and
shapes.67 Changes in shape while keeping a constant volume frac-
tion have not been considered before. Here, we show that this

symmetry breaking leads to segregation in the cavity by inducing
orientational ordering in the system. Our study also highlights the
importance of shape on non-Newtonian features that are generally
observed in colloidal suspensions,68–73 where shape shows strong
effects.74

As an outlook, the role of aspect ratio and electrostatic interac-
tion on particle mobility in confined mixtures will be considered in
future that arise in a realistic cell environment.
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20%. The radial mobility is normalized by
the mobility of spherical particles in the
bulk at infinite dilution M00 for t→ 0.
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APPENDIX: LOCAL MOBILITY OF THE PARTICLES
Figure 6 displays both the radial MR and the tangential MT

components of mobility within the cavity for mixtures of spherical
and cylindrical particles as functions of radial distance with error
bars (statistical error) for various particle concentrations. The error
bars in the data are small at the wall but systematically increase as
the radial distance decreases toward the center for even the smallest
particle concentration ϕ = 5% simulated here. This is primarily due
to fluctuations in the structure (density) in the bulk of the cavity.
Especially interesting is the case of the highest particle concentration
ϕ = 20%, where error bars are the largest in the depleted region. The
observed trend, in which the error bars are larger close to the cen-
ter, is consistent with the literature27,30 and is due to fewer number
of particle available in the region leading to sampling error reflected
here.

REFERENCES
1J. Happel and H. Brenner, Low Reynolds Number Hydrodynamics: With Special
Applications to Particulate Media (Prentice-Hall, Englewood Cliffs, New Jersey,
1965).
2D. L. Koch and G. Subramanian, “Collective hydrodynamics of swimming
microorganisms: Living fluids,” Annu. Rev. Fluid Mech. 43, 637–659 (2011).
3L. K. Hudson, J. Eastoe, and P. J. Dowding, “Nanotechnology in action: Over-
based nanodetergents as lubricant oil additives,” Adv. Colloid Interface Sci.
123-126, 425–431 (2006).
4R. Richert, “Geometrical confinement and cooperativity in supercooled liquids
studied by solvation dynamics,” Phys. Rev. B 54, 15762 (1996).
5J. D. Seymour, J. P. Gage, S. L. Codd, and R. Gerlach, “Anomalous fluid transport
in porous media induced by biofilm growth,” Phys. Rev. Lett. 93, 198103 (2004).
6J. K. Dhont, An Introduction to Dynamics of Colloids (Elsevier, 1996).
7J. Gao, W. Guo, D. Feng, H. Wang, D. Zhao, and L. Jiang, “High-performance
ionic diode membrane for salinity gradient power generation,” J. Am. Chem. Soc.
136, 12265–12272 (2014).
8Z. Zhang, X. Sui, P. Li, G. Xie, X.-Y. Kong, K. Xiao, L. Gao, L. Wen, and
L. Jiang, “Ultrathin and ion-selective janus membranes for high-performance
osmotic energy conversion,” J. Am. Chem. Soc. 139, 8905–8914 (2017).
9S. B. Darling, “Perspective: Interfacial materials at the interface of energy and
water,” J. Appl. Phys. 124, 030901 (2018).
10R. Z. Waldman, H.-C. Yang, D. J. Mandia, P. F. Nealey, J. W. Elam, and S. B.
Darling, “Janus membranes via diffusion-controlled atomic layer deposition,”
Adv. Mater. Interfaces 5, 1800658 (2018).
11A. P. Minton, “Excluded volume as a determinant of macromolecular structure
and reactivity,” Biopolymers 20, 2093 (1981).
12A. B. Fulton, “How crowded is the cytoplasm?,” Cell 33, 345–347 (1982).
13M. C. Konopka, I. A. Shkel, S. Cayley, M. T. Record, and J. C. Weisshaar,
“Crowding and confinement effects on protein diffusion in vivo,” J. Bacteriol. 188,
6115–6123 (2006).
14R. J. Ellis, “Macromolecular crowding: Obvious but underappreciated,” Trends
Biochem. Sci. 26, 597–604 (2001).
15R. J. Ellis, “Macromolecular crowding: An important but neglected aspect of the
intracellular environment,” Curr. Opin. Struct. Biol. 11, 114–119 (2001).
16M. Grimaldo, H. Lopez, C. Beck, F. Roosen-Runge, M. Moulin, J. M. Devos,
V. Laux, M. Härtlein, S. Da Vela, R. Schweins, A. Mariani, F. Zhang, J.-L. Barrat,
M. Oettel, V. T. Forsyth, T. Seydel, and F. Schreiber, “Protein short-time diffusion
in a naturally crowded environment,” J. Phys. Chem. Lett. 10, 1709–1715 (2019).

