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ABSTRACT
Direct numerical simulation (DNS) of turbulent flow in a concentric annular pipe was performed using a pseudo-spectral method computer
code. In order to study the effects of computational domain size on the turbulence statistics, 12 test cases of different domain sizes are
compared. The characteristics of the velocity field are examined at two different Reynolds numbers. It is observed that the predictive accuracy
of the first- and second-order statistics is sensitive to the axial and azimuthal domain sizes. It is also found that the scales and dynamics
of turbulence structures vary with the surface curvature of the concave and convex walls. The characteristic length scales of the turbulence
structures are identified through a spectral analysis, and it is observed that a minimum computational domain is required in order to accurately
capture the near-wall streaky and hairpin structures of a concentric annular pipe flow using DNS.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0003436., s

I. INTRODUCTION

Fully developed turbulent concentric annular pipe flow driven
by an axial pressure gradient is an intriguing topic with important
applications in mechanical engineering. For instance, the physical
processes related to the bypass air over a combustion chamber in a
jet engine, removal of cutting material between a drill shaft and a
well casing, and convection in a double-pipe heat exchanger are all
dominated by turbulent flow through an annular passage. Owing to
the difference in the transverse curvature of the inner and outer pipe
walls, the spatial and temporal scales of turbulence are different near
these two walls of a concentric annular pipe. This further results in
an asymmetry in the velocity profile and difference in the scales of
streaks and hairpin structures near the inner and outer cylinder sur-
faces. Thus, the flow physics in a concentric annular pipe are more
complex than that of a round pipe or plane-channel flow. Further-
more, the case of concentric annular pipe flow is general because
both plane-channel and round pipe flows are special cases of concen-
tric annular pipe flows under the condition of Ri/Ro → 1 and Ri/Ro

→ 0, respectively. Here, Ri and Ro (with 0 ≤ Ri ≤ Ro) are the radii of
the inner and outer pipes, respectively. The current research focuses
on Poiseuille-type turbulent concentric annular pipe flow driven by
a constant axial pressure gradient, which is different from the classi-
cal Taylor–Couette flow driven by wall shear due to relative rotation
of the inner and outer cylinder surfaces.1–3

Thus far, previous experimental and numerical studies of
Poiseuille-type concentric annular pipe flow have primarily focused
on the characteristics of the first- and second-order flow statistics
(such as the locations corresponding to the maximum mean veloc-
ity and the zero mean Reynolds shear stress studied by Knudsen
and Katz,4 Brighton and Jones,5 Rehme,6 Nouri et al.,7 and Chung
et al.8). In the current literature, there has been a disagreement on
whether the radial position corresponding to the maximum velocity
collocates with that of the zero mean shear stress. The experiments
of Knudsen and Katz4 and Brighton and Jones5 on concentric annu-
lar pipe water flows indicated that the maximum velocity and the
zero mean shear stress coincide. However, Rehme6 reported that
the radial position of the zero mean shear stress is closer to the
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inner wall than that of the maximum velocity based on their mea-
surements of annular concentric pipe airflows using a double Pitot
tube and hot-wire anemometry. Nouri et al.7 conducted compre-
hensive laser-Doppler velocimetry (LDV) measurements of the flow
fields in both concentric and eccentric annuli for both Newtonian
and non-Newtonian fluids. They showed that the radial positions
of the maximum velocity and zero shear stress are not collocated.
This contradiction is also seen among numerical simulations. Chung
et al.8 performed direct numerical simulation (DNS) of a concen-
tric pipe flow at Reynolds number ReDh = UbDh/ν = 8900, similar
to the experimental conditions of Nouri et al.,7 and later, Chung
and Sung9 extended their DNS study to also include turbulent heat
transfer under a constant wall heat flux ratio. Here, Ub represents
the bulk mean velocity, Dh is the hydraulic diameter, and ν is the
kinematic viscosity of the fluid. The DNS result of Chung et al.8

indicated that the deviation in the radial positions of the maximum
mean axial velocity and zero shear stress is less than 1%. However,
a more recent DNS study of Boersma and Breugem10 (conducted
under conditions of Ri/Ro = 0.1 and ReDh = 8900–13 940) further
showed the collocation of these two positions. As the first objective
of this research, we aim at clearing the inconsistency of literature on
this issue by proving analytically that the radial positions of the max-
imum velocity and zero shear stress are, in fact, strictly collocated,
and we will also validate our analytical result using the DNS data
compiled.

Over the past three decades, various DNS studies were per-
formed to understand circular pipe flows and structures, which fea-
ture two-dimensional (2D) statistical homogeneity over an axial-
azimuthal cylindrical surface. In the homogeneous directions, typ-
ically, periodical boundary conditions are implemented. The min-
imum computational domain size over which a periodic boundary
condition can be used for conducting DNS with sufficient predictive
accuracy is a critical issue. In their pioneering DNS study of the min-
imum computational domain for near-wall turbulence, Jiménez and
Moin11 revealed that the prediction of turbulence statistics would
not be accurate if the size of the computational domain is smaller
than that of the so-called “minimal channel.” Chin et al.12 performed
DNS to investigate the influence of computational domain size on
the first- and second-order turbulence statistics and axial velocity
spectrum of turbulent circular pipe flows. They applied periodic
boundary conditions to the axial and azimuthal directions for a wide
range of pipe lengths for Lz = πR–20πR, where R is the radius of
the circular pipe. In their DNS study of a turbulent plane Couette
flow, Avsarkison et al.13 kept a computational domain length at Lz
= 20πδ to ensure capture of streamwise-elongated flow structures.
Here, δ is one-half the plane channel height. Very recently, Yang
and Wang14 conducted a DNS study of streamwise rotating turbu-
lent channel flow at a low Reynolds number of Reτ = uτδ/ν = 180 in
conjunction with a wide range of rotation numbers. They discovered
that the wavelength of the streamwise-elongated Taylor–Görtler-like
(TG-like) structures increases significantly with the rotation num-
ber. At their highest rotation number tested, an extremely long
domain of Lz = 512πδ was used in order to correctly capture TG-like
vortices.

Although there are many DNS investigations into the effects
of computational domain size on the predictive accuracy of chan-
nel and pipe flows (see, for example, the work of Jiménez and
Moin11 and Chin et al.12), the number of systematic studies on

the proper computational domain size for transient simulation of
turbulent concentric annular pipe flow is still very limited in the
current literature. In the DNS studies of Chung et al.8 and Boersma
and Breugem,10 the concentric pipe length was set to Lz = 6πδ and
10Ro, respectively, based on an analysis of the two-point correla-
tion coefficient of axial velocity fluctuations. Here, δ is one-half the
cylinder gap, i.e., δ = (Ro − Ri)/2, defined in analogy to the usual
convention for a plane-channel flow (in which one-half the chan-
nel height between two planes is often used as a basic measurement
length scale). Quadrio and Luchini15 performed DNS study of tur-
bulent concentric annular pipe flow, with the radius ratio kept at
Ri/Ro = 0.33 and 0.5, and the axial pipe length set to Lz = 4πδ. They
examined the first- and second-order flow statistics and studied the
effect of the transverse curvature on the peak value of Reynolds shear
stresses. As the second objective of this research, we aim at conduct-
ing a systematic study of the minimum computational domain for
DNS of concentric pipe flow in both physical and spectral spaces.
We will show evidence that a much longer concentric pipe is needed
in order to obtain accurate DNS results of flow statistics. To this pur-
pose, a comparative study based on different domain sizes in the
axial and azimuthal directions is conducted. The largest computa-
tional domain size (Lz = 30πδ and Lθ = 2π) tested here far exceeds
those reported in the literature. Furthermore, based on the afore-
mentioned investigation of the minimum computational domain
size, highly accurate DNS datasets are compiled and used for study-
ing turbulence statistical moments and coherent structures of the
concentric annular pipe flow, which is the third objective of this
research.

The remainder of this paper is organized as follows: in Sec. II,
the test cases and the numerical algorithm for solving the gov-
erning equations are described. In Sec. III, the DNS results in the
physical space are analyzed, including the first-, second-, third-,
and fourth-order statistical moments of the velocity field, and the
two-point correlation functions of velocity fluctuations. In Sec. IV,
turbulent coherent structures are investigated and their scales are
studied based on calculation of both two-dimensional (2D) and
one-dimensional (1D) energy spectra. The scales of energetic eddies
and the corresponding domain size for capturing them are exam-
ined through analyses conducted in both physical and spectral
spaces. Finally, in Sec. V, major findings of this research are
summarized.

II. TEST CASE AND NUMERICAL ALGORITHM
Figure 1 shows the schematic diagram and coordinate system of

the test case, where z, r, and θ denote the axial, radial, and azimuthal
coordinates, respectively. The velocity components corresponding
to these three directions are represented by uz , ur , and uθ, respec-
tively. In this paper, tensor notations are also used, and these three
velocity components are denoted as u1, u2, and u3, respectively.
The equations that govern an incompressible flow with respect to
a cylindrical coordinate system read

∇ ⋅ u⃗ = 0, (1)

∂u⃗
∂t

+ u⃗ ⋅ ∇u⃗ = −1
ρ
∇p + ν∇2u⃗ − Π

ρ
êz , (2)
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FIG. 1. Computational domain and coordinate system.

where p, ρ, and ν denote the pressure, density, and kinematic viscos-
ity, respectively. Π is the constant mean axial pressure gradient that
drives the flow, and êz is the base unit vector of the z-direction, with
∣ êz ∣ ≡ 1.

Table I summarizes the computational domain sizes and grid
resolutions for the 14 test cases of two nominal Reynolds numbers of
ReDh = 8900 and 17 700. In order to facilitate our comparative study
of the domain size effect on the predictive accuracy of flow statistics
and coherent structures, the radius ratio is kept at Ri/Ro = 0.5 for all
14 test cases. This radius ratio and lower nominal Reynolds num-
ber (ReDh = 8900) considered here are identical to those used in the
work of Chung et al.8 and Nouri et al.7 The test cases are categorized
and labeled using four initial letters: A, B, C, and D. Six different
axial domain sizes with a full cross-sectional domain (referred to as

the A-series test cases) are compared to examine the influence of
axial computational domain size on the predictive accuracy of tur-
bulent statistics in both physical and spectral spaces. In these six test
cases, the axial domain size varies from Lz = πδ to 30πδ, while the
azimuthal domain size is fixed to Lθ = 2π. The reason that a full
azimuthal domain size is used in the A-series test cases is that this
can completely shield off the effect of the azimuthal domain size
on the flow statistics. The next group is the five B-series test cases,
which examine the influence of azimuthal domain size Lθ on turbu-
lent statistics. Five different azimuthal domain sizes ranging from Lθ
= π/6 to 2π are compared. For the five B-series test cases, the axial
domain size is fixed at Lz = 12πδ based on the conclusion obtained
from the above comparative study of the A-series test cases. Case A4
(of A-series) is also case B5 (of B-series). For the purpose of compar-
ison and code validation, the computational domain size of Chung
et al.8 is also considered, which leads to the C-series test cases. In
Table I, our DNS run with a finer radial grid resolution is labeled as
case C and that of Chung et al.8 is referred to as case Ca. In order to
study the Reynolds number effect on the statistical moments of the
velocity field, a higher nominal Reynolds number of ReDh = 17 700 is
also considered, which is referred to as case D.

