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Abstract Two-dimensional theories of fracture are still applied widely today and provide theoretical founda-
tions for solutions to many practical problems. These two-dimensional theories are based on the plane strain
or plane stress assumption. However, strictly speaking, for a thin elastic plate with a through-thickness crack
under tension, plane strain conditions can be met only at the crack front (except the corn point) and plane stress
conditions exist at a distance of about one half of the plate thickness from the crack front in the mid-plane.
What are the stress fields in the region where both plane strain and plane stress conditions cannot be met? In
this paper, further investigations into the problem are carried out. Three-dimensional Maxwell stress functions,
the principle of minimum complementary potential energy and three-dimensional J -integrals are employed
to obtain an analytical solution to depict the relationship among out-of-plane constraints, three-dimensional
J -integrals and stress intensity factors. Three-dimensional finite element simulations with fine meshes are
carried out to verify the analytical results. Compared with the corresponding plane strain solution, the solution
proposed is valid in a larger region.

1 Introduction

Solutions based on two-dimensional theories of fracture are accurate enough for many practical problems.
However, there are some examples that these two-dimensional theories result in a distorted view of reality [1].
Undoubtedly, three-dimensional fracture analysis is needed to fully understand fracture behavior of materials,
and the study of three-dimensional fracture has been an important issue in fracture mechanics.

In earlier studies, Hartranft and Sih [2] and Sih [3] derived an asymptotic solution for the three-dimensional
stress fields near the front of a crack in an elastic plate under tension. Considering a quarter of infinite crack
plane in a half space, Benthem [4] investigated the singularity at a corner point (intersection of the crack front
and the free surface). Benthem concluded that the singularity at a corner point is weaker than the square-
root singularity. Using a separable eigen-function approach, Kawai et al. [5] derived a solution for the stress
fields near a corner point, which are expressed as the superimposition of three kinds of singular terms. Yang
and Freud [6] studied the state of stress in a thin elastic plate containing a through-thickness crack under
Mode-I loading and derived a solution in the form of a real integral for the stress fields near the crack front.
They showed that a finite lateral contraction appears at the crack front, and the proposed solution merges
smoothly with the corresponding plane stress solution at a distance of one half of the plate thickness from
the crack front. Nakamura and Parks [7] carried out a stress analysis for a thin cracked elastic plate under
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tension using three-dimensional finite element methods. They revealed that three-dimensional effects vanish
at a radial distance of one half of the plate thickness from the crack front in themid-plane. These authors argued
that their numerical results for the stress fields near the corner point are consistent with Benthem’s solutions
[4]. Pook [8–10] presented some theoretical solutions for corner point singularities. He believed that corner
point singularities exist, but there are only limited cases that these singularities should be considered. Using a
method of separation of variables, Leung and Su [11] presented an analytical solution for Mode-I cracking in a
semi-infinite domain. The solution gave an explanation for the phenomena that stress intensity factors decrease
sharply in the region very close to the surface (also called boundary layer). Considering an elastic plate with
a through-thickness crack, Kwon and Sun [12] presented three-dimensional finite element results of the crack
front stress fields in the boundary layer. These authors argued that the solution for the crack front stress fields
in the boundary layer can be expressed as the superimposition of the corner singularity field solution and
the classic K -field solution. Noda [13] proposed stress intensity evaluation formulae for a three-dimensional
crack under mixed mode loading and also the crack terminating at an interface between bi-materials. In his
paper, the author argued that the maximum stress intensity factor Kmax is proportional to

