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ABSTRACT
Scale locality is a key concept in turbulent cascade theory and is also associated with reflection symmetry. Vortex stretching is proven to
participate in the helicity cascade process while destroying the conservative characteristic of enstrophy transfer in three-dimensional flows.
Numerical evidence indicates that a turbulent structure with scale L will also largely transfer its helicity to structures with scales of around
0.3L. However, the scale locality of the helicity cascade is slightly weaker than that of the energy cascade in physical space. The weaker scale
locality suggests that more scales should be involved for turbulent modeling of helical turbulence.
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The classical turbulent cascade picture describes the successive
energy transfer from large scales to small scales, with the energy
eventually dissipated by viscosity in the dissipation regions. The
key idea involves the scale locality, whereby only neighboring scales
make a main contribution to the turbulent cascade.1 In 1941, Kol-
mogorov argued that the energy cascade should be local and that
the vortex of a specific scale should successively receive energy and
transfer it to the next lower order.2 However, the first quantitative
scale-locality results were obtained by Kraichnan in 1959 using the
Direct Interaction Approximation (DIA).3 The locality of the turbu-
lent cascade determines the universal statistics of small scales, which
are protected from the influence of larger scales.

Helicity is the integral of the scalar product of velocity u and
vorticity ω and, together with energy, is one of only two inviscid
quadratic invariants in three-dimensional turbulent flows. Helicity
measures the degree of reflection symmetry and the linkage of vortex
lines in the flow field.4 The successive helicity transfer also requires
the scale locality of triadic interactions. This scale locality has
been numerically and theoretically verified.5–16 Yeung and Brasseur5

provided numerical results at the Taylor microscale Reynolds
number of 32 to show that there exist distant triadic interactions
coupling energy-containing, which is different from the classical sta-
tistical independence between large-scale and small-scale structure.
Domaradzki, Liu, and Brachet6 found that the subgrid-scale transfer

process is dominated in the vicinity of the cutoff wave number
and the modes greater than twice the cutoff wave number can-
not affect the subgrid-scale process. Local interactions dominate the
total energy flux asymptotically, and there exist cancellations among
large-amplitude nonlocal interactions.7 Three specific filters (sharp
spectral, Gaussian, and tangent hyperbolic) are used to define the
scales of motion, and Domaradzki and Carati8 found that only a
minor dependence on the filter type exists. Onsager’s assertion that
local triadic interactions dominate the energy cascade in Hölder’s
solution with the exponent ranged from zero to one has been proven
under a stronger Hölder condition.9 A filtering approach in physical
space can also be used to explore the scale locality and energy trans-
fer process in turbulent flows.10,11,17–19 Through an exact analysis
of the governing equations, sufficient conditions established for the
locality of turbulent cascades were found to require Hölder continu-
ity but non-differentiability in space.10 The large-scale velocity and
vorticity gradients possess ultraviolet locality, and the small-scale
stress possesses infrared locality. In contrast to the energy cascade,
the scale locality of the helicity cascade requires more smoothness
in the filter function. This method has been applied to a multi-scale
gradient expansion of the turbulent stress tensor, which involved the
neighboring contributions from different scales of motion and space
derivatives of velocity.11 Verma et al.12 thought that the shell-to-shell
energy transfer is local, and the main reason lies in the fact that local
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triads occupy much more Fourier space volume. Alexakis, Mininni,
and Pouquet13 studied the scale locality on a grid of 10243 points and
concluded that the nonlinear transfer itself is local, while the inter-
actions with large scales occupy 20% of the total energy flux. Then,
Mininni, Alexakis, and Pouquet14 showed that the nonlocal inter-
actions would weaken with Reynolds number increases through the
scaling of the nonlocal energy fluxes. Cardesa et al.15 and Cardesa,
Vela-Martín, and Jiménez16 investigated the time evolution of the
energy cascade and tracked the flow regions in different scales to
verify the scale locality of the energy cascade. The scale locality was
also widely explored in magnetohydrodynamic turbulence20,21 and
compressible turbulence.22