An in-house computer code developed based on the pseudo-
spectral method was used for performing DNS, which was written
using the FORTRAN 90/95 programming language. Message pass-
ing interface (MPI) libraries were employed to parallelize the com-
puting processes. The advection terms were treated explicitly with
a third-order temporal accuracy, whereas the pressure and diffu-
sion terms were treated implicitly. The continuity constraint was
enforced strictly at every stage of the iterative process by using the
pressure-correction method. The viscous forces were decoupled by
changing variables following Blackburn and Sherwin16. In order to
expand the velocity and pressure fields, Fourier series were applied
to the axial and azimuthal directions and Lagrange polynomials were
used in the wall-normal direction. Aliasing errors were removed by
using the 3/2 rule. Periodic boundary conditions were applied to the
axial and azimuthal directions, and the no-slip boundary condition
was imposed on all solid surfaces. Equally spaced grid points were

TABLE I. Summary of test cases and grid resolutions. The nominal Reynolds number is ReDh = 8900 for the A-, B-, and C-series test cases and is ReDh = 17 700 for case D.

Cases Lz × Lθ × Lr Nz × Nθ × Nr Δz+ (RiΔθ)+ (RoΔθ)+ Δr+
min Δr+

max

A1 πδ × 2π × 2δ 36 × 512 × 64 12.819 3.607 7.214 0.180 7.376
A2 2πδ × 2π × 2δ 64 × 512 × 64 14.528 3.634 7.267 0.182 7.431
A3 6πδ × 2π × 2δ 192 × 512 × 64 14.422 3.607 7.215 0.180 7.377
A4 (B5) 12πδ × 2π × 2δ 384 × 512 × 64 14.390 3.599 7.198 0.180 7.360
A5 18πδ × 2π × 2δ 580 × 512 × 64 14.361 3.617 7.234 0.181 7.396
A6 30πδ × 2π × 2δ 960 × 512 × 64 14.461 3.617 7.234 0.181 7.396
B1 12πδ × π/6 × 2δ 384 × 42 × 64 14.679 3.730 7.459 0.184 7.508
B2 12πδ × π/4 × 2δ 384 × 64 × 64 14.489 3.624 7.248 0.181 7.411
B3 12πδ × π/2 × 2δ 384 × 128 × 64 14.475 3.621 7.241 0.181 7.404
B4 12πδ × 3π/4 × 2δ 384 × 192 × 64 14.431 3.609 7.219 0.181 7.381
C 6πδ × π/2 × 2δ 192 × 128 × 64 14.422 3.607 7.215 0.180 7.377
Ca (Chung et al.) 6πδ × π/2 × 2δ 192 × 128 × 65 14.30 3.62 7.11 0.12 12.96
D 8πδ × π/2 × 2δ 500 × 280 × 144 13.878 3.099 6.199 0.069 6.100
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FIG. 2. Cross-sectional view of the mesh for case B4.

used in both axial and azimuthal directions, and Chebyshev–Gauss–
Lobatto points were used in the radial direction for improving the
spatial resolution near the wall. As shown in Table I, in all our 12
test cases of A, B, and C series, the axial grid resolution ranges from
Δz+ = 12.819 for case A1 to 14.679 for case B1 and the azimuthal
grid resolutions range from (RiΔθ)+ = 3.599 for case A4 (or B5) to
(RoΔθ)+ = 7.459 for case B1. From Table I, it is clear that the axial
and azimuthal grid resolutions are close to those used in the work of
Chung et al.8 The grid resolution of case D is slightly finer than those
of the other test cases in general. As an example for showing the grid
system, Fig. 2 provides a cross-sectional view of the mesh used for
performing DNS of case B4. The finest radial grid resolution for the
first node off the wall ranges from Δr+

min = 0.180 to 0.184, which is
slightly larger than that used in the work of Chung et al.8 but satisfies
the need for performing rigorous DNS of wall-bounded turbulence.
More importantly, the maximum radial grid resolution in our DNS
is restricted to Δr+

max = 7.376–7.508, which is much finer than that
(Δr+

max = 12.96) used in the work of Chung et al.8 In Table I, the wall
unit is defined based on the kinematic viscosity ν of the fluid and
averaged wall friction velocity uτ =

√
τw/ρ, where τw is the mean

wall shear stress based on weighted averaging over the concave and
convex walls, i.e.,

τw =
Riτwi + Roτwo

Ri + Ro
. (3)

The grid resolutions listed in Table I are calculated based on
the averaged wall friction velocity uτ . The wall frictional velocity can
also be defined locally as uτi =

√
τwi/ρ and uτo =

√
τwo/ρ, with

τwi = ρν(d⟨uz⟩/dr)r=Ri and τwo = −ρν(d⟨uz⟩/dr)r=Ro at the inner
and outer cylinder walls, respectively. The values of uτi and uτo are
different due to the surface curvature of the inner and outer cylin-
ders. The ratio between these two wall friction velocities is uτi/uτo
= 1.0596 under the test conditions. In this paper, unless otherwise
noted, we use the local wall friction velocities uτi and uτo in the
non-dimensionalization of various quantities.

In our analysis, an instantaneous flow variable (for example,
uz) is decomposed into an averaged and a fluctuating component,

i.e., uz = ⟨uz⟩ + u′z , where a pair of angular brackets ⟨⋅⟩ represent
temporal and spatial averaging over the homogeneous directions.
Specifically, the spatial averaging is performed over a z-θ cylindri-
cal surface at an arbitrary radial position r, and temporal averaging
was performed over 35 large-eddy turnover times (LETOTs). Here,
one LETOT is defined as δ/uτ , which is a measure of the required
time for large-scale structures with scale of δ to be uncorrelated.
According to Adrian,18 the length scale of large-scale motions (or
“turbulent bulges”) is approximately 2–3δ in a wall-bounded flow.
Thus, an extended duration of 35 LETOTS facilitates the evolution
of large-scale structures and achieving good convergence in the cal-
culation of the statistics of the velocity field. The computational
time step was kept at 0.001δ/Ub to keep the Courant–Friedrichs–
Lewy (CFL) number less than 0.8. All computations were performed
on the WestGrid (Western Canada Research Grid) supercomput-
ers. Furthermore, spectral accuracy was also ensured during the
computation of flow statistics.

Table II lists the mean flow parameters calculated from DNS
for different test cases. Here, Reynolds numbers Reτi = uτiδti/ν and
Reτo = uτoδto/ν are defined based on the wall friction velocities (uτi
and uτo) and boundary layer thicknesses (δti and δto) over the inner
and outer cylinder walls, respectively. The boundary layer thick-
ness, δt , is the wall-normal distance across a boundary layer from
either the inner or the outer wall to the point where the mean axial
velocity reaches its maximum (correspondingly, the Reynolds shear
stress is zero). The exact wall-normal position of this point will be
investigated separately in Sec. III B. The numerical simulations were
set up under the condition of a constant mean streamwise pressure
gradient, which can be determined as

Π = −2(τwiRi + τwoRo)
(R2

o − R2
i )

. (4)

In the above equation, the values of τwi and τwo can be further
determined based on the values of the skin friction coefficients (Cfi
and Cfo) at the inner and the outer cylinder walls, respectively. Two
nominal Reynolds numbers are tested, i.e., ReDh = 8900 and 17 700.
In order to set up the numerical simulation, we used the skin fric-
tion coefficient values given in the DNS study of Chung et al.8

TABLE II. Mean flow parameters calculated from DNS.

Cases δti/δ δto/δ Reτi Reτo ReDh

A1 0.867 1.133 130.91 164.24 8 944
A2 0.887 1.113 136.86 161.29 8 953
A3 0.880 1.120 134.14 161.55 8 926
A4 (B5) 0.877 1.123 133.12 161.79 8 935
A5 0.880 1.120 134.30 162.15 8 926
A6 0.881 1.119 134.69 161.82 8 917
B1 0.893 1.107 139.77 161.75 9 042
B2 0.878 1.122 134.25 162.71 8 962
B3 0.877 1.123 133.89 162.75 8 944
B4 0.879 1.121 133.82 161.98 8 944
C 0.880 1.120 134.14 161.55 8 935
D 0.882 1.118 253.02 302.87 17 770
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for the lower Reynolds number case of ReDh = 8900, which is Cfi
= 0.009 41 and Cfo = 0.008 49 at the inner and outer cylinder walls,
respectively. From Eq. (4), it is straightforward that the value of the
mean streamwise pressure gradient can be alternatively determined
as Π = −Cf ρU2

b/(Ro − Ri), based on the averaged friction coeffi-
cient defined as Cf = CfiRi/(Ri + Ro) + CfoRo/(Ri + Ro). The value of
Cf can be determined from the empirical equation given by Nouri
et al.,7 i.e., Cf = 0.36(ReDh)−0.39. We used this method to set up
the numerical simulation for the higher Reynolds number case of
ReDh = 17 700. Test runs were conducted, and minor adjustments to
the value of Π were made to ensure that the value of ReDh calculated
from DNS converges to its nominal value within a reasonable range
of error tolerance. As is clear in Table II, the values of ReDh calcu-
lated from DNS of cases of relatively large domains (such as cases
A3–A6, B3, B4, C, and D) are satisfactory, which have a very small
error of less than 0.4% in comparison with the nominal Reynolds
values (of ReDh = 8900 and 17 700). However, the values of ReDh

calculated from DNS of cases of small domain sizes (such as cases
A1, A2, B1, and B2) are less satisfactory. The values of ReDh and
Ub calculated from the DNS are determined by the mean velocity
field, and the influence of domain size on the predictive accuracy of
DNS on the mean velocity field will be examined systematically in
Sec. III.

III. TURBULENCE STATISTICS IN PHYSICAL SPACE
A. Mean velocity

Figure 3(a) compares the mean velocity profiles of A-, B-, C-,
and D-series test cases along with the DNS data of Chung et al.8

under the testing conditions of two nominal Reynolds numbers of
ReDh = 8900 and 17 700. To facilitate a fair comparison between the
convex and concave sides, the mean axial velocity is plotted in the
“global coordinate” (non-dimensionalized by one-half the cylinder
gap δ), i.e., (r − R)/δ, and scaled based on the mean friction veloc-
ity uτ . The distributions of the mean axial velocity are asymmetric
in the radial direction, which is a distinctive feature of a concentric
annular pipe flow. As is evident in Fig. 3(a), for the lower nominal
Reynolds number cases, the velocity profiles collapse well for cases
A2–A6 and B2–B4. An excellent agreement between the results of
case C and the reference data of case Ca is observed, which con-
firms the predictive accuracy of the computer code in terms of the

generation of reliable DNS data of the mean velocity of the con-
centric turbulent annular pipe flow. However, from Fig. 3(a), it is
seen that the value of the mean axial velocity ⟨uz⟩+ is slightly over-
predicted by about 2.7% in case A1 and slightly underpredicted by
1.3% in case B1, respectively. As shown in Table I, case A1 has the
smallest axial domain size (which is Lz = πδ) and case B1 has the
smallest azimuthal domain size (which is Lθ = π/6). This indicates
that if we solely focus on the mean velocity profiles and accept an
arbitrary error tolerance up to 3%, it would be very tempting to con-
clude that the axial and azimuthal domain sizes Lz = πδ and Lθ = π/6
are sufficient for conducting DNS of the current concentric annu-
lar pipe flow. In other words, the criterion based on the predictive
accuracy of the first-order statistical moment of the velocity field can
be very tolerant, and literally, all 12 test cases of the lower nominal
Reynolds number can well predict the value of ⟨uz⟩+. However, in
the sections to be followed, it will be shown that this conclusion
is, in fact, incorrect with respect to the prediction of the second-
order statistical moments and spectral analysis of the velocity
field.