√
Ar

1−η
. Here, Ar

is the area of the crack and η is the eigen-root determined by Dundurs’ parameters. Using three-dimensional
dislocation technologies, Kotousov [14] investigated the effect of plate thickness on the stress fields near
the front of a through-thickness crack in an elastic plate under in-plane loading. Kotousov concluded that
there is a new mode of singularity (the out-of-plane mode) in angular sectors subjected to in-plane loading.
Using a complex variable method, Luo and Wang [15] presented a solution for the elastic fields in an infinite
matrix containing an elliptic nano-inhomogeneity under anti-plane shear. Hutar et al. [16] investigated the
effect of corner singularities on fatigue crack behavior. They concluded that corner singularities decrease
fatigue crack propagation rates and result in a curved shape of crack front. Kotousov et al. [17] compared the
difference between three-dimensional crack front stress fields and the corresponding two-dimensional crack
tip stress fields for a cracked elastic plate under remote loading. These authors argued that 5 singularity modes
appear in a real three-dimensional problem, while there are only 3 singularity modes in the classical theories
of fracture. Considering multiple cracks and inhomogeneous inclusions beneath a half-space surface under
contact loading, Zhou and Wei [18,19] proposed a semi-analytic formula to describe the relationship among
surface deformation, pressure, and subsurface stress fields. He and Kotousov [20] carried out an experimental
study to evaluate the effect of corner singularities. Their experimental results showed that the crack front
fields in the region close to the surface of a cracked plate are significantly affected by the corner singularity.
Considering a very small corner crack at a silicon-resin interface under tensile loading, Koguchi andYokoyama
[21] proposed a solution to depict the variation of mode-II stress intensity factors along the crack front using
boundary element methods. Soliman et al. [22] proposed a new expression of three-dimensional J -integrals for
studying the fracture process in elements. Considering a cracked infinite elastic plate under in-plane and out-
of-plane loads, Chaudhuri [23] presented a rigorous approach to investigate the through-thickness variation
of stress intensity factors and energy release rates. The solutions proposed can explain the phenomenon that
Mode-I stress intensity factors decrease rapidlywhen approaching the free surface. Ludwig et al. [24] presented
a new three-dimensional criterion for anisotropic crack growth in nickel based alloys under thermo-mechanical
fatigue.

Inmost papersmotioned above, the coefficient K (or the stress intensify factor) is considered as a function of
the thickness-wise coordinate or thickness of a plate. These solutionsmay be accurate enoughwhen plane strain
conditions are met. However, what are the stress fields in the region where plane strain conditions gradually
change into plane stress conditions? In our previous paper [25], the effect of an out-of-plane constraint on the
crack front fields in the thickness direction is examined. In this paper, further investigations on the problem are
carried out. The variations of out-of-plane constraints in the thickness and radial directions are investigated,
and the effects of out-of-plane constraints on the crack front stress fields are depicted by analytical solutions.
A series of new analytic results have been presented and compared with the corresponding numerical results.
Fitting equations for out-of-plane constraints and three-dimensional J -integrals have been obtained for possible
engineering applications.

2 Basic equations

The stress–strain relation of certain elastic materials in a cylindrical coordinate system shown in Fig. 1 may
be written as
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Fig. 1 A thin plate containing a through-thickness crack subjected to remote uniform tensile loading σ∞

εr = σr − v (σθ + σz)

E
, εθ = σθ − v (σr + σz)

E
, εrθ = (1 + v)

E
σrθ ,

εz = σz − v (σr + σθ )

E
, εr z = (1 + v)

E
σr z, εθ z = (1 + v)

E
σθ z . (1)

Here, E represents Young’s modulus and v represents Poisson’s ratio.
When Maxwell stress functions (φi , i = 1, 2, 3) are introduced, stress components in the cylindrical

coordinate system may be expressed as

σr = cos2 θ
∂2φ2

∂z2
+ sin2 θ

∂2φ1

∂z2
+ 1

r
(φ3)

′ + 1

r2
(φ3)

.. ,

σθ = sin2 θ
∂2φ2

∂z2
+ cos2 θ

∂2φ1

∂z2
+ (φ3)

′′
,

σrθ = − sin 2θ

2

(
∂2φ2

∂z2
− ∂2φ1

∂z2

)
+ 1

r2
(φ3)

. − 1

r
(φ3)

.′ ,

σz = sin2 θ (φ1)
′′ + 2 sin θ cos θ

r
(φ1)

.′ + cos2 θ

r
(φ1)

′ − 2 sin θ cos θ

r2
(φ1)

. + cos2 θ

r2
(φ1)

..
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+ cos2 θ (φ2)
′′ − 2 sin θ cos θ

r
(φ2)

.′ + sin2 θ

r
(φ2)

′ + 2 sin θ cos θ

r2
(φ2)

. + sin2 θ

r2
(φ2)

.. ,

σr z = − sin θ

(
sin θ

∂ (φ1)
′

∂z
+ cos θ

r

∂ (φ1)
.