The locality of turbulent cascades analyzed in wave number
space indicates that the energy transfer is dominated by local triadic
interactions, which has been verified by smooth coarse-graining and
sharp spectral filters in both space and scale.23,24 The wave number
can be substituted for the physical length scale, and the scale locality
corresponds to interactions among neighboring wave numbers. A
diagrammatic perturbation approach in quasi-Lagrangian variables
was used to study the scale locality in wave number space, and an
exact relation was established between the asymptotic behaviors of
the triadic interactions for energy flux and the double-correlation
function for energy distribution.25 The scale disparity parameter s
was defined to incorporate scaling s−4/3 using classical theory pre-
dictions, and the results of direct numerical simulations (DNSs)
support the prediction that the interactions are local in the inertial
subrange and nonlocal in the dissipation range.26–28

The two-point velocity correlation transport and the Karman–
Howarth equation were used to analyze the energy cascade in phys-
ical space,29 and the two-point velocity–vorticity correlations have
been applied to the evolution of helicity.30 The quasi-normal-type
notation is needed to close the Karman–Howarth equation, which
assumes that the joint probability density function of the two-
point velocity is Gaussian for fourth-order velocity correlations.1

The above approximation assumption is inherently arbitrary. Nev-
ertheless, from the perspective of vortex stretching,11,31 DNS and
experiments have confirmed the preferential alignments of vortic-
ity and the intermediate strain rate, which supports the scale locality
of straining associated with the self-induced strain fields.32–34 There
is clear numerical evidence for the energy cascade in incompressible
homogeneous and isotropic turbulence (HIT) using physical space
quantities.35 A bandpass filter was used to induce turbulent struc-
tures with specific scales, and the fluxes between these scales were
determined.

There have also been efforts to study the scale locality and prop-
erties of helicity in physical space in three-dimensional turbulent
flows.10,11,30,36 Based on a filtering approach, the helicity cascade is
believed to possess both the infrared and the ultraviolet locality.10,11

The finiteness of helicity dissipation was explored using the lack of
reflection symmetry of small scales, which is the consequence of
nonlocality and conflicts with Kolmogorov’s hypothesis of reflection
symmetry at small scales.36 Velocity–vorticity correlation functions
are not invariant under reflection symmetry in physical space, and
the reflection symmetry is gradually recovered at small scales.30

Hence, there exists a contradiction between scale locality and
reflection symmetry in helical turbulence. We can infer that the
energy cascade would be less local under the influence of broken
reflection symmetry, and the helicity cascade would also be less

local in scale in contrast to the energy cascade because of the more
stringent locality condition of the vorticity gradient.10 However, the
direct numerical evidences for the scale locality of energy and helic-
ity cascades in helical turbulence are vacant, and so we try to analyze
these concepts in physical space.

The following incompressible Navier–Stokes equations are
numerically solved by the pseudo-spectral solver, with a second-
order Adams–Bashforth scheme for time integration:

∂u/∂t + (u ⋅ ∇u) = −∇(p/ρ) + ν∇2u + f, (1)

where u is the velocity, p is the pressure, ρ is the density that is
assumed to be constant, and f is the external forcing for inputting
energy and helicity. The specific form of external forcing can be
constructed as a linear combination of velocity u and vorticity ω as
follows:

f = αu + βω, (2)

where α and β are two indeterminate dimensional parameters,37

and the velocity u and vorticity ω we adopted in our numerical
simulations are limited within the lowest two wave number shells.
The domain size is within a cubic box with sides of 2π, with peri-
odic boundary conditions of three directions. The inputting rates of
energy ε = 0.1 and helicity δ = 0.3 are employed within the lowest two
wave number shells. Some characteristic parameters are summarized
in Table I, and for their definitions, refer to our previous paper.38 In
Fig. 1, we supply the time evolution of the mean energy and the mean
helicity, and the time is nondimensionalized by the initial large-eddy
turnover time. We can see that the flow field reaches a statistical sta-
tionary status when the normalized time t/τ0 is larger than 25.0, and
then we began our numerical analysis.

The power-law solutions of kinetic energy and helicity, which
ignores any intermittency corrections,39 can be written as

E(k) ∼ CEε2/3k−5/3;H(k) ∼ CHδε−1/3k−5/3, (3)

where CE and CH are the two Kolmogorov constants. The spectra of
energy and helicity are shown in Fig. 2, and the wide ranges of energy
and helicity spectra consistent with scaling exponent−5/3 ensure the
fine resolution of the fully developed helical turbulence.