It should be indicated that the above observations were made
by investigating the effects of the axial and azimuthal domain sizes
independently through A- and B-series test cases. The reason that
case A1 fails is that its domain size Lz = πδ is too small to capture
the characteristic axial length scales of flow structures, and simi-
larly, case B1 fails because its azimuthal domain size is too small
to capture the characteristic azimuthal length scales of flow struc-
tures. Therefore, the performance of a combined case of πδ × π/6
× 2δ is expected to be even worse as it is too small to capture flow
structures in both axial and azimuthal directions. Later in Sec. IV,
concrete evidence will be provided to support this physical analysis.
We will explain rigorously why these two small axial and azimuthal
domain sizes (Lz = πδ and Lθ = π/6) fail to capture the characteristic
wavelengths of the most energetic eddies, either independently or in
combination, through analyses of 1D and 2D premultiplied spectra
of turbulence.

Figure 3(b) compares the profiles of the mean axial velocity on
the convex and concave sides of cases A6 and D for two different
nominal Reynolds numbers of ReDh = 8900 and 17 700. Among the
12 A-, B-, and C-series test cases for the lower nominal Reynolds
number, case A has the longest axial domain size of Lz = 30πδ and
a full azimuthal domain size of Lθ = 2π. As such, the influence of
the axial domain size on the numerical results is the minimum, and

FIG. 3. Profiles of the mean axial veloc-
ity ⟨uz⟩

+. (a) In global coordinate for A-,
B-, C-, and D-series test cases and (b)
in wall coordinate for cases A6 and D. To
facilitate the comparison of cases of the
lower nominal Reynolds number, their
profiles are partially enlarged and shown
in an inset graph in (a).
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the influence from the azimuthal domain size is completely shielded
off. The exceptionally large computational domain of case A6 is also
the largest in the current literature for concentric annular pipe flows,
which is five times that used by Chung et al.8 under a similar testing
condition. The DNS result of the velocity field is the most accurate
in case A6, and here, we use this test case to demonstrate the trans-
verse curvature effect on the wall scaling of the mean axial velocity
profile. To this purpose, the mean axial velocity and wall coordi-
nates are scaled based on the local friction velocities of the convex
(uτi) and concave (uτo) walls in Fig. 3(b). The profile of the stan-
dard law-of-the-wall based on von Kármán’s two-layer model for a
zero-pressure-gradient (ZPG) boundary layer over a flat plate is also
displayed for the purpose of comparison.

From Fig. 3(a), it is observed that as the nominal Reynolds
number increases from ReDh = 8900 to 17 700, the magnitude of
⟨uz⟩+ increases slightly when they are displayed in the global coordi-
nate (r − R)/δ. However, the profiles of ⟨uz⟩+ of these two Reynolds
numbers collapse once they are plotted in wall coordinate r+ in
Fig. 3(b). Apparently, the velocity magnitudes on both concave and
convex sides of the concentric pipe are slightly larger than that pre-
scribed by the classical log-law for a ZPG boundary layer over a
flat plate, ⟨uz⟩+ = 2.44 ln(r+) + 5.0. Furthermore, through a linear
regression analysis, it is observed that the velocity profiles at two
Reynolds numbers collapse well on a log-law of ⟨uz⟩+ = 2.65 ln(r+)
+ 4.5. Owing to the curvature difference between the two cylinder
surfaces, the mean velocity profile of concentric annular pipe flow
is asymmetrical in the radial direction [Fig. 3(a)], which leads to
differences in the velocity profiles plotted in the wall coordinates
measured from the convex and concave walls in Fig. 3(b). From

Fig. 3(b), it is clear that the differences are the most apparent in the
channel center. This is because not only the values of uτi and uτo are
different (with uτi/uτo = 1.057), but also the peak position of ⟨uz⟩+
deviates from the domain center of (r − R)/δ = 0. Specifically, from
Fig. 3(a) and Table II, it is observed that the profile of ⟨uz⟩+ peaks at
(r − R)/δ = −0.119. In the following, the mechanism underlying the
shift of the peak position of ⟨uz⟩+ toward the inner cylinder wall will
be further analyzed from the point of view of the balance of viscous
and turbulent shear stresses.

B. Reynolds stresses
Figures 4 and 5 show the profiles of all four non-trivial

Reynolds stresses at two nominal Reynolds numbers of ReDh = 8900
and 17 700 (including the reference case Ca) in the global coordi-
nate. In order to facilitate a clear comparison of all 14 test cases
under the influences of different axial and azimuthal domain sizes
and Reynolds numbers, the results of A-series test cases are com-
pared with those of C- and D-series test cases in Fig. 4, while those
of B-series test cases are compared with those of C- and D-series test
cases in Fig. 5. All Reynolds stresses have been non-dimensionalized
by the mean wall friction velocity (uτ). From Figs. 4 and 5, it is
apparent that the profiles of all Reynolds normal and shear com-
ponents are asymmetrical in the radial direction at both Reynolds
numbers. By comparing the results of cases C and Ca, it is evident
that in either Fig. 4 or Fig. 5, the profiles of Reynolds normal and
shear stresses obtained in the current DNS agree well with those of
Chung et al.8 In Fig. 4, the Reynolds stress profiles of the A-series test
cases collapse, except for cases A1 and A2. As is shown in Fig. 4(a),

FIG. 4. Profiles of Reynolds stresses
⟨u′i u′j ⟩

+ predicted based on various
computational domain sizes of the A-
series test cases in comparison with
those of the C- and D-series test cases:
(a) ⟨u′zu′z⟩+, (b) ⟨u′θu′θ⟩

+, (c) ⟨u′ru′r⟩+,
and (d) ⟨u′zu′r⟩+.
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FIG. 5. Profiles of Reynolds stresses
⟨u′i u′j ⟩

+ predicted based on various
computational domain sizes of the B-
series test cases in comparison with
those of the C- and D-series test cases:
(a) ⟨u′zu′z⟩+, (b) ⟨u′θu′θ⟩

+, (c) ⟨u′ru′r⟩+,
and (d) ⟨u′zu′r⟩+.

the magnitudes of the axial Reynolds normal stress of cases A1 and
A2 are over-predicted in the near-wall region on both sides of the
concentric annular pipe. Meanwhile, Fig. 4(b) shows that in cases
A1 and A2, not only the value of ⟨u′θu′θ⟩+ is underpredicted, but also
the locations of the near-wall peaks on both sides of the concentric
annular pipe are incorrectly predicted, which shift toward the center
of the channel. In view of this, it concluded that in order to correctly
predict the Reynolds stress level, the minimal axial computational
domain size must be kept at Lz = 6πδ (or approximately, L+

z = 2800).
The influence of azimuthal computational domain size on the pre-
dictive accuracy of Reynolds stresses can be identified by comparing
the DNS results of the five B-series cases with those of cases C and
Ca at a lower nominal Reynolds number of ReDh = 8900 in Fig. 5.
From Fig. 5(a), it is observed that the prediction of the profile of
⟨u′zu′z⟩+ is satisfactory, which is in an excellent agreement with the
results of cases C and Ca in all five B-series cases. However, as is clear
from Figs. 5(b) and 5(c), the values of ⟨u′θu′θ⟩+ and ⟨u′ru′r⟩+ of case B1
are underpredicted on the convex side and in the central region of
the concentric annular passage. Clearly, based on the prediction of
Reynolds stresses, the minimal azimuthal computational size must
be stretched from Lθ = π/6 (which is the previous conclusion based
on the prediction of the mean axial velocity profiles shown in Fig. 3)
to Lθ = π/4.

From Figs. 4 and 5, it is seen that the Reynolds number has
a significant influence on the predicted value of Reynolds stresses.
Clearly, as the nominal Reynolds number increases from ReDh

= 8900 to 17 700, the magnitudes of ⟨u′θu′θ⟩+ and ⟨u′ru′r⟩+ vary signif-
icantly. By contrast, those of ⟨u′zu′z⟩+ and ⟨u′zu′r⟩+ are less sensitive.

Furthermore, it is interesting to observe from both Figs. 4(d) and
5(d) that the Reynolds shear stress ⟨u′zu′r⟩+ is the least sensitive to
the axial and azimuthal computational domain sizes. A further study
of the transport equation of the mean axial velocity facilitates a bet-
ter understanding of this invariant behavior of the Reynolds shear
stress. Considering that the flow is statistically stationary and homo-
geneous in the r–θ cylindrical surface, the following equation that
expresses the viscous and turbulent shear stresses can be derived
from Eq. (2):

τtot

ρ
= νd⟨uz⟩

dr
− ⟨u′zu′r⟩ =

Π
2ρ

r +
D
r

, (5)

where τtot denotes the total shear stress (as the summation of the vis-
cous and turbulent shear stresses) and D is a constant of integration
given as

D = R2
oRiu2

τi + R2
i Rou2

τo

R2
o − R2

i
. (6)

From Eq. (5), it is straightforward that at the radial position
of r = rm =

√
−2ρD/Π, the total shear stress vanishes, i.e., τtot

= 0. Consequently, νd⟨uz⟩/dr − ⟨u′zu′r⟩ = 0. In other words, at radial
position rm, if ⟨u′zu′r⟩ = 0, then it is guaranteed that d⟨uz⟩/dr = 0
or vice versa. From this analysis, it is clear that the radial position
for zero Reynolds shear stress is strictly collocated with that for the
maximum of mean velocity (where d⟨uz⟩/dr = 0) at radial position
rm in a concentric annular pipe flow. The above analytical approach
for deriving this conclusion is not complex; however, it helps to clear
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FIG. 6. Profiles of the mean axial velocity ⟨uz⟩ and budget balance of total shear
stress (τtot = τvis + τtur) displayed in the global coordinate based on the DNS
results of case A6. Considering the large differences in their absolute magnitudes,
the mean axial velocity ⟨uz⟩ is non-dimensionalized using the bulk mean velocity
Ub, while the shear stresses are non-dimensionalized based on the mean wall
friction velocity uτ .

the disagreement on this issue seen in the literature (as reviewed in
Sec. I). Now, we can say with certainty that the experimental obser-
vations of Knudsen and Katz4 and Brighton and Jones,5 and DNS
results of Boersma and Breugem10 are accurate on this issue. The
thicknesses of boundary layers developed over the inner and outer
cylinder walls are different to reflect the difference in the surface
curvature of these two walls, and their values can be determined as
δti = δ + rm and δto = δ − rm, respectively. The values of δti and δto
calculated from DNS for all test cases are presented in Table II.

To further verify the above analysis using DNS, the shear stress
balance of case A6 (which has the largest computational domain)
is shown in Fig. 6. Figure 6 shows the profiles of the mean axial
velocity, viscous Reynolds shear stress τvis/ρ = νd⟨uz⟩/dr, turbulent
Reynolds shear stress τtur/ρ = −⟨u′zu′r⟩, and total Reynolds shear
stress τtot = τvis + τtur. In Fig. 6, all shear stress terms have been
non-dimensionalized using the mean friction velocity. Clearly, at
the radial position demarcated by the black dashed line, the axial
mean velocity ⟨uz⟩ reaches its maximum, and Reynolds shear stress
⟨u′zu′r⟩ becomes zero concurrently. Specifically, at the lower nominal
Reynolds number ReDh = 8900, the radial position where τ+

tot = 0,
⟨u′zu′r⟩+ = 0, and d⟨uz⟩/dr = 0 deviates from the domain cen-
ter and occurs instead at (r − R)/δ = −0.119. Furthermore, from
Table II, it can be inferred that this special radial position remains
almost unchanged as the nominal Reynolds number increases to
ReDh = 17 700, which is located at (r − R)/δ = −0.118.