∂z

)
− cos θ

(
cos θ

∂ (φ2)
′

∂z
− sin θ

r

∂ (φ2)
.

∂z

)
,

σθ z = − cos θ

(
sin θ

∂ (φ1)
′

∂z
+ cos θ

r

∂ (φ1)
.

∂z

)
+ sin θ

(
cos θ

∂ (φ2)
′

∂z
− sin θ

r

∂ (φ2)
.

∂z

)
. (2)

Here, (). = ∂
∂θ

and ()
′ = ∂

∂r .

It can be proved that Eq. (2) satisfies the following equilibrium equations:

(σr )
′ + 1

r
(σrθ )

. + ∂σr z

∂z
+ σr − σθ

r
= 0,

(σrθ )
′ + 1

r
(σθ )

. + ∂σθ z

∂z
+ 2σrθ

r
= 0,

(σr z)
′ + 1

r
(σθ z)

. + ∂σz

∂z
+ σr z

r
= 0. (3)

3 Three-dimensional crack front fields

3.1 Expressions of stress–strain fields near the crack front

We consider a cracked thin plate under remote tension, shown in Fig. 1. Stress functions are attempted to be
expressed as

φ1 = φ2 = F1 (z, r) r
3
2 φ̃1(θ),

φ3 = φ = F (z, r) r
3
2 φ̃(θ). (4)

Here, we assume that

lim
r→0

(
∂(n)F1 (z, r)

∂rn
,
∂(n)F1 (z, r)

∂zn
,
∂(n)F (z, r)

∂rn
,
∂(n)F (z, r)

∂zn

)
�= ∞, n = 0, 1, 2, 3, 4; (5)

when r tends to 0, one may find

lim
r→0

(
∂2φ1

∂z2
,
∂2φ1

∂r∂z
,

∂2φ1

r∂θ∂z

)
= 0. (6)

Substituting Eq. (4) into the expressions of stress components [Eq. (2)] and noting Eqs. (5) and (6), the stress
components near the crack front may be re-written as

σr ∼= 1

r
(φ)

′ + 1

r2
(φ).. = F (z, r)

(
3

2
φ̃ +

(
φ̃
)..

)
r− 1

2 ,

σθ
∼= (φ)

′′ = 3

4
F (z, r) φ̃r− 1

2 ,

σrθ ∼= 1

r2
(φ). − 1

r
(φ).

′ = −1

2
F (z, r)

(
φ̃
).

r− 1
2 ,

σz = (φ1)
′′ + 1

r
(φ1)

′ + 1

r2
(φ1)

.. = F1 (z, r)

(
9

4
φ̃1 +

(
φ̃1

)..
)
r− 1

2 ,

σr z ∼= 0,

σθ z ∼= 0. (7)
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Substituting Eq. (7) into Eq. (1), the strain components near the crack front may be written as

εr = −v (φ + φ1)
′′ + 1−v

r (φ)
′ + 1−v

r2
(φ)..

E
,

εθ =
(φ)

′′ − v
(
(φ1)

′′ + 1
r (φ + φ1)

′ + 1
r2

(φ + φ1)
..
)

E
,

εrθ = (1 + v)

E

(
1

r2
(φ). − 1

r
(φ).

′
)

,

εz = (φ1 − vφ)
′′ + 1

r (φ1 − vφ)
′ + 1

r2
(φ1 − vφ)..