In order to separate the velocity field within a specific length
scale L in physical space, the following bandpass filtering was used,
which is written as

ûL
b =

√

2
√

L
2κ2exp(−κ2

)û(k), (4)

where κ = kL/2, k = |k|, and k is the wave number vector.35,40 The
physical velocity field can be obtained through the inverse Fourier

TABLE I. Some flow field parameters of HIT. Reλ is the Taylor microscale Reynolds
number, Δ is the grid spacing, η is the Kolmogorov length scale, λ is the transverse
Taylor microscale, LI is the longitudinal integral length scale, ε is the mean kinetic
energy dissipation rate, and δ is the mean helicity dissipation rate.

Case Grid Reλ Δ/η λ/η LI/η ε δ

HIT 10243 341 1.52 21 102 0.10 0.30
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FIG. 1. The time evolution of the mean energy E(t) and the mean helicity H(t) in
numerical simulations. τ0 is the initial large-eddy turnover time.

transform on the above velocity field. The vorticity field at scale L
can be computed through

ωL
= ∇ × uL

b . (5)

The above filtering method separates the turbulence structures of
different scales successfully, and it is sharper for l < L and less so
for l > L. For scale l < L, there exists a significant dilatation of eddies,
which is damped by the filter.40 The bandpass filtering method has
been employed to analyze the geometry and interaction of turbu-
lence structures,40 the energy cascade in real space,35 and the gener-
ation and flux of enstrophy in HIT.41 In addition, the bandpass fil-
tering method with other expressions was also used to study the scale
locality of the energy cascade in physical and spectral space. Verma
et al.12 investigated the shell-to-shell energy transfer rate in spectral
space by expanding it to first order in perturbation. Sharp spectral
filters were generalized to smooth filters and verified that a minor
discrepancy exists for different definitions of scales of motions.7,8

Sharp spectral filters were also employed to define a specific scale of

FIG. 2. Spectra of energy and helicity.

motions to estimate the effect of Reynolds number on the scale local-
ity properties of the energy cascade.28 Eyink and Aluie23 and Aluie
and Eyink24 defined a band-passed kinetic energy density between
two length scales, based on the low-pass filter method, and derived
the rigorous upper bounds on the contributions of nonlocal triads.

The velocity and vorticity fields extracted to different length
scales are prerequisites for further scale-to-scale energy and helic-
ity transfer in physical space. The velocity and vorticity fields can be
decomposed into large and small length scales as

u = uL + uS,ω = ωL + ωS, (6)

where the superscripts L and S denote the large and small length
scales, respectively. Hence, we can deduce the governing equations
of the ensemble averaged large-scale and small-scale energy as35,41

∂

∂t
⟨

1
2
(uL
)

2
⟩ = −ΠE,L→S

Δ − ν⟨(ωL
)

2
⟩, (7)

∂

∂t
⟨

1
2
(uS
)

2
⟩ = ΠE,L→S

Δ − ν⟨(ωS
)

2
⟩. (8)

Here, the energy transfer function from large to small scales is

ΠE,L→S
Δ = ⟨−uS

i u
S
j
∂uL

i

∂xj
+ uL

i u
L
j
∂uS

i

∂xj
⟩. (9)

The governing equations of the ensemble averaged enstrophy at
large and small scales in three-dimensional flows are

∂

∂t
⟨

1
2
(ωL
)

2
⟩ = −ΠW,L→S

Δ + GL
− ν⟨(∇ × ωL

)
2
⟩, (10)

∂

∂t
⟨

1
2
(ωS
)

2
⟩ = ΠW,L→S

Δ + GS
− ν⟨(∇ × ωS

)
2
⟩, (11)

where the cross-scale transfer term

ΠW,L→S
Δ = ⟨ωL

⋅ (u ⋅ ∇ωS
)⟩ = −⟨ωS

⋅ (u ⋅ ∇ωL
)⟩ (12)

and the source term

GL
= ⟨ωL

⋅ (ω ⋅ ∇u)⟩, (13)

GS
= ⟨ωS

⋅ (ω ⋅ ∇u)⟩. (14)

GL and GS in the above equations represent the generations of
enstrophy by vortex stretching at large and small scales.