17C. Selhuber-Unkel, P. Yde, K. Berg-Sørensen, and L. B. Oddershede, “Variety in
intracellular diffusion during the cell cycle,” Phys. Biol. 6, 025015 (2009).
18M. Weiss, M. Elsner, F. Kartberg, and T. Nilsson, “Anomalous subdiffusion is
a measure for cytoplasmic crowding in living cells,” Biophys. J. 87, 3518–3524
(2004).
19F. Höfling and T. Franosch, “Anomalous transport in the crowded world of
biological cells,” Rep. Prog. Phys. 76, 046602 (2013).
20D. J. Bicout and M. J. Field, “Stochastic dynamics simulations of macromolecu-
lar diffusion in a model of the cytoplasm of Escherichia coli,” J. Phys. Chem. 100,
2489–2497 (1996).
21S. R. McGuffee and A. H. Elcock, “Diffusion, crowding & protein stability in
a dynamic molecular model of the bacterial cytoplasm,” PLoS Comput. Biol. 6,
e1000694 (2010).
22A. Daddi-Moussa-Ider, A. Guckenberger, and S. Gekle, “Particle mobility
between two planar elastic membranes: Brownian motion and membrane defor-
mation,” Phys. Fluids 28, 071903 (2016).
23A. S. Sangani, A. Acrivos, and P. Peyla, “Roles of particle-wall and particle-
particle interactions in highly confined suspensions of spherical particles being
sheared at low Reynolds numbers,” Phys. Fluids 23, 083302 (2011).
24T. Ando and J. Skolnick, “Crowding and hydrodynamic interactions likely
dominate in vivo macromolecular motion,” Proc. Natl. Acad. Sci. U. S. A. 107,
18457–18462 (2010).
25E. Chow and J. Skolnick, “Effects of confinement on models of intracellular
macromolecular dynamics,” Proc. Natl. Acad. Sci. U. S. A. 112, 14846–14851
(2015).
26C. Aponte-Rivera and R. N. Zia, “Simulation of hydrodynamically inter-
acting particles confined by a spherical cavity,” Phys. Rev. Fluids 1, 023301
(2016).
27C. Aponte-Rivera, Y. Su, and R. N. Zia, “Equilibrium structure and diffusion in
concentrated hydrodynamically interacting suspensions confined by a spherical
cavity,” J. Fluid Mech. 836, 413 (2018).
28X. Zhao, J. Li, X. Jiang, D. Karpeev, O. Heinonen, B. Smith, J. P. Hernandez-
Ortiz, and J. J. de Pablo, “Parallel O(N) Stokes’ solver towards scalable Brown-
ian dynamics of hydrodynamically interacting objects in general geometries,” J.
Chem. Phys. 146, 244114 (2017).
29K. L. Kounovsky-Shafer, J. P. Hernandez-Ortiz, K. Potamousis, G. Tsvid,
M. Place, P. Ravindran, K. Jo, S. Zhou, T. Odijk, J. J. De Pablo et al., “Electro-
static confinement and manipulation of DNA molecules for genome analysis,”
Proc. Natl. Acad. Sci. U. S. A. 114, 13400–13405 (2017).
30J. Li, X. Jiang, A. Singh, O. G. Heinonen, J. P. Hernández-Ortiz, and J. J. de
Pablo, “Structure and dynamics of hydrodynamically interacting finite-size Brow-
nian particles in a spherical cavity: Spheres and cylinders,” J. Chem. Phys. (in
press).
31V. K. Kodali, W. Roos, J. P. Spatz, and J. E. Curtis, “Cell-assisted assembly of
colloidal crystallites,” Soft Matter 3, 337–348 (2007).
32P. Kolhar and S. Mitragotri, “Polymer microparticles exhibit size and shape
dependent accumulation around the nucleus after endocytosis,” Adv. Funct.
Mater. 22, 3759–3764 (2012).
33S. B. Savage and C. K. K. Lun, “Particle size segregation in inclined chute flow
of dry cohesionless granular solids,” J. Fluid Mech. 189, 311–335 (1988).
34J. M. N. T. Gray, “Particle segregation in dense granular flows,” Annu. Rev. Fluid
Mech. 50, 407–433 (2018).
35V. Sharma, K. Park, and M. Srinivasarao, “Shape separation of gold
nanorods using centrifugation,” Proc. Natl. Acad. Sci. U. S. A. 106, 4981–4985
(2009).
36R. Caulkin, X. Jia, M. Fairweather, and R. A. Williams, “Geometric aspects of
particle segregation,” Phys. Rev. E 81, 051302 (2010).
37C. Pozrikidis, Boundary Integral and Singularity Methods for Linearized Viscous
Flow (Cambridge University Press, Cambridge, 1992).
38O. Ladyzhenskaya, The Mathematical Theory of Viscous Incompressible Flow
(Gordon and Beach, New York, 1963).
39H. Power and L. C. Wrobel, Boundary Integral Methods in Fluid Mechanics
(Computational Mechanics Publications, Southampton, 1995).
40J. F. Brady and G. Bossis, “Stokesian dynamics,” Annu. Rev. Fluid Mech. 20, 111
(1988).