E
,

εr z = 0,

εθ z = 0. (8)

According to the principle of minimum complementary potential energy and employing the variational
method, one may obtain partial differential governing equations, written as

(rεθ )
′′ + (εr )

..

r
− (εr )

′ − 2 (εrθ )
.′ − 2

(εrθ

r

). = 0,

(rεz)
′′ +

(εz

r

).. − (εz)
′ = 0. (9)

The derivation of Eq. (9) is presented in the Appendix.
Substituting Eq. (8) into Eq. (9), one may obtain

∇4 (φ − vφ1) = 0,

∇4 (φ1 − vφ) = 0. (10)

Then, one has

∇4 (φ) = 0,∇4 (φ1) = 0,

∇4 =
(

∂2

∂r2
+ ∂

r∂r
+ ∂2

r2∂θ2

)(
∂2

∂r2
+ ∂

r∂r
+ ∂2

r2∂θ2

)
. (11)

Substituting Eq. (4) into Eq. (11), one may have

F (z, r)
(
φ̃
).... +

(
5

2
F (z, r) + 4 (F (z, r))

′
r + 2 (F (z, r))

′′
r2

)(
φ̃
)..

+
(

9

16
F (z, r) + (F (z, r))

′
r + 25

2
(F (z, r))

′′
r2 + 8 (F (z, r))

′′′
r3 + (F (z, r))

′′′′
r4

)
φ̃ = 0,

F1 (z, r)
(
φ̃1

).... +
(
5

2
F1 (z, r) + 4 (F1 (z, r))

′
r + 2 (F1 (z, r))

′′
r2

)(
φ̃1

)..

+
(

9

16
F1 (z, r) + (F1 (z, r))

′
r + 25

2
(F1 (z, r))

′′
r2 + 8 (F1 (z, r))

′′′
r3 + (F1 (z, r))

′′′′
r4

)
φ̃1 = 0.

(12)

Noting Eq. (5) and ignoring the terms containing r , r2, r3, and r4, Eq. (12) may be re-written as
(
φ̃
).... + 5

2

(
φ̃
).. + 9

16
φ̃ = 0,

(
φ̃1

).... + 5

2

(
φ̃1

).. + 9

16
φ̃1 = 0. (13)

The general solutions for Eq. (13) may be expressed as

φ̃ (θ) = A cos
θ

2
+ B sin

θ

2
+ C cos

3

2
θ + D sin

3

2
θ,
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φ̃1 (θ) = A1 cos
θ

2
+ B1 sin

θ

2
+ C1 cos

3

2
θ + D1 sin

3

2
θ. (14)

Boundary and symmetry conditions require

σθ (r, ±π, z) = 0, σrθ (r, 0, z) = 0, σrθ (r, ± π, z) = 0,

σz (r, θ, z) = σz (r, − θ, z) . (15)

Then, Eq. (14) may be re-written as

φ̃ = A

(
cos

1

2
θ + 1

3
cos

3

2
θ

)
,

φ̃1 = A1 cos
1

2
θ + C1 cos

3

2
θ + D1 sin

3

2
θ. (16)

Substituting Eq. (16) into the stress components in Eq. (7) and letting

K (z, r)√
2π

= F (z, r) A,

K1 (z, r)√
2π

= F1 (z, r) A1, (17)

one may have

σr = K (z, r)

4
√
2πr

(
5 cos

θ

2
− cos

3

2
θ

)
,

σθ = K (z, r)

4
√
2πr

(
3 cos

θ

2
+ cos

3

2
θ

)
,

σrθ = K (z, r)

4
√
2πr

(
sin

θ

2
+ sin

3

2
θ

)
,

σz = 2K1 (z, r)√
2πr

cos
θ

2
,

σr z ∼= 0,

σθ z ∼= 0 (18)

or

σx = σr + σθ

2
+ σr − σθ

2
cos 2θ − σrθ sin 2θ = K (z, r)√

2πr
cos

θ

2

(
1 − sin

1

2
θ sin

3

2
θ

)
,

σy = σr + σθ

2
− σr − σθ

2
cos 2θ + σrθ sin 2θ = K (z, r)√

2πr
cos

θ

2

(
1 + sin

1

2
θ sin

3

2
θ

)
,

τxy = σr − σθ

2
sin 2θ + σrθ cos 2θ = K (z, r)√

2πr
cos

θ

2
sin

θ

2
cos

3

2
θ,

σz = 2K1 (z, r)√
2πr

cos
θ

2
= 2Tz (z, r) K (z, r)√

2πr
cos

θ

2
,

σr z ∼= 0,

σθ z ∼= 0. (19)