Similarly, the governing equations of the ensemble averaged
large-scale and small-scale helicity read as

∂

∂t
⟨uL
⋅ ωL
⟩ = −ΠH,L→S

Δ − ⟨2ν
∂uL

i

∂xj
∂ωL

i

∂xj
⟩, (15)

∂

∂t
⟨uS
⋅ ωS
⟩ = ΠH,L→S

Δ − ⟨2ν
∂uS

i

∂xj
∂ωS

i

∂xj
⟩, (16)
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and the helicity transfer function from large to small scales defines

ΠH,L→S
Δ = ΠAD,L→S

Δ + ΠVS,L→S
Δ , (17)

where

ΠAD,L→S
Δ = ⟨ωL

i (u
L
j + uS

j )
∂uS

i

∂xj
+ uL

i (u
L
j + uS

j )
∂ωS

i

∂xj
⟩, (18a)

ΠVS,L→S
Δ = ⟨−uL

i (ω
L
j + ωS

j )
∂uS

i

∂xj
⟩. (18b)

The methodology of the above derivation process is similar to our
previous dual-channel helicity cascade theory.42

The conservative feature of the cross-scale helicity transfer on
the right-hand side of Eqs. (15) and (16) confirms that helicity
is an inviscid invariant in three-dimensional turbulence. However,
the governing equations of the ensemble averaged large-scale and
small-scale enstrophy do not possess the cross-scale conservative
feature, which indicates that the enstrophy is not an inviscid invari-
ant in three-dimensional turbulence. The conservative helicity cas-
cade can be decomposed into an advection term by velocity and
vorticity (ΠAD,L→S

Δ ) and a vortex stretching term (ΠVS,L→S
Δ ). Note

that the advection by vorticity leads to a conservative cross-scale
enstrophy transfer, but the vortex stretching serves as a source in
three-dimensional turbulent flows.

From the perspective of physical space, vortex stretching is the
main mechanism of the energy cascade, but there is a lack of rig-
orous evidence to support this phenomenological picture.30 It is the
vortex stretching that destroys the conservative characteristics of the
enstrophy cascade in three-dimensional flows.41 Previous interpre-
tations of the helicity cascade based on the filtering approach state
that the skew–strain plays an important role.11 Recently, the dual-
channel helicity cascade theory we proposed illustrated that the vor-
tex stretching is also involved in the helicity cascade process, which
is reflected in the definition of the second channel of the helicity
cascade.42 Benefiting from the bandpass filtering method, we can
also prove that the vortex stretching is involved in the definition
of cross-scale helicity transfer Eq. (17) in physical space. Therefore,
we summarize that (i) vortex stretching has been proven as a direct
evidence to play an essential role in the helicity cascade process in
physical space and (ii) vortex stretching, together with velocity and
vorticity advections, constitutes the dynamical helicity cascade.

Next, we provide some numerical results of the cross-scale
transfer functions of energy and helicity in HIT. In classical turbu-
lent cascade theory, the forward cascade denotes the energy transfers
from large scales to small scales and the backscatter cascade denotes
the energy transfers from small scales to large scales. The notation
also applies to the helicity cascade. In Fig. 3, we supply the numer-
ical results of cross-scale transfer functions of energy and helicity
on different ratios of the analyzed two scales, for both forward cas-
cade and backscatter cascade. The peak and valley locations, which
reflect the characteristics of the scale locality, are summarized in
Table II. For the forward energy cascade, the numerical results in
Fig. 3(a) confirm the conclusion that the structures of a specific
length scale L mostly transfer their energy to the structures of length
scale 0.3L.35 The peak locations in helical turbulence are somewhat
lower than the results at adjacent scales reported in the literature,35

FIG. 3. Ensemble averages of the normalized energy transfer function (a) and
the helicity transfer function (b) at different length scales. The peak values of the
ensemble averages of the cross-scale transfer functions of energy and helicity are
selected as the max(⟨ΠE,L→S

Δ ⟩) and max(⟨ΠH,L→S
Δ ⟩), respectively.

which reflects a lower locality of the energy cascade under the bro-
ken mirror symmetry. Besides, scale locality exists in the backscatter
energy cascade procedure, and the structures of a specific length
scale L mostly transfer their energy in reverse to the structures of
length scale 1.5L–2L.

We previously assumed that the helicity cascade is less local
because the locality condition of the vorticity gradient is more strin-
gent than that of the velocity gradient in the energy cascade pro-
cess,10 and the direct numerical evidence shown in Fig. 3(b) confirms
this assumption. In contrast with energy cascades at the same scales
in Table II, the peak locations of the forward helicity cascade are

TABLE II. The peak locations of forward and backscatter energy and helicity
cascades.