C. Higher-order statistics
Thus far, the effects of surface curvature and Reynolds num-

ber on the turbulent flow field have been examined through the
first- and second-order flow statistics. In order to develop a deeper
understanding of these effects on the transport of momentum, the
third- and fourth-order statistical moments of the velocity field can
be examined. Because the higher-order statistical moments of the
velocity field are more sensitive than the lower-order ones in the

calculations, we restrict our examination of the domain size effects
on the predictive accuracy of DNS to the study of the first- and
second-order statistical moments (e.g., mean velocity, Reynolds
stresses, two-point correlations, and energy spectra) in both physical
and spectral spaces, which represents a usual practice in the liter-
ature on the study of the minimum domains for DNS.11,14 In the
following, we focus our attention to the physics of the flow while we
study the properties of the skewness and flatness factors. Specifically,
we intend to examine the Reynolds number effects on the skewness
and flatness factors by comparing their values of cases A6 and D;
and furthermore, we study the curvature effects on the skewness and
flatness factors by comparing their values on the convex and con-
cave sides of the concentric annular pipe. The velocity skewness and
flatness factors are defined as17

S(u′i) =
⟨u′3i ⟩
⟨u′2i ⟩3/2

and F(u′i) =
⟨u′4i ⟩
⟨u′2i ⟩2

, (7)

respectively. Figures 7 and 8 compare the skewness and flatness fac-
tors of all three velocity fluctuating components at two nominal
Reynolds numbers of ReDh = 8900 and 17 700 through cases A6
and D.

For turbulence signals obeying the ideal Gaussian distribution,
S(u′i ) ≡ 0. From Fig. 7, it is clear that the value of the skewness
factor of azimuthal velocity fluctuations follows the Gaussian dis-
tribution [i.e., S(u′θ) = 0], which reflects the fact that flow is statisti-
cally axial-symmetric and, therefore, homogeneous in the azimuthal
direction. However, the skewness factors of the other two com-
ponents [S(u′z) and S(u′r)] of the velocity field deviate significantly
from the Gaussian distribution as a result of wall anisotropy. As
the nominal Reynolds number increases from ReDh = 8900 to
17 700, the amplitude of S(u′r) varies little, but that of S(u′z) increases
significantly.

The flow physics are dominated by sweeping and ejection
events near both convex and concave cylinder walls, although the
strengths of these events are different due to the difference in the
surface curvature of the two cylinders. The ejection events are char-
acterized by S(u′z) < 0 and S(u′r) > 0, while the sweeping events are
characterized by S(u′z) > 0 and S(u′r) < 0. The ejection and sweeping
events are associated with the so-called “Q2” and “Q4” events in the
quadrant analysis of Reynolds stresses, respectively.18 The quadrant
analysis of Reynolds shear stresses can be conducted with respect to
the sign of u′i or u′3i . This is because sign(u′i) = sign(u′3i ). Therefore,
sweeping and ejection events of a wall-bounded flow can be studied
based on the skewness factor. In order to facilitate a clear discussion
of near-wall ejection of sweeping events, regions corresponding to
these two events are delineated using vertical dashed lines, which go
through the zero-crossing points of the skewness factors in the radial
direction [at which S(u′z) = 0 and S(u′r) = 0]. The Reynolds number
effects on the sweeping and ejection events are evident, which occur
within r+ ∈ [5, 8] and r+ ∈ [28, 134] on the convex cylinder side but
within r+ ∈ [3, 8] and r+ ∈ [30, 161] on the concave cylinder side,
respectively, at the lower nominal Reynolds number of ReDh = 8900.
As the Reynolds number increases to ReDh = 17 700, the strengths of
the ejection and sweeping events become stronger as the magnitudes
of both S(u′z) and S(u′r) increase. At ReDh = 17 700, the sweeping
and ejection events occur within r+ ∈ [5, 12] and r+ ∈ [30, 253] on
the convex cylinder side but within r+ ∈ [4, 12] and r+ ∈ [31, 302]
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FIG. 7. Skewness factors of the velocity field on the (a) convex and (b) concave sides of the concentric annular pipe for cases A6 and D. The vertical dashed lines demarcate
the zero-crossing points of the skewness factors for S(u′z) = 0 and S(u′r) = 0. Near-wall regions featuring the sweeping and ejection events are labeled using “S” and “E,” in
either green or black color corresponding to either case A6 or D, respectively. The skewness factor of the ideal Gaussian distribution is also plotted using a thin dashed line,
which is S(u′i ) ≡ 0.

on the concave cylinder side, respectively. From these numbers, it
is clear that the profiles of S(u′z) and S(u′r) are asymmetrical in the
wall-normal direction as a result of the curvature difference between
the convex and concave cylinder walls, a physical feature that is dif-
ferent from that of the classical 2-D plane-channel flows.17,19 In fact,
this asymmetrical feature can be easily seen by directly comparing
Figs. 7(a) and 7(b), which shows that the amplitudes of S(u′z) and
S(u′r) in these two figures are different at the same radial position
r+.

From Fig. 8, it is clear that the flatness factors of all three com-
ponents of velocity fluctuations peak at the wall, a pattern that is
a characteristic of near-wall turbulence also observed in the clas-
sical turbulent plane-channel flows.17,19 The magnitude of F(u′i ) is
the largest near the wall and gradually converges to F(u′i ) = 3 as the

distance from wall increases, which is the theoretical value for the
Gaussian distribution. The Reynolds number effects on the flatness
factor is evident. As the nominal Reynolds number increases from
ReDh = 8900 to 17 700, the amplitude of F(u′θ) varies little, but those
of F(u′r) and F(u′z) increase significantly. Furthermore, by compar-
ing Figs. 8(a) and 8(b), it is clear that the magnitude of the F(u′i ) is
larger near the concave side than near the convex side in general,
as a result of the curvature difference between the inner and outer
cylinder walls.

D. Two-point correlation
Two-point correlation is a conventional tool for studying the

adequacy of the computational domain size as well as the length

FIG. 8. Flatness factors of the velocity field on the (a) convex and (b) concave sides of the concentric annular pipe for cases A6 and D. The flatness factor of the ideal
Gaussian distribution is also plotted using a thin dashed line, which is F(u′i ) ≡ 3.
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scales of coherent structures. The axial and azimuthal 1D two-point
correlation functions for the axial velocity fluctuations are defined as

Rzz(Δz) = ⟨u
′
z(z, rθ, r, t)u′z(z + Δz, rθ, r, t)⟩
⟨u′z(z, rθ, r, t)u′z(z, rθ, r, t)⟩ (8)

and

Rzz(rΔθ) =
⟨u′z(z, rθ, r, t)u′z(z, rθ + rΔθ, r, t)⟩
⟨u′z(z, rθ, r, t)u′z(z, rθ, r, t)⟩ , (9)

respectively.
Figures 9(a) and 9(b) compare the profiles of the axial 1D two-

point correlation coefficient Rzz(Δz) of the A-series test cases cal-
culated over the cylindrical surface positioned at r+ = 15 from the
convex and concave walls, where Reynolds normal stress ⟨u′zu′z⟩+
reaches its peak value. Given their overly short axial domain sizes,
the correlation coefficient curves of cases A1 and A2 end with finite

values far above Rzz(Δz) = 0, clearly suggesting insufficiency of the
axial domain sizes to justify the use of the assumption of periodic
boundary condition in these two test cases. By contrast, the two-
point correlation coefficients of cases A3–A6 fall to Rzz(Δz) = 0 at
Δz+ ≈ 1000. This indicates that a minimum domain of Lz = 6πδ (of
case A3) is, indeed, required to capture the length scale of axial tur-
bulent flow structures. Figures 9(c) and 9(d) compare the azimuthal
1D two-point correlation Rzz(rΔθ) at r+ = 15 on the convex and con-
cave sides, respectively. The value of Rzz(rΔθ) becomes negative and
reaches its minimum at (rΔθ)+ ≈ 60 and (rΔθ)+ ≈ 90 on the convex
and concave sides, respectively. This indicates that the mean spac-
ing between the near-wall streaks is smaller on the concave side and
larger on the convex side due to the curvature difference between
these two cylinder walls. The value of Rzz(rΔθ) does not end with
zero in cases B1 and B2, suggesting that the azimuthal computa-
tional domain sizes are insufficient for accurately conducting DNS
in these two cases. Based on the above analysis of the 1D two-point

FIG. 9. Profiles of normalized two-point correlation coefficient Rzz of the axial velocity fluctuations (u′z) calculated over the cylindrical surface located at r+ = 15 from the
convex and concave walls, where the Reynolds normal stress ⟨u′zu′z⟩ reaches its peak value. (a) Axial correlations for A- and D-series test cases (convex side), (b) axial
correlations for A- and D-series test cases (concave side), (c) azimuthal correlations for B- and D-series test cases (convex side), and (d) azimuthal correlations for B- and
D-series test cases (concave side).
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correlation coefficients and previous analysis of the first- and
second-order flow statistics, it is tempting to conclude that the min-
imum computational domain should be kept at Lz = 6πδ and Lθ
= π/2 in order to capture the length scales of energetic eddy motions
at the lower nominal Reynolds number of ReDh = 8900. This would
lead to the conclusion that the domain of cases C and Ca is proper.
However, so far, our study (conducted in Sec. III) has been limited
exclusively to the physical space based on the analysis of the first-
and second-order statistical moments of the velocity field and 1D
two-point correlation coefficients, Rzz(Δz) and Rzz(rΔθ). It should
be noted that the choice of the computational domain sizes purely
based on evidence in the physical space may not be conclusive. To
confirm, the study needs to be further refined by examining the char-
acteristic wavelengths of turbulent flow structures in the spectral
space. In fact, we will show in Sec. IV that this suggested minimal
domain (of Lz = 6πδ and θ = π/2) is actually insufficient, and a proper
computational domain that allows for capturing the most energetic
eddy motions is that of case B4 (of Lz = 12πδ and Lθ = 3π/4) based
on the analysis of the axial and azimuthal 1D premultiplied spectra
of velocity fluctuations.

IV. TURBULENCE STRUCTURES
AND SPECTRAL ANALYSIS
A. Scales of hairpin structures and near-wall streaks

In a concentric annular pipe flow, the scales of energetic eddy
motions are dominated by two types of coherent turbulent struc-
tures, i.e., near-wall streaks and hairpin structures. The presence
of near-wall streaks represents a universal feature of wall-bounded
turbulent flows. Figure 10 shows the near-wall streaks on the con-
vex and concave sides at r+ = 15, where the maximum TKE occurs.
The near-wall streaks are visualized using non-dimensionalized axial
velocity fluctuations u′+z , which show a persistent and regular pat-
tern. From Fig. 10, it is clear that low- and high-speed streaky

structures alternate and are uniformly distributed in the axial and
azimuthal directions. As one of the most energetic near-wall flow
structures, these energy-containing streaks are elongated in the axial
direction, which need to be captured in DNS by using a properly
sized axial domain. If the axial domain is too short to capture the
streaky structures, the axial length scales of the streaks will be artifi-
cially chopped off or distorted, and consequently, the level of TKE
contained by near-wall streaks cannot be accurately calculated by
DNS.