Here, Tz (z, r) is the out-of-plane constraint defined as

Tz (z, r) = σz

σx + σy
= K1 (z, r)

K (z, r)
, 0 ≤ Tz (z, r) ≤ v. (20)

Substituting Eq. (18) into Eq. (1), the expressions of strain components may be re-written as

εr = K (z, r)

4E
√
2πr

(
(5 − 3v − 8vTz (z, r)) cos

1

2
θ − (1 + v) cos

3

2
θ

)
,
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Fig. 2 J -integral for three-dimensional fracture

εθ = K (z, r)

4E
√
2πr

(
(3 − 5v − 8vTz (z, r)) cos

1

2
θ + (1 + v) cos

3

2
θ

)
,

εrθ = K (z, r)

4E
√
2πr

(1 + v)

(
sin

1

2
θ + sin

3

2
θ

)
,

εz = 2K (z, r)

E
√
2πr

(Tz (z, r) − v) cos
1

2
θ,

γzr = 0,

γzθ = 0. (21)

When r is zero, Tz should equal v in order to meet plane strain conditions.

3.2 Expression of K (r, z)

A three-dimensional J -integral [26–29] may be written as

J (η) = lim
r1→0

∫
Γ1

(
Wdy − σi j n j ui,xds

)
,

=
∫
Γ2

(
Wdy − σi j n j ui,xds

) −
∫

A(Γ2)

∂
(
σi zui,x

)
∂z

dA (Γ2) , i = x, y, z, j = x, y. (22)

Here, J (η) represents the J -integral at a given point η along the crack front shown in Fig. 2. W is the
strain energy density, σi j and ui are stress and displacement components separately. Both path Γ1 and path Γ2
lie in the plane perpendicular to the crack front, and n j are the components of a unit vector outward normal to
the integral paths and normal to the crack front. AΓ2 represents the region bounded by Γ2.

The integral of the strain energy density W along the path Γ1 may be expressed as
∫
Γ1

Wdy =
∫ π

−π

Wr1 cos θdθ ∼=
∫ π

−π

1

2
(σrεr + σθεθ + σzεz + 2σrθ εrθ ) r1 cos θdθ. (23)
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Substituting Eqs. (18) and (21) into Eq. (23), one may obtain

∫
Γ1

Wdy = K 2 (z, r)

64πE

∫ π

−π

{(
34 − 30v − 128vTz (z, r) + 64 (Tz (z, r))2

) (
cos

θ

2

)2

+2 (1 + v)

(
cos

3

2
θ

)2

− 4 (1 + v) cos
3

2
θ cos

θ

2
+ 2 (1 + v)

(
sin

θ

2
+ sin

3

2
θ

)2
}
cos θdθ

= K 2 (z, r)

4E

(
2 (Tz (z, r))2 − 4vTz (z, r) − v + 1

)
. (24)

Similarly, the second integral in the first line in Eq. (22) may be expressed as [30]

−
∫
Γ1

σi j n j ui,xds = −
∫ π

−π

(
σxnxux,x+σxynyux,x + σxynxuy,x + σynyuy,x

)
r1dθ

= −
∫ π

−π

[
σr

(
− sin θ

r1
((ur )

. − (uθ )) + (ur )
′
cos θ

)

+ σrθ

(
− sin θ

r1
((uθ )

. + ur ) + cos θ (uθ )
′
)]

r1dθ. (25)

Using the strain–displacement relation and the method of partial integration, ur may be expressed as

ur =
∫

εrdr =
∫

K (z, r)