Phys. Fluids 32, 053307 (2020); doi: 10.1063/5.0002906 32, 053307-11

Published under license by AIP Publishing

https://scitation.org/journal/phf
https://doi.org/10.1146/annurev-fluid-121108-145434
https://doi.org/10.1016/j.cis.2006.05.003
https://doi.org/10.1103/physrevb.54.15762
https://doi.org/10.1103/physrevlett.93.198103
https://doi.org/10.1021/ja503692z
https://doi.org/10.1021/jacs.7b02794
https://doi.org/10.1063/1.5040110
https://doi.org/10.1002/admi.201800658
https://doi.org/10.1002/bip.1981.360201006
https://doi.org/10.1016/0092-8674(82)90231-8
https://doi.org/10.1128/jb.01982-05
https://doi.org/10.1016/s0968-0004(01)01938-7
https://doi.org/10.1016/s0968-0004(01)01938-7
https://doi.org/10.1016/s0959-440x(00)00172-x
https://doi.org/10.1021/acs.jpclett.9b00345
https://doi.org/10.1088/1478-3975/6/2/025015
https://doi.org/10.1529/biophysj.104.044263
https://doi.org/10.1088/0034-4885/76/4/046602
https://doi.org/10.1021/jp9525191
https://doi.org/10.1371/journal.pcbi.1000694
https://doi.org/10.1063/1.4955013
https://doi.org/10.1063/1.3613972
https://doi.org/10.1073/pnas.1011354107
https://doi.org/10.1073/pnas.1514757112
https://doi.org/10.1103/physrevfluids.1.023301
https://doi.org/10.1017/jfm.2017.801
https://doi.org/10.1063/1.4989545
https://doi.org/10.1063/1.4989545
https://doi.org/10.1073/pnas.1711069114
https://doi.org/10.1063/1.5139431
https://doi.org/10.1039/b611022n
https://doi.org/10.1002/adfm.201102918
https://doi.org/10.1002/adfm.201102918
https://doi.org/10.1017/s002211208800103x
https://doi.org/10.1146/annurev-fluid-122316-045201
https://doi.org/10.1146/annurev-fluid-122316-045201
https://doi.org/10.1073/pnas.0800599106
https://doi.org/10.1103/physreve.81.051302
https://doi.org/10.1146/annurev.fl.20.010188.000551