In Sec. III, we studied the minimum domain size required for
properly conducting DNS in the physical space based on the analysis
of a variety of flow statistics, including the two-point correction coef-
ficients. As is well known, energy spectra are closely related to two-
point correction coefficients simply because they are counterparts
of each other in Fourier transform. Different from two-point cor-
relations, energy spectra can show precisely the turbulence energy
level of flow structures at each specific wavelength, which, in turn,
facilitates identifying the characteristic length scale (wavelength) of
turbulence structures at an arbitrary turbulence energy level. The
axial and azimuthal length scales of coherent structures can be exam-
ined precisely through the analysis of the premultiplied 2D energy
spectrum, kzkθĚii, where Ěii = Ěii(kz , kθ, r) is the 2D energy spectrum
of velocity fluctuations in a homogeneous r–θ cylindrical surface,
defined as

Ěii(kz , kθ, r) = 2û′i(kz , kθ, r)û′i
∗(kz , kθ, r) (10)

for i = 1, 2, or 3 (no summation convention implied). Here, an over-
line ( ) indicates time averaging, û′i represents a Fourier coefficient
of u′i , û′i

∗
denotes its complex conjugate, and kz and kθ denote the

axial and azimuthal wavenumbers, respectively. For discrete Fourier
transform performed in a cylindrical coordinate system, these two
wavenumbers are determined as kz = nzkz0 and kθ = nθkθ0 for nz
∈ [−Nz/2, Nz/2 − 1] and nθ ∈ [−Nθ/2, Nθ/2 − 1], respectively. Here,

FIG. 10. Contours of the non-dimensionalized axial velocity fluctuations u′z
+ of case B4, plotted at r+ = 15 on the (a) convex and (b) concave sides, where the maximum TKE

occurs. The contours are colored using the magnitude of the instantaneous axial velocity fluctuations u′+z . To enhance the visual clarity of near-wall structures, only a portion
of the computational domain of case B4 is plotted. The plotted domain sizes are Lz = 6πδ and Lθ = π/2.
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kz0 = 2π/Lz and kθ0 = 2π/(r ⋅ Lθ) are the lowest positive wavenum-
bers in the axial and azimuthal directions determined directly based
on the domain sizes Lz and Lθ, respectively. The premultiplied 2D
energy spectrum kzkθĚii is advantageous in identifying the charac-
teristic wavenumbers (kz and kθ) of the most energetic eddies in a
r–θ cylindrical surface. In our discussion, besides wavenumbers, we
also use wavelengths to evaluate the length scales, which are defined
as λz = 2π/kz and λθ = 2π/kθ. Clearly, both kz and λz are independent
of r, but both kθ and λθ are functions of r (because kθ0 is a function
of r). Equation (10) can be alternatively expressed as a function of

wavelengths as Ěii(λz , λθ, r) = 2û′i(λz , λθ, r)û′i
∗(λz , λθ, r).

Figures 11(a)–11(d) display contours of premultiplied 2D
energy spectra k+

z k+
θ Ě+

zz of case B4 at two radial positions: close to
the wall at r+ = 15, where the axial component of TKE [i.e., ⟨u′zu′z⟩]
peaks, and one quarter cylinder gap (or δ/2) away from the wall [i.e.,
(R − r)/δ = 0.5 from the convex wall or (r − R)/δ = 0.5 from the con-
cave wall]. The flow structures at these two radial positions are quali-
tatively different in the sense that streaky structures are populated in
the near-wall region around r+ = 15, while hairpin packets are popu-
lated around the elevated position δ/2 away from the convex or con-
cave wall. In presenting results, the 2D energy spectrum, wavenum-
bers, and wavelengths have been non-dimensionalized using ν and

local wall friction velocity (which equals either uτi or uτo depending
on the convex or concave side). These non-dimensionalized quan-
tities are indicated using superscript “+” in consistency with the
convention of wall coordinates. In Fig. 11, the spectrum maps show
three regions of high-, intermediate-, and low-intensity cores dis-
tinguished by colors, and their borders are shown using black solid
lines corresponding to 0.875 max(k+

z k+
θ Ě+

zz), 0.625 max(k+
z k+

θ Ě+
zz),

and 0.375 max(k+
z k+

θ Ě+
zz) (or 7/8th, 5/8th, and 3/8th the peak val-

ues of the non-dimensionalized premultiplied spectrum, respec-
tively). The high-intensity core enclosed by the innermost iso-
pleth of 0.875 max(k+

z k+
θ Ě+

zz) corresponds to the most energetic
eddies of the turbulent flow field. Although the low-intensity core
[enclosed by the outermost isopleth of 0.375 max(k+

z k+
θ Ě+

zz)] corre-
sponds to less dominant energetic eddies encompassing a large range
length scales, it still contributes considerably to the total TKE of the
flow.

Besides the three isopleths that show three magnitude lev-
els of the premultiplied spectrum relative to its peak value, the
absolute value of the non-dimensionalized premultiplied spectra
is also indicated using a color legend in Fig. 11. The computa-
tional domain sizes of case B4 (i.e., Lz = 12πδ and Lθ = 3π/4) are
shown as the boundaries in Fig. 11. For the purpose of comparison,

FIG. 11. Premultiplied 2D spectra k+
z k+

θ Ě+
zz of axial velocity fluctuations on the convex and concave sides of the concentric annular pipe for case B4, which vary with the axial

and azimuthal wavelengths: (a) r+ = 15 on the convex side, (b) r+ = 15 on the concave side, (c) (R − r)/δ = 0.5 on the convex side, and (d) (R − r)/δ = 0.5 on the concave
side. In each figure panel, the wavelength is given both as λ+

z (bottom) and as λz /δ (top). Similarly, the azimuthal coordinate is given both as λ+
θ (left) and as λθ/δ (right).

The computational domain of case B4 (i.e., Lz = 12πδ and Lθ = 3π/4) is shown as the boundaries in Fig. 11. For the purpose of comparison, smaller axial and azimuthal
domain sizes used in other test cases are also labeled in the figure. The figure presentations are made at two radial positions: close to the wall at r+ = 15, where ⟨u′zu′z⟩

+

peaks, and at one quarter the cylinder gap (or δ/2) away from the wall [i.e., (R − r)/2 = 0.5 from the convex wall or (r − R)/2 = 0.5 from the concave wall]. Three energy
levels are distinguished, and the innermost, intermediate, and outermost isopleths correspond to 0.875 max(k+

z k+
θ Ě+

zz), 0.625 max(k+
z k+

θ Ě+
zz), and 0.375 max(k+

z k+
θ Ě+

zz),
respectively.
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smaller axial and azimuthal domain sizes used in other test cases
are also labeled. From Fig. 11, it is clear that both the innermost
and intermediate isopleths [corresponding to 0.875 max(k+

z k+
θ Ě+

zz)
and 0.625 max(k+

z k+
θ Ě+

zz), respectively] are fully captured. Further-
more, it is seen that the majority of the outermost isopleth of
0.375 max(k+

z k+
θ Ě+

zz) is captured, with only a very small portion of
the isopleth missing in Figs. 11(a) and 11(b). Based on this analysis
of premultiplied 2D spectra k+

z k+
θ Ě+

zz , it is confirmed that the compu-
tational domain of case B4 (with Lz = 12πδ and Lz = 3π/4) is satisfac-
tory in general, which can facilitate capture of large flow structures
up to wavelengths that correspond to at least 37.5% of the peak value
of the non-dimensionalized premultiplied 2D spectrum. By contrast,
any arbitrary combination of smaller axial and azimuthal computa-
tional domain sizes would result in an inaccurate prediction of large-
scale structures with a higher percentage of TKE cutoff. For instance,
as shown in Fig. 11(c), if the “worst” combination of Lz = πδ and Lz
= π/6 is used for conducting DNS, the domain is barely sufficient for
capturing the peak of k+

z k+
θ Ě+

zz but does not even allow for fully cap-
turing the most energetic eddies of turbulence corresponding to the
innermost isopleth of 0.875 max(k+

z k+
θ Ě+

zz). The analysis conducted
here is based on the premultiplied 2D spectra k+

z k+
θ Ě+

zz at two spe-
cial wall-normal positions of r+ = 15 and (r − R)/δ = 0.5. Later in
Secs. IV B and IV C, we will refine our study by further inves-
tigating the characteristic axial and azimuthal length scales of the
most energetic turbulence structures over the entire wall-normal
direction (i.e., the entire r-direction) through an analysis of their
premultiplied 1D spectra.

Figures 11(a) and 11(b) show that the mode of k+
z k+

θ Ě+
zz occurs

at λ+
z ≈ 1100 and λ+

θ ≈ 120 on the convex side and at λ+
z ≈ 900

and λ+
θ = 90 on the concave side. These two modes represent the

characteristic length scales (periods) of the streaky structures in
the axial and azimuthal directions. The differences in the axial and
azimuthal characteristic wavelengths on the convex and concave
sides result from the surface curvature difference between the convex
and concave cylinder walls. Apparently, both axial and azimuthal
characteristic length scales of the streaks are larger on the convex

side than on the concave side. This leads to an important conclusion
that the challenge involved in accurately performing DNS of a con-
centric annular pipe flow mostly stems from the need of capturing
large streaky structures on the convex side. Compared to the con-
cave side, the streaky structures on the convex side are more elon-
gated in the axial direction and more widely spread in the azimuthal
direction. Although the characteristic length scales of near-wall
streaky structures in a concentric annular pipe flow are sensitive
to the surface curvature, their magnitudes are, in general, compa-
rable to those of a plane-channel flow, which are approximately
1000 and 100 wall units in the streamwise and spanwise directions,
respectively.17,20

At a higher elevation of δ/2 away from the convex and concave
walls, the curvature effect on turbulence structures reduces, and the
flow is dominated by hairpin packets. From Figs. 11(c) and 11(d), it
is seen that the mode of k+

z k+
θ Ě+

zz occurs approximately at λ+
z = 405

and λ+
θ = 190 on both convex and concave sides. As is well known

from the study of near-wall turbulent boundary layer over flat plates
by Adrian,18 hairpin structures constantly generate secondary hair-
pin vortices (SHVs), develop into primary hairpin vortices (PHVs),
and are destroyed as downstream hairpin vortices (DHVs). Figure 12
shows instantaneous contours of the swirling strength (for λci = 1.0)
of case B4. Similar to Fig. 10, only part of the computational domain
is used for illustrating hairpin structures in Fig. 12. In addition, the
domain is divided radially into two parts to clearly show the hairpin
structures on the convex and concave sides. The hairpin structures
identified by the swirling strength are further superimposed with
colors corresponding to the value of non-dimensionalized instan-
taneous axial vorticity ω′+z , with red and blue colors representing its
positive and negative values, respectively. This facilitates identifica-
tion of paired hairpin legs of counter-rotating directions. Figure 12
shows that hairpin structures are populated on both convex and con-
cave sides of the concentric annular pipe, consisting of elongated legs
(appearing as counter-rotating vortices, differentiated using the blue
and red colors of ω′+z ) near the wall and arches (or heads) at higher
elevations relatively far away from the wall.