4E
√
2πr

(
(5 − 3v − 8vTz (r, z)) cos

θ

2
− (1 + v) cos

3

2
θ

)
dr

=
(
(5 − 3v) cos θ

2 − (1 + v) cos 3
2θ

)
4
√
2πE

∫
K√
r
dr − 2v cos θ

2√
2πE

∫
TzK√

r
dr ,

=
(
(5 − 3v) cos θ

2 − (1 + v) cos 3
2θ

)
2
√
2πE

(
K

√
r −

∫
(K )

′ √
rdr

)

− 4v√
2πE

cos
θ

2

(
TzK

√
r −

∫
(TzK )

′ √
rdr

)

≈ K (z, r)
√
r

2
√
2πE

(
(5 − 3v − 8vTz (z, r)) cos

1

2
θ − (1 + v) cos

3

2
θ

)
. (26)

Here,
∫

(K )
′ √

rdr and
∫

(TzK )
′ √

rdr are ignored because of the following equations:

lim
r→0

∫
(K )

′ √
rd (r)

K
√
r

= (K )
′
r

(K )
′
r + 1

2K
= 0,

lim
r→0

∫
(TzK )

′ √
rd (r)

TzK
√
r

= (TzK )
′
r

(TzK )
′
r + 1

2TzK
= 0. (27)

Considering the strain–displacement relations, one may have the expressions of (ur )., (uθ )
., and uθ , as

(ur )
. = K (z, r)

√
r

4
√
2πE

(
− (5 − 3v − 8vTz (z, r)) sin

θ

2
+ 3 (1 + v) sin

3

2
θ

)
,

(uθ )
. = εθr − ur = K (z, r)

√
r

4
√
2πE

(
(−7 + v + 8vTz (z, r)) cos

θ

2
+ 3 (1 + v) cos

3

2
θ

)
,

uθ = K (z, r)
√
r

2
√
2πE

(
(−7 + v + 8vTz (z, r)) sin

θ

2
+ (1 + v) sin

3

2
θ

)
. (28)
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Substituting Eqs. (18), (26), and (28) into Eq. (25), one may have

−
∫
Γ1

σi j n j ui,xds = −K 2 (z, r)

32πE

∫ π

−π

(
5 cos

1

2
θ − cos

3

2
θ

) {
− (9 + v − 8vTz (z, r)) sin

1

2
θ sin θ

− (1 + v) sin
3

2
θ sin θ + (5 − 3v − 8vTz (z, r)) cos

1

2
θ cos θ − (1 + v) cos

3

2
θ cos θ

}
dθ

−K 2 (z, r)

32πE

∫ π

−π

(
sin

1

2
θ + sin

3

2
θ

) {
− (3 − 5v − 8vTz (z, r)) cos

1

2
θ sin θ

− (1 + v) cos
3

2
θ sin θ − (7 − v − 8vTz (z, r)) sin

1

2
θ cos θ + (1 + v) sin

3

2
θ cos θ

}
dθ

= −K 2 (z, r)

4E
(2vTz (z, r) − v − 3) . (29)

Substituting Eqs. (24) and (29) into Eq. (22), one may have

J (z) =
∫
Γ1

(
Wdy − σi j n j ui,xds

) = K 2 (z, r)

2E

(
(Tz (z, r))2 − 3vTz (z, r) + 2

)

or

K (z, r) =
√

2E J (z)

(Tz (z, r))2 − 3vTz (z, r) + 2
. (30)

Specially, K = √
E J when Tz = 0 (plane stress), and K =

√
E J
1−v2

when Tz = v (plane strain).

4 Three-dimensional finite element model

K (z, r) is undetermined and should be related to the applied loading. On the other hand, Eq. (30) shows
that K (z, r) depends on J (z) and Tz (z, r). When the values of J (z) and Tz (z, r) are determined by three-
dimensional finite element methods, the value of K (z, r) can be obtained by Eq. (30).