Physics of Fluids ARTICLE scitation.org/journal/phf

41A. Sierou and J. F. Brady, “Accelerated Stokesian dynamics simulations,” J. Fluid
Mech. 448, 115–146 (2001).
42J. W. Swan and J. F. Brady, “Particle motion between parallel walls: Hydrody-
namics and simulation,” Phys. Fluids 22, 103301 (2010).
43M. Wang and J. F. Brady, “Spectral Ewald acceleration of Stokesian dynamics
for polydisperse suspensions,” J. Comput. Phys. 306, 443–477 (2016).
44A. M. Fiore, F. Balboa Usabiaga, A. Donev, and J. W. Swan, “Rapid sampling of
stochastic displacements in Brownian dynamics simulations,” J. Chem. Phys. 146,
124116 (2017).
45A. K. Townsend and H. J. Wilson, “Anomalous effect of turning off long-range
mobility interactions in Stokesian dynamics,” Phys. Fluids 30, 077103 (2018).
46A. M. Fiore and J. W. Swan, “Fast Stokesian dynamics,” J. Fluid Mech. 878,
544–597 (2019).
47T. A. Osswald and J. P. Hernández-Ortiz, Polymer Processing: Modeling and
Simulation (Carl Hanser-Verlag, Munich, 2006).
48R. Cortez, “The method of regularized Stokeslets,” SIAM J. Sci. Comput. 23,
1204 (2001).
49A. Kumar and M. D. Graham, “Accelerated boundary integral method for
multiphase flow in non-periodic geometries,” J. Comput. Phys. 231, 6682–6713
(2012).
50C. S. Peskin, “The immersed boundary method,” Acta Numerica 11, 479–517
(2002).
51P. J. Atzberger, P. R. Kramer, and C. S. Peskin, “A stochastic immersed bound-
ary method for fluid-structure dynamics at microscopic length scales,” J. Comput.
Phys. 224, 1255–1292 (2007).
52B. Kallemov, A. Bhalla, B. Griffith, and A. Donev, “An immersed bound-
ary method for rigid bodies,” Commun. Appl. Math. Comput. Sci. 11, 79–141
(2016).
53B. Sprinkle, A. Donev, A. P. S. Bhalla, and N. Patankar, “Brownian dynamics of
fully confined suspensions of rigid particles without Green’s functions,” J. Chem.
Phys. 150, 164116 (2019).
54H. Risken, The Fokker-Planck Equation, 2nd ed. (Springer-Verlag, Berlin, Hei-
delberg, 1989).
55H. C. Öttinger, Stochastic Processes in Polymeric Fluids (Springer-Verlag, Berlin,
Heidelberg, 1996).
56J. P. Hernández-Ortiz, J. J. de Pablo, and M. D. Graham, “Fast computa-
tion of many-particle hydrodynamic and electrostatic interactions in a confined
geometry,” Phys. Rev. Lett. 98, 140602 (2007).
57M. Fixman, “Implicit algorithm for Brownian dynamics of polymers,” Macro-
molecules 19, 1195–1204 (1986).