Forward Backscatter

L = 88η L = 44η L = 22η L = 88η L = 44η L = 22η

Energy 0.25 0.34 0.44 1.88 1.73 1.67
Helicity 0.21 0.32 0.40 2.00 1.94 1.68
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lower than those of the forward energy cascade, and the valley loca-
tions of the backscatter helicity cascade are deeper than those of the
backward energy cascade, which reflects the weaker scale locality of
the helicity cascade. In addition, the structures of a specific length
scale L mostly transfer their helicity in reverse to structures of length
scale 1.5L–2L in the inertial subrange. Therefore, we conclude that
the scale locality ranges of forward and backscatter helicity cascades
are broader than those of energy cascades. When adopting the multi-
scale gradient expansion method for the helicity cascade,11 more
scales should be involved in the truncation of the helicity flux.

The adopted bandpass filtering method was used to provide
local spatial geometry and morphology of turbulent structures and
verified that the small-scale structures tend to cluster around a 3–5
times larger scale.35,40 Leung, Swaminathan, and Davidson40 pro-
posed that the general shape and spatial distribution are not dras-
tically altered by adopting a different threshold and suggested that
a value of m + 1.5σ (m denotes the mean and σ denotes variation)
can be selected as the threshold. Here, we also select the value m
+ 1.5σ as the threshold to investigate the local spatial distribution of
the helicity cascade. The traditional helicity flux defined by a low-
pass filter describes the helicity transfer across a specific scale L,42

and only a portion can transfer to a specific scale S. We denote the
overlap regions where both the traditional helicity flux and present
bandpass filtered helicity flux are larger than a threshold m + 1.5σ
as the helicity flux from scale L = 44η to S = 14η. We show the
iso-surface of the traditional helicity flux with filter width L = 44η
in Fig. 4(a) and the iso-surface of the helicity flux from scale L
= 44η to S = 14η in Fig. 4(b). The analyzed two scales correspond
to the peak location of the red dashed line in Fig. 3(b). The over-
lap regions in Fig. 4(b) correspond to the spatial information with
helicity transfer between two specific scales extracted from the tra-
ditional helicity flux. It reflects the main spatial-distribution char-
acteristic and the scale information of the traditional helicity flux.
The overlap regions tend to form clusters, and they are closely asso-
ciated with the spatial distributions of large-scale and small helicity
structures.

The two contributions to the conservative helicity cascade
[Eqs. (18a) and (18b)] at three typical scales are numerically investi-
gated in Fig. 5. Although the numerical results in Fig. 5 are similar
to those in Fig. 3, their definitions imply that both of them could

FIG. 4. (a) Iso-surface of traditional helicity flux ΠH
Δ defined by a low-pass filter

with filter width L = 44η. (b) Iso-surface of overlap regions of traditional helicity flux
ΠH

Δ defined by a low-pass filter with filter width L = 44η and the present helicity
flux ΠH,L→S

Δ defined by a bandpass filter with scale L = 44η and S = 14η.

FIG. 5. Ensemble averages of two helicity transfer functions at different length
scales.

lead to a conservative helicity cascade. The amplitudes of the ensem-
ble averages of the advection term Eq. (18a) are always larger than
those of the vortex stretching term [Eq. (18b)] for both forward and
backscatter helicity cascades, which means that the vortex stretching
term plays a secondary role in the helicity cascade process in phys-
ical space. In addition, the local helicity transfer at relatively small
scales is still strong, which is reflected in the larger amplitudes at
small scales in Fig. 3. The regulation of a local stronger helicity cas-
cade at small scales is consistent with the previous conclusions that
the local energy cascade at small scales is very strong.43 In contrast to
the statistical analysis based on filtering methods, this scale decom-
position method provides more statistical evidence of the specific
underlying physical mechanism.

The scale locality of energy and helicity cascades in physical
space was theoretically and numerically investigated. We employed
the scale decomposition method to derive an exact expression for the
conservative helicity transfer in physical space. It has been rigorously
proven that vortex stretching plays an essential role in the helic-
ity cascade process, although it is secondary to the advection term
by velocity and vorticity. However, vortex stretching is associated
with the energy cascade and breaks the conservative characteristic
of enstrophy transfer in three-dimensional flows. Although a tur-
bulent structure of scale L will also transfer most of its helicity to
smaller scales of around 0.3L, the scale locality of the helicity cascade
is slightly weaker than that of the energy cascade. Hence, in broken
reflection-symmetric flows, the scale locality of the energy and helic-
ity cascades will be weaker, and more scales should be involved in
modeling the turbulent cascade of helical turbulence.
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