FIG. 12. Contours of swirling strength (λci = 1.0) for case B4: (a) convex side and (b) concave side. The contours are colored with instantaneous axial vorticity ω′+z . To
enhance the visual clarity of near-wall structures, only a portion of the computational domain is plotted for Lz = 6πδ and Lθ = π/2.
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In order to demonstrate the spatial evolution of hairpin packets
in the axial direction, a chain of hairpin structures on the concave
side of the pipe are isolated from the surrounding flow structures
in Fig. 12(b) using a green box and are shown separately by pro-
jecting the selected domain into a 2D z-r plane in Fig. 13(a). The
hairpin structures displayed in Fig. 13(a) are magnified, showing a
clear side view of the axial development of hairpin packets (con-
sisting of PHV and SHV) on the concave side of the concentric
pipe. The hairpin structures can also be studied based on a condi-
tional averaging method described by Adrian.21 Figure 13(b) shows
the contours of ⟨u′+z ∣Q2⟩, where the averaging of axial velocity fluc-
tuations u′z is done based on the condition of ejection events (or
the Q2 events that feature u′ < 0 and v′ > 0). The reason that u′z
is selected is that the length scales of large-scale streaky structures
(or the “legs” of hairpin structures) can be very effectively deter-
mined by the axial velocity fluctuations in either two-point coeffi-
cient analysis or 1D and 2D spectral analyses (see Figs. 9–11, 14, and
15). From both Figs. 13(a) and 13(b), the periodicity of the hairpin
packets can be readily identified (indicated using the thick dashed
lines), with a period of approximately λ+

z = 400. This result is con-
sistent with our previous analysis of the mode of premultiplied 2D

spectrum k+
z k+

θ Ě+
zz based on Fig. 11, which indicates that the axial

characteristic wavelength of hairpin structures is approximately
λ+

z = 405.
The above analysis of large-scale turbulence structures (specif-

ically, near-wall streaks and hairpin structures in core turbu-
lent regions) was conducted based on premultiplied 2D spectra
k+

z k+
θ Ě+

zz(r+, λ+
z , λ+

θ) at two radial positions only. In order to develop
a general understanding of the effect of radial position on the axial
and azimuthal characteristic length scales of turbulence structures,
in the following, we will refine the research by looking into the pre-
multiplied 1D spectra as a function of r+ and k+

z in Sec. IV B and as
a function of r+ and k+

θ in Sec. IV C. In addition, through the study
of characteristic length scales of turbulence structures using the pre-
multiplied 1D spectra, we will further investigate the minimal axial
domain size required for rigorously conducting DNS of concentric
annular pipe flow and structures.

B. Axial premultiplied energy spectra
The 1D axial energy spectrum can be directly computed by inte-

grating the 2D energy spectrum over the azimuthal wavenumbers,
i.e.,

FIG. 13. Side view of hairpin structures on the concave side of the concentric pipe for case B4. (a) Contours of the swirling strength of λci = 1.0 colored using the strength
of ω′+z and (b) contours of conditional averaging of axial velocity fluctuations ⟨u′+z ∣Q2⟩ in the z–r plane located at θ = 0○. In panel (a), the hairpin structures are obtained by
projecting the selected domain from Fig. 12(b) (indicated using a 3D green box) into a 2D z–r plane here. The green and black dashed lines in panel (a) show the positions
of the PHV and SHV, respectively. The wavelength of both PHV and SHV is approximately λ+

z = 400.
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FIG. 14. Contours of premultiplied 1D
axial energy spectra of k+

z Ẽ+
zz(λ+

z , r+
),

k+
z Ẽ+

rr(λ+
z , r+
), and k+

z Ẽ+
θθ(λ

+
z , r+
) of

case A6, non-dimensionalized by u2
τ .

(a) k+
z Ẽ+

zz on the convex side, (b) k+
z Ẽ+

zz
on the concave side, (c) k+

z Ẽ+
rr on the

convex side, (d) k+
z Ẽ+

rr on the concave
side, (e) k+

z Ẽ+
θθ on the convex side, and

(f) k+
z Ẽ+

θθ on the concave side. The value
of uτ equals either uτi or uτo, depending
on the convex or the concave cylinder
side in consideration. In each figure
panel, the wavelength is given both as
λ+

z (bottom) and as λz /δ (top). Similarly,
the radial coordinate is given both as
r+ (left) and as (R − r)/δ or (r − R)/δ
(right, for the convex or concave side,
respectively). The cross symbol “×”
pinpoints the location of the mode.
Three energy levels are distinguished,
and the innermost, intermediate, and
outermost isopleths correspond to ϕii

=0.875 max(k+
z Ẽ+

ii), 0.625 max(k+
z Ẽ+

ii),
and 0.375 max(k+

z Ẽ+
ii), respectively.

Besides these three isopleths that
show three magnitude levels of the
premultiplied spectrum relative to its
peak value, the absolute magnitude of
the non-dimensionalized premultiplied
spectrum is also shown using a color
legend. Vertical dashed-dotted lines
demarcate the axial computational sizes
for cases A3–A6.

Ẽii(kz , r) = ∫ Ěii(kz , kθ, r)dkθ, (11)

or in a discrete form, as Ẽii(kz , r) = kθ0∑kθ Ěii(kz , kθ, r) for i = 1,
2, or 3 (no summation convention implied). Due to the need of
studying cases of different domain sizes (of different values of kz0
and kθ0), the premultiplied 1D energy spectrum kzẼii needs to be
further normalized by the spectral area kz0kθ0 in our comparative
study. Because case A6 has the largest computational domain size,
its spectral results are the most accurate among all 12 test cases of
the lower nominal Reynolds number of ReDh = 8900. Figure 14
compares the premultiplied 1D axial energy spectra of all three
velocity fluctuation components on the convex and concave sides
of case A6. For the purpose of comparison, vertical dashed-dotted
lines are used to demarcate the axial computational domain sizes
of cases A3–A5, which vary from Lz = 6πδ to 18πδ. The premulti-
plied 1D energy spectrum has been non-dimensionalized using the
local friction velocity, which equals either uτi or uτo depending on

the convex or the concave cylinder side in consideration. Simi-
lar to Fig. 11, three levels of the premultiplied energy spectrum
are identified, which represent the high-, intermediate-, and low-
intensity cores of a turbulence structure. The contours for these
three levels of the premultiplied spectrum are distinguished by col-
ors and black solid borderlines corresponding to 0.875 max(k+

z Ẽ+
ii),

0.625 max(k+
z Ẽ+

ii), and 0.375 max(k+
z Ẽ+

ii).
Figures 14(a) and 14(b) compare the contour patterns of the

non-dimensionalized premultiplied 1D spectrum of axial velocity
fluctuations k+

z Ẽ+
zz on the convex and concave sides of the concen-

tric annular pipe, as a function of the radius r+ and wavelength λ+
z .

The mode (indicated using a red cross symbol “×” in the figure) of
k+

z Ẽ+
zz occurs at (r+, λ+

z ) = (14.8, 1100) and (r+, λ+
z ) = (15.3, 900) on

the convex and concave sides, respectively. Clearly, the character-
istic axial length scales of the streaky structures as indicated by the
axial modes of k+

z Ẽ+
zz and k+

θk+
z Ězz (inferred from Figs. 11 and 14) are

consistent, which are λ+
z = 1100 and 900 on the convex and concave
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FIG. 15. Profiles of non-dimensionalized premultiplied 1D axial energy spectra k+
z Ẽ+

zz of the A- and D-series test cases at the cylindrical surface located at r+ = 15 from the
(a) convex and (b) concave walls. Vertical dashed lines demarcate the axial computational sizes (i.e., Lz values) for cases A1–A6 and D.

sides of the concentric annular pipe, respectively. The radial posi-
tion where the mode of k+

z Ẽ+
zz occurs is similar between the convex

and concave sides of the concentric annular pipe, which is approxi-
mately at r+ = 15. This implies that under the testing condition, the
near-wall streaky structures are the most energetic at this radial posi-
tion on both sides of the concentric annular pipe. The appearance of
the peak value of k+

z Ẽ+
zz at the radial position of approximately r+

= 15 is consistent with that for ⟨u′zu′z⟩+ in the physical space. How-
ever, it should be indicated here that the overlapping of these two
modes of k+

z Ẽ+
zz and ⟨u′zu′z⟩+ at r+ = 15 is not strictly required in

mathematics because these two quantities are connected through an
integral relationship, i.e., ⟨u′zu′z⟩ = ∫ Ẽzz(r, kz)dkz . From Figs. 14(a)
and 14(b), it is evident that the domain of case A6 (with Lz = 30πδ
and Lθ = 2π) is sufficiently large to fully capture the outermost iso-
pleth that corresponds to 0.375 max(k+

z Ẽ+
ii). If the axial domain size

drops to Lz = 18πδ (as in case A5), the outermost isopleth is still
fully captured on the concave side of the pipe at all radial posi-
tions. As the axial domain size drops further to Lz = 12πδ (as in
case A4), the outermost isopleth is well captured at all radial posi-
tions but is slightly missed around r+ = 15. However, as is shown
in Fig. 14(a), if the axial domain size continues to drop to Lz
= 6πδ (as in case A3), even the intermediate isopleth correspond-
ing to a higher TKE level of 0.625 max(k+

z Ẽ+
ii) cannot be fully cap-

tured, indicating a rather inaccurate DNS. From the previous analy-
sis of turbulence statistics in the physical space conducted in Sec. III,
we drew a conclusion that a minimum axial domain length of Lz
= 6πδ of case A3 was satisfactory, which is apparently contradictory
to the evidence shown in Figs. 14(a) and 14(b). The spectral analysis
conducted here allows us to refine the study by accurately assessing
the axial characteristic wavelengths of energetic near-wall streaky
structures. Based on the combined physical and spectral analyses,
it is now confirmed that the minimum axial computation domain
must be stretched to Lz = 12πδ, in order to perform DNS accu-
rately for the turbulent concentric annular pipe flow investigated
here.

By comparing Figs. 14(c)–14(f), it is apparent that all three iso-
pleths [corresponding to 0.875 max(k+

z Ẽ+
ii), 0.625 max(k+

z Ẽ+
ii), and

0.375 max(k+
z Ẽ+

ii)] are fully captured by axial premultiplied 1D spec-
tra of radial and azimuthal velocity fluctuations, k+

z Ẽ+
rr and k+

z Ẽ+
θθ,

respectively. It should be indicated that in Figs. 14(c) and 14(d), the
outermost isopleth is not fully captured at the maximum radial posi-
tion around r+ = 150. This is not an indication of insufficient radial
domain size but instead a reflection of the radial domain center, as
only one-half of the radial domain is plotted in Figs. 14(c) and 14(d).
From Figs. 14(c)–14(f), it is observed that the energy levels of k+

z Ẽ+
rr

and k+
z Ẽ+

θθ (as indicated by the color-scale legend) are one order of
magnitude smaller than that of k+

z Ẽ+
zz . The modes of k+

z Ẽ+
rr and k+

z Ẽ+
θθ

occur at (r+, λ+
z ) = (50, 200) and (30, 200) on both sides of the

concentric pipe, respectively. Clearly, the axial characteristic wave-
lengths of the turbulence structures as indicated by the modes of
k+

z Ẽ+
rr and k+

z Ẽ+
θθ are much smaller than that of k+

z Ẽ+
zz (which is about

1000 wall units, see above). Furthermore, it is interesting to observe
that the modes of k+

z Ẽ+
zz , k+

z Ẽ+
rr , and k+

z Ẽ+
θθ appear at three different

radial positions for r+ = 15, 30, and 50, respectively. The physical
mechanisms underlying these observations relate to the features of
hairpin structures shown in Fig. 13. Similar to the hairpin structures
of a turbulent boundary layer developed over a flat plate,18 the radi-
ally oriented parts of a hairpin structure that connects the legs to the
head (referred to as the “neck” by Adrian18) contribute the most to
the peak value of k+

z Ẽ+
rr (associated with the radial Reynolds normal

stress component ⟨u′ru′r⟩+). The necks of hairpin structures (for both
PHV and SHV) are the most energetic around r+ = 50, characterized
by a wavelength of approximately λ+

z = 200. Because the characteris-
tic wavelength of either PHV or SHV (see Fig. 13) is approximately
400 wall units, the axial separation of the hairpin necks is typically
around 200 wall units at this particular radial position judging from
the mode of k+

z Ẽ+
rr . The reason that the peak of k+

z Ẽ+
θθ appears at

r+ = 30 is that there exist azimuthally oriented vortex filaments,
which connect hairpin legs and are the most energetic around this
elevation. These azimuthally oriented vortex filaments lay further
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away from the wall than the near-wall streaks, perturbed and pushed
away by ejections to form hairpin arches at higher elevations. Con-
sistent with the analysis of the hairpin necks, the characteristic wave-
length that represents the axial separation of azimuthally oriented
vortex filaments is also 200 wall units.