58P. Pranay, S. G. Anekal, J. P. Hernandez-Ortiz, and M. D. Graham, “Pair colli-
sions of fluid-filled elastic capsules in shear flow: Effects of membrane properties
and polymer additives,” Phys. Fluids 22, 123103 (2010).
59P. A. Lebwohl and G. Lasher, “Nematic-liquid-crystal order—A Monte Carlo
calculation,” Phys. Rev. A 6, 426 (1972).
60J. A. Martínez-González, X. Li, M. Sadati, Y. Zhou, R. Zhang, P. F. Nealey, and
J. J. de Pablo, “Directed self-assembly of liquid crystalline blue-phases into ideal
single-crystals,” Nat. Commun. 8, 15854 (2017).
61M. D. Carbajal-Tinoco, R. Lopez-Fernandez, and J. L. Arauz-Lara, “Asymmetry
in colloidal diffusion near a rigid wall,” Phys. Rev. Lett. 99, 138303 (2007).
62H. B. Eral, J. M. Oh, D. Van Den Ende, F. Mugele, and M. H. G. Duits,
“Anisotropic and hindered diffusion of colloidal particles in a closed cylinder,”
Langmuir 26, 16722–16729 (2010).
63A. E. Cervantes-Martínez, A. Ramírez-Saito, R. Armenta-Calderón, M. A.
Ojeda-López, and J. L. Arauz-Lara, “Colloidal diffusion inside a spherical cell,”
Phys. Rev. E 83, 030402 (2011).
64G. L. Hunter, K. V. Edmond, and E. R. Weeks, “Boundary mobility controls
glassiness in confined colloidal liquids,” Phys. Rev. Lett. 112, 218302 (2014).
65W. Wang and P. Huang, “Anisotropic mobility of particles near the interface of
two immiscible liquids,” Phys. Fluids 26, 092003 (2014).
66G. Nägele, “On the dynamics and structure of charge-stabilized suspensions,”
Phys. Rep. 272, 215–372 (1996).
67J. Balbo, P. Mereghetti, D.-P. Herten, and R. C. Wade, “The shape of protein
crowders is a major determinant of protein diffusion,” Biophys. J. 104, 1576–1584
(2013).
68E. Guazzelli and J. F. Morris, A Physical Introduction to Suspension Dynamics
(Cambridge University Press, 2011), Vol. 45.
69J. Mewis and N. J. Wagner, Colloidal Suspension Rheology (Cambridge Univer-
sity Press, 2012).
70R. I. Tanner, “Review article: Aspects of non-colloidal suspension rheology,”
Phys. Fluids 30, 101301 (2018).
71A. Singh, R. Mari, M. M. Denn, and J. F. Morris, “A constitutive model for
simple shear of dense frictional suspensions,” J. Rheol. 62, 457–468 (2018).
72A. Singh, S. Pednekar, J. Chun, M. M. Denn, and J. F. Morris, “From yielding to
shear jamming in a cohesive frictional suspension,” Phys. Rev. Lett. 122, 098004
(2019).
73V. Sivadasan, E. Lorenz, A. G. Hoekstra, and D. Bonn, “Shear thickening of
dense suspensions: The role of friction,” Phys. Fluids 31, 103103 (2019).
74N. M. James, H. Xue, M. Goyal, and H. M. Jaeger, “Controlling shear jamming in
dense suspensions via the particle aspect ratio,” Soft Matter 15, 3649–3654 (2019).

Phys. Fluids 32, 053307 (2020); doi: 10.1063/5.0002906 32, 053307-12

Published under license by AIP Publishing

https://scitation.org/journal/phf
https://doi.org/10.1017/s0022112001005912
https://doi.org/10.1017/s0022112001005912
https://doi.org/10.1063/1.3487748
https://doi.org/10.1016/j.jcp.2015.11.042
https://doi.org/10.1063/1.4978242
https://doi.org/10.1063/1.5031860
https://doi.org/10.1017/jfm.2019.640
https://doi.org/10.1137/s106482750038146x
https://doi.org/10.1016/j.jcp.2012.05.035
https://doi.org/10.1017/s0962492902000077
https://doi.org/10.1016/j.jcp.2006.11.015
https://doi.org/10.1016/j.jcp.2006.11.015
https://doi.org/10.2140/camcos.2016.11.79
https://doi.org/10.1063/1.5090114
https://doi.org/10.1063/1.5090114
https://doi.org/10.1103/physrevlett.98.140602
https://doi.org/10.1021/ma00158a042
https://doi.org/10.1021/ma00158a042
https://doi.org/10.1063/1.3524531
https://doi.org/10.1103/physreva.6.426
https://doi.org/10.1038/ncomms15854
https://doi.org/10.1103/physrevlett.99.138303
https://doi.org/10.1021/la102273n
https://doi.org/10.1103/physreve.83.030402
https://doi.org/10.1103/physrevlett.112.218302
https://doi.org/10.1063/1.4895737
https://doi.org/10.1016/0370-1573(95)00078-x
https://doi.org/10.1016/j.bpj.2013.02.041
https://doi.org/10.1063/1.5047535
https://doi.org/10.1122/1.4999237
https://doi.org/10.1103/physrevlett.122.098004
https://doi.org/10.1063/1.5121536
https://doi.org/10.1039/c9sm00335e