From the above analysis of the premultiplied 1D energy spec-
trum k+

z Ẽ+
zz in Figs. 14(a) and 14(b), it is understood that the axially

elongated streaks are the most energetic and the longest at r+ ≈ 15
on both convex and concave sides. Correspondingly, the magnitude
of Reynolds normal stress ⟨u′zu′z⟩+ also peaks at this radial position
on both sides of the concentric annular pipe. The contours of k+

z Ẽ+
zz

shown in Fig. 14 are based on case A6 only, which has the largest
computational domain and allows for the most accurate prediction
of turbulence statistics. However, in order to understand the direct
influence of the axial domain size on the predictive accuracy of k+

z Ẽ+
zz ,

test cases of different axial domain sizes must be compared based
on independent numerical simulations. To this purpose, the profiles
of all six A-series test cases are compared in Fig. 15. To demon-
strate the Reynolds number effect, the profiles of the six A-series test
cases are also compared against that of case D. The black dashed
lines demarcate the axial computational domain sizes as well as the
cutoff wavelengths of the A-series test cases, which vary from Lz
= 6πδ to 30πδ in cases A3–A6. Similarly, the red dashed line demar-
cates the axial computational domain size and cutoff wavelength of
case D.

From Fig. 15, it is clear that cases A1 and A2 fail to capture
the mode of k+

z Ẽ+
zz , implying that the most energetic eddy motions

are missed in DNS. This well explains the failure of cases A1 and
A2 in terms of the prediction of ⟨u′zu′z⟩+ in Fig. 4(a). As is clear from
Fig. 15, although the mode of the premultiplied 1D energy spectrum
has been successfully captured in cases A3–A6, the spectrum cutoffs
for these four test cases are different due to the differences in their
axial domain sizes. At their cutoff wavelength, the magnitude of the
premultiplied 1D energy spectrum is 79%, 45%, 32%, and 21% of its
peak value on the convex side and is 79%, 44%, 34%, and 18% of its
peak value on the concave side in cases A3, A4, A5, and A6, respec-
tively. Given the fact that the cutoff wavelength occurs at a very high
TKE level, the amount of TKE associated with wavelengths that are
larger than the cutoff wavelength missed by DNS is significant in
case A3. For this reason, even though the axial domain length of case
A3 (Lz = 6πδ) was satisfactory in previous predictions of the mean
velocity, Reynolds stresses, and two-point correlation coefficient, it
is insufficient with respect to the current spectral analysis. Based
on our previous analysis of Fig. 14, it is understood that an axial
domain size of Lz = 12πδ is satisfactory in general with respect to
capturing TKE at all radial positions for test cases of a lower nominal
Reynolds number of ReDh = 8900. From Fig. 15, it is further con-
firmed that even at r+ = 15 where the near-wall streaks are the most
energetic and the longest, the cutoff wavelength occurs when the
premultiplied 1D spectrum decays to 45% of its peak value, imply-
ing that most of the energy-containing length scales are resolved
in DNS.

From Fig. 15, it is seen that as the nominal Reynolds num-
ber increases from ReDh = 8900 to 17 700, the cutoff wavelength of
case D takes place when the premultiplied 1D spectrum decays to
39% and 47% of its peak value on the convex and concave cylin-
der sides, respectively. By comparing case D with case A4, it is clear
that although the level of the premultiplied 1D spectrum at the

cutoff wavelength is comparable between cases D and A4, the axial
domain length of case D is only Lz = 8πδ, which is much shorter
than that (12πδ) of case A4. This implies that a shorter axial domain
is needed for conducting DNS at a higher Reynolds number. This
phenomenon is interesting but not surprising, which is similar to
that of the classical turbulent plane-channel flows11,17,19 and can be
explained as follows. From the above analysis of Figs. 14 and 15,
it understood that the mode of either the 2D or 1D premultiplied
spectrum of axial velocity fluctuations occurs approximately at a
wavelength of λ+

z = uτλz/ν ≈ 1000 at both nominal Reynolds num-
bers, which corresponds to the characteristic axial length scale of
the most energetic streaky structures. Considering that the value of
wall friction velocity uτ increases as the Reynolds number increases
(see Table II), then the characteristic wavelength λz (corresponding
to the mode) must decrease in order to maintain the value of the
non-dimensional wavelength λ+

z at approximately 1000 wall units.
As such, the physical axial length of the concentric annular pipe
required for capturing the most energetic streaky structures can be
shortened as the Reynolds number increases.

For the lower nominal Reynolds number tested (ReDh = 8900),
although the axial computational domain size of case A6 is the
largest, eddies of axial length scales that are larger than the cutoff
wavelengths (where the value of k+

z Ẽ+
zz decays to 21% and 18% of

its peak value on the convex and concave sides, respectively) are
still missed in the DNS. In fact, it is unrealistic to fully capture the
premultiplied energy spectrum (with 0% of spectrum leaking) in a
DNS or in a physical experiment as it demands using a pipe of infi-
nite length. Thus far, the longest axial domain size used for DNS of
concentric annular pipe flow in the literature is Lz = 6πδ by Chung
et al.8 for a similar nominal Reynolds number of ReDh = 8900. As
such, the minimum axial domain size of Lz = 12πδ recommended
here is twice that of Chung et al.,8 which makes it the longest in the
current literature.

C. Azimuthal premultiplied energy spectra
Similar to the 1D axial energy spectrum, the 1D azimuthal

energy spectrum can be computed by integrating the 2D energy
spectrum over the axial wavenumbers as

Ẽii(kθ, r) = ∫ Ěii(kz , kθ, r)dkz (12)

or in a discrete form as Ẽii(kθ, r) = kz0∑kz
Ěii(kz , kθ, r) for i = 1,

2, or 3 (no summation convention implied). Different from the 1D
axial energy spectrum, the 1D azimuthal energy spectrum is use-
ful for analyzing the characteristic azimuthal length scales associ-
ated with the energetic eddy motions. Based on the conclusion of
Subsection IV B, it is understood that a minimum axial domain of
Lz = 12πδ is needed in order to capture axially elongated energetic
eddy motions. In this subsection, we aim at investigating the mini-
mum azimuthal domain size for DNS by analyzing the premultiplied
1D azimuthal energy spectrum k+

θ Ẽ+
ii (as a function of r+ and k+

θ ). To
this purpose, case B5 (with Lz = 12πδ and Lθ = 2π) is selected, which
has a sufficient axial domain size and the largest azimuthal domain
size to facilitate generation of the most reliable azimuthal spectral
results. Figure 16 compares the premultiplied 1D azimuthal energy
spectra of all three velocity fluctuation components on the convex
and concave sides of case B5. Dashed-dotted lines demarcate the
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FIG. 16. Contours of premultiplied 1D
axial energy spectra of k+

θ Ẽ+
zz(λ+

z , r+
),

k+
θ Ẽ+

rr(λ+
z , r+
), and k+

θ Ẽ+
θθ(λ

+
z , r+
) of

case B5, non-dimensionalized by u2
τ .

(a) k+
θ Ẽ+

zz on the convex side, (b) k+
θ Ẽ+

zz
on the concave side, (c) k+

θ Ẽ+
rr on the

convex side, (d) k+
θ Ẽ+

rr on the concave
side, (e) k+

θ Ẽ+
θθ on the convex side, and

(f) k+
θ Ẽ+

θθ on the concave side. The value
of uτ equals either uτi or uτo, depending
on the convex or the concave cylinder
side in consideration. In each figure
panel, the wavelength is given both as
λ+
θ (bottom) and as λθ/δ (top). Similarly,

the radial coordinate is given both as
r+ (left) and as (R − r)/δ or (r − R)/δ
(right, for the convex or concave side,
respectively). The cross symbol “×”
pinpoints the location of the mode.
Three energy levels are distinguished,
and the innermost, intermediate, and
outermost isopleths correspond to ϕii

=0.875 max(k+
θ Ẽ+

ii), 0.625 max(k+
θ Ẽ+

ii),
and 0.375 max(k+

θ Ẽ+
ii), respectively.

Besides these three isopleths that
show three magnitude levels of the
premultiplied spectrum relative to its
peak value, the absolute magnitude of
the non-dimensionalized premultiplied
spectrum is also shown using a color
band. Vertical dashed-dotted lines
demarcate the axial computational sizes
for cases B1–B5.

azimuthal computational domain sizes of cases B1–B5, which vary
from Lθ = π/6 to Lθ = 2π. Similar to Subsection IV B, the local
friction velocity (uτi or uτo) is used for non-dimensionalization on
the convex or concave side. The cross symbol “×” pinpoints the
mode corresponding to the maximum premultiplied energy spec-
trum, i.e., max(k+

θ Ẽ+
ii). Similar to the previous analysis, contours

corresponding to the of high-, intermediate-, and low-intensity
cores are distinguished by three isopleth values of the premulti-
plied 1D azimuthal spectra of 0.875 max(k+

θ Ẽ+
ii), 0.625 max(k+

θ Ẽ+
ii),

and 0.375 max(k+
θ Ẽ+

ii), respectively. By comparing Figs. 16(a)–16(f),
it is clear that Fig. 16(e) represents the most critical scenario in terms
of the choice of the azimuthal domain size, which shows that a min-
imal domain of Lθ = 3π/4 (corresponding to case B4) is needed
in order to fully capture the outermost isopleth corresponding to
0.375 max(k+

θ Ẽ+
θθ).

Figures 16(a) and 16(b) compare the contour patterns of the
premultiplied 1D azimuthal spectrum of axial velocity fluctuations
(k+

θ Ẽ+
zz) on the convex and concave sides. The mode of k+

θ Ẽ+
zz occurs

at (r+, λ+
θ) = (14.8, 120) and (r+, λ+

θ) = (15.3, 90) on the convex and
concave sides, respectively. The small difference in the modal values
of r+ between the convex and concave sides is due to the surface cur-
vature effect. Nonetheless, the appearance of the peak value of k+

θ Ẽ+
zz

at the radial position of approximately r+ = 15 is consistent with the
previous conclusion based on the analysis of the premultiplied 1D
axial spectrum k+

z Ẽ+
zz .

Figures 16(c) and 16(d) show contours of the premultiplied
1D azimuthal spectrum of radial velocity fluctuations k+

θ Ẽ+
rr on the

convex and concave cylinder sides, respectively. Clearly, the mode
occurs at (r+, λ+

θ) ≈ (50, 100) on both cylinder sides of the con-
centric annular pipe. This mode of k+

θ Ẽ+
rr indicates that the radially
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oriented parts of hairpin structures (i.e., hairpin necks) are the most
energetic at the radial position of r+ ≈ 15 and the azimuthal spac-
ing is approximately 100 wall units. Figures 16(e) and 16(f) show the
contours of the premultiplied 1D azimuthal spectrum of azimuthal
velocity fluctuations k+

θ Ẽ+
θθ. From Figs. 16(e) and 16(f), it is seen that

the mode of k+
θ Ẽ+

θθ occurs at (r+, λ+
θ) ≈ (30, 150) on both convex and

concave sides of the concentric annular pipe. The physical mecha-
nism underlying this mode is that the vortex filaments that connect
the legs of the hairpin structures (i.e., hairpin arches) are the most
energetic at r+ ≈ 30, with an characteristic azimuthal wavelength
of λ+

θ = 150. It should be further indicated here that although the
hairpin necks are the most energetic at r+ ≈ 50, this does not imply
that the hairpin arches are necessarily the most energetic at higher
elevations for r+ > 50. This is because the structures and dynam-
ics of hairpin packets are always more complicated in reality than
the ideal situation that all hairpin structures are uniformly sized and
each hairpin structure has a perfect symmetrical shape of two legs,
two necks, and one arch.

In Figs. 16(a)–16(e), the contours of all three components
of k+

θ Ẽ+
ii show quasi-elliptical shapes, with an inclined major axis.

This inclined major axis shows a linear scale growth rate with the
wall-normal distance, which indicates that the azimuthal scales of
near-wall streaks [Figs. 16(a) and 16(b)] and hairpin structures
[Figs. 16(c)–16(f)] increase as the wall-normal distance increases.
This observation is consistent with the DNS results of turbulent pipe
flows of Wu et al.22 and hot-wire measurements of turbulent channel
and pipe flows of Monty et al.23

From the above analysis of Fig. 16, it is understood that the
value of k+

θ Ẽ+
θθ is more sensitive to the choice of the azimuthal

domain size than the other two components of the premultiplied
1D azimuthal spectra. Furthermore, it is understood that the anal-
ysis of Fig. 16 is conducted based on the DNS result of case B5 only,
which has the largest azimuthal domain size of Lθ = 2π and offers the
most accurate DNS results among the B-series test cases. However,
in order to examine the actual influence of the azimuthal domain

size on the predictive accuracy of DNS, numerical simulations based
on all five B-series test cases need to be carried independently. To
this purpose, Fig. 17 compares the non-dimensionalized premulti-
plied 1D azimuthal spectra k+

θ Ẽ+
θθ of all five B-series test cases at a

fixed radial position r+ = 30. The reason that Fig. 17 is plotted for
r+ = 30 is that k+

θ Ẽ+
θθ peaks approximately at this radial position

based on the DNS result of case B5 shown in Figs. 16(e) and 16(f).
In Fig. 17, the black dashed lines demarcate the azimuthal computa-
tional domain sizes as well as the cutoff wavelengths of the B-series
test cases, which vary from Lθ = π/6 to 2π in cases B1 to B5. The
results shown in Fig. 17 provide a direct measure on the accuracy of
the assumed periodical azimuthal boundary condition used in DNS
at the lower nominal Reynolds number of ReDh = 8900. To investi-
gate the Reynolds number effects, the profiles of these five B-series
test cases are also compared against that of case D. Clearly, the tur-
bulence energy level as indicated by the premultiplied spectrum of
the azimuthal velocity fluctuations (k+

θ Ẽ+
θθ) increases as the Reynolds

number increases. This pattern of k+
θ Ẽ+

θθ as a result of an increase
in the Reynolds number in the spectral space is consistent with that
of ⟨u′θu′θ⟩+ in the physical space shown in Fig. 5(b). Furthermore,
the characteristic azimuthal length scale (or the spanwise separa-
tion) of the energetic streaky structures corresponding to the modal
value of k+

θ Ẽ+
θθ also increases as the Reynolds number increases on

both convex and concave cylinder sides of the concentric annular
pipe.

From Fig. 17(a), case B1 barely captures the mode of k+
θ Ẽ+

θθ on
the convex side. This well explains the underprediction of ⟨u′θu′θ⟩+
on the convex side in Fig. 5(b). By contrast, the mode of the pre-
multiplied 1D azimuthal spectrum k+

θ Ẽ+
θθ is captured in cases B2–B5.

However, the cutoff wavelengths of k+
θ Ẽ+

θθ differ. Specifically, at the
cutoff wavelength, the magnitude of k+

θ Ẽ+
θθ is 87.6%, 52.7%, 33.6%,

and 11.2% of its peak value on the convex side and 84.6%, 62.7%,
20.1%, and 7.0% of its peak value on the concave side in cases B2,
B3, B4, and B5, respectively. In other words, based on the com-
parative study of k+

θ Ẽ+
θθ at r+ = 30 for the B-series test cases, the

FIG. 17. Profiles of non-dimensionalized premultiplied 1D azimuthal energy spectra k+
θ Ẽ+

θθ of the B- and D-series test cases at the cylindrical surface located at r+ = 30 from
the (a) convex and (b) concave walls. Vertical dashed lines demarcate the azimuthal computational sizes (i.e., Lθ values) for cases B1–B5 and D.
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computational domain size of Lθ = 3π/4 of case B4 resolves most
of the energy-containing scales. Only a small portion of large scales
remain unresolved that contain energy that is lower than 33.6% and
20.1% of the peak value of k+

θ Ẽ+
θθ at the cutoff wavelength on the con-

vex and concave sides of the concentric annular pipe, respectively.
Furthermore, from Fig. 17, it is seen that as the nominal Reynolds
number increases from ReDh = 8900 to 17 700, the cutoff wavelength
of case D takes place when the value of k+

θ Ẽ+
θθ decays to 39% and 24%

of its peak value on the convex and concave cylinder sides, respec-
tively. This further indicates that the domain size of case D is suitable
for capturing the characteristic azimuthal length scale of the ener-
getic large-scale streaky structures at the higher nominal Reynolds
number of ReDh = 17 700. Finally, it is very interesting to observe
that in case B5, the value of k+

θ Ẽ+
θθ decays to 11.2% and 7.0% of its

peak value on the convex and concave sides of the concentric annu-
lar pipe, respectively. Considering that the azimuthal domain size of
case B5 is a full circle with Lθ = 2π, there is only one explanation
that there are some low-energy flow structures in the flow, which
have azimuthal periods larger than 2π. An example of this type of
continuously developing azimuthal structure is the familiar helical
structure.

V. CONCLUSIONS
The effect of computational domain size on the predictive accu-

racy of DNS results of a moderately curved turbulent concentric
annular pipe flow has been studied in both physical and spectral
spaces. In order to study the Reynolds number effects on the flow
physics, two nominal Reynolds numbers are compared for ReDh

= 8900 and 17 700. The effects of domain size on the flow field are
investigated based on a comparative study of 12 test cases (including
one reference case) at the lower nominal Reynolds number. If we
solely focus on the mean velocity profiles, it would be very tempt-
ing to conclude that the axial and azimuthal domain sizes of Lz = πδ
and Lθ = π/6 are sufficient for conducting DNS. However, based on
an analysis of second-order statistical moments, it becomes appar-
ent that the results of Reynolds stresses would not be accurate unless
the minimum computational domain is extended to Lz = 6πδ and Lθ
= π/4. To determine if the computational domain is proper for cap-
turing the length scales of energetic eddy motions, the 1D axial and
azimuthal two-point correlation coefficients are examined, which
indicate that the minimum computational domain needs to be kept
at Lz = 6πδ and Lθ = π/2. The study of the minimum computational
domain size for conducting DNS is further refined by investigat-
ing the characteristic wavelengths of turbulent flow structures in
the spectral space. It is observed that an adequate computational
domain that allows for capturing the most energetic eddy motions
is that of case B4 (i.e., Lz = 12πδ and Lθ = 3π/4) based on the anal-
ysis of the 1D and 2D premultiplied spectra. Table III summarizes
these results of minimum computational domains sizes required
for accurately calculating turbulence statistics and for reproduc-
ing turbulence flow structures. As the nominal Reynolds number
increases from ReDh = 8900 and 17 700, the dimensional charac-
teristic wavelengths of the most energetic streaky structures reduce,
and in consequence, the minimum domain for properly perform-
ing DNS can be reduced to that of case D (i.e., Lz = 8πδ and
Lθ = π/2).

TABLE III. Summary of the minimum computational domain sizes required for per-
forming DNS for accurate calculations of different types of turbulence statistics at the
nominal Reynolds number of ReDh = 8900.

Minimum domain
Criterion of sizes (axial and
turbulence statistics azimuthal)

Mean velocity Lz = πδ and Lθ = π/6
Reynolds stresses Lz = 6πδ and Lθ = π/4
Two-point correlations Lz = 6πδ and Lθ = π/2
1D and 2D premultiplied Lz = 12πδ and Lθ = 3π/4energy spectra

In the current literature, there has been some disagreement on
whether the radial position corresponding to the maximum veloc-
ity collocates with that of the zero mean shear stress in a turbulent
concentric annular pipe flow. The inconsistency of the literature can
now be concluded. Through a relatively simple approach, we show
analytically that the radial positions of the maximum velocity and
zero shear stress are, in fact, strictly collocated. This analytical result
has been further validated using our DNS data.

Based on the aforementioned investigation of the minimum
computational domain size, coherent flow structures of the concen-
tric annular pipe flow are investigated at the lower nominal Reynolds
number of ReDh = 8900. The scales of energetic turbulent flow
motions such as near-wall streaks and hairpin structures are visu-
alized using instantaneous and conditionally averaged axial velocity
fluctuations (u′z), instantaneous axial vorticity (ω′+z ), and swirling
strength (λci). The scales of these structures are further studied by
examining the 1D axial and azimuthal two-point correlation coeffi-
cients, and 1D and 2D premultiplied energy spectra. The 2D energy
spectra show that both axial and azimuthal characteristic length
scales of the near-wall streaks are larger on the convex side than
on the concave side. This leads to an important conclusion that the
challenge involved in accurately performing DNS of a concentric
annular pipe flow mostly stems from the need of capturing large
streaky structures on the convex side.

At a higher elevation of δ/2 away from the walls, hairpin pack-
ets are dominant energy-containing structures. The scales of these
structures are similar on both convex and concave sides of the
concentric annular pipe with a mode of approximately (λ+

z , λ+
θ)

= (405, 190). The cycle of the generation of PHV from SHV and
destruction of PHV into DHV is observed by showing a side view of
hairpin packets. The pattern of generation and destruction of hair-
pin packets can be identified precisely by studying the axial mode of
the 1D or 2D premultiplied spectrum of axial velocity fluctuations
or vividly by displaying hairpin structures using the λci criterion.
The characteristic wavelength of either PHV or SHV is approx-
imately 400 wall units, and therefore, the axial separation of the
hairpin necks (of PHV and SHV) is typically around 200 wall units.
At r+ = 30, there exist azimuthally oriented vortex filaments, which
connect hairpin legs and are the most energetic around this eleva-
tion. These azimuthally oriented vortex filaments lay further away
from the wall than the near-wall streaks, perturbed and pushed
away by ejections to form hairpin arches at higher elevations. There
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is an interesting observation associated with the premultiplied 1D
azimuthal energy spectrum k+

θ Ẽ+
θθ of case B5: although the azimuthal

domain size is a full circle with Lθ = 2π, the value of k+
θ Ẽ+

θθ does
not decay to zero at the cutoff wavelength (after one period). This
indicates that there are some low-energy turbulence structures with
azimuthal periods that are larger than 2π. Finally, it should be indi-
cated that the number of DNS studies of concentric annular pipe
flows is still rather limited in the current literature. The research
findings reported in this paper are based on numerical simulations
of flow in a concentric annular pipe of a fixed radius ratio. In order
to develop a comprehensive understanding of this type of flow, a few
more sub-topics can be considered in future studies, which include
investigations of the aspect ratio effects on turbulent convection
and the transport of Reynolds stresses in both physical and spectral
spaces.
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