A cylinder containing a crack front is considered, see Fig. 3a. Considering symmetry conditions in the
problem, only a quarter of the cylinder is modeled, and the mesh is constructed with 8-node three-dimensional
brick elements, as shown in Fig. 3b. In x–y planes, the size of an element increases progressively in the radial
direction, and the progression ratio is taken as 1.21. All radial sizes of the elements at the crack front are
2× 10−5h, while there are 36 elements which distribute uniformly in the circumferential direction. The same
planar mesh is repeated along the z-axis from the mid-plane (z = 0) to the free surface (z = h). There are
sixty elements along the crack front, and the thickness of an element increases gradually when approaching
the mid-plane. The progression ratio is 1.12, and the minimum thickness of elements at the free surface is
1.11 × 10−4h.

Boundary conditions for the current problem may be expressed as

uz |z=0 = 0, uy
∣∣y=0,x≥0 = 0,

σr |r=a = K far

4
√
2πa

(
5 cos

θ

2
− cos

3

2
θ

)
,

σrθ |r=a = K far

4
√
2πa

(
sin

θ

2
+ sin

3

2
θ

)
. (31)

Here, K far = √
2πaσ∞, and a = 10h.
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(a) 

(b) 

r

x

y

z

�

a

2h

h

a

Fig. 3 a A cracked cylinder containing a crack front, b finite element mesh of the quarter-mode. Here, a = 10h
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Fig. 4 a J

(K far)
2 along the half-crack front for various Poisson’s ratios, b comparison with Nakamura and Park’s results

5 Results and discussions

Figure 4a shows that the value of J (z) decreases from the mid-plane (z = 0) to the plane near the free surface
(z = 0.99). Figure 4b shows that the current results are in good agreement with the results given by Nakamura
and Parks [7]. Based on the current numerical results, a fitting equation for J (z) may be expressed as

E J(
K far

)2 = P1
z
h + P2

z
h + P3

, 0 ≤ z

h
≤ 0.99. (32)

The coefficients P1, P2, and P3 for various Poisson’s ratios are shown in Table 1.
The variation of Tz

v
in the radial direction near the crack front for various normalized depth z/h is plotted

in Fig. 5. One may observe that when r tends to zero, the value of Tz tends to v for a normalized depth which
varies from 0 to 0.99. This may imply that plane strain conditions can bemet when r is zero except at the corner
point. Figure 5 also illustrates that the value of Tz decreases with increasing r , and the three-dimensional effect
appears within a radial distance of about one half of the plate thickness from the crack front in the mid-plane.
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Table 1 The values of P1, P2, and P3 for various Poisson’s ratios

v P1 P2 P3

0 1 − 1 −1
0.15 1.028 −1.074 −1.051
0.3 1.055 −1.096 −1.057
0.4 1.084 −1.120 −1.062
0.499 1.127 −1.155 −1.071
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Increasing z/h 

Fig. 5 The variation of Tz
v
in the radial direction near the half-crack front for various depths
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Fig. 6 The variation of K
K far in the radial direction for various Poisson’s ratios. Here, the analytical results are given by Eq. (30),

the numerical results are given by K = σy
√
2πr , and the plane strain K -field results are given by K =

√
E J (z)
1−v2
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0.98, 0.99. 

far

K
K

10log ( / )r h

z/h = 0, 0.51, 0.69, 0.81, 0.86, 0.91, 0.94, 
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Fig. 7 The variation of K
K far in the radial direction for various depths. Here, the analytical results are given by Eq. (30), the

numerical results are given by K = σy
√
2πr , and the plane strain K -field results are given by K =

√
E J (z)
1−v2

The value of Tz decreases more quickly with increasing normalized depth z/h, and Tz vanishes at a radial
distance of about 1.5% of the plate thickness from the crack front when z/h is 0.99. Based on the numerical
results in Fig. 5, a fitting equation for Tz may be expressed by

Tz
v

= q1
( r
h

)3 + q2
( r
h

)2 + q3
r
h + q4

r
h + q4

,

q1 = 32.5
( z

h

)5 − 57.25
( z

h

)4 + 21.7
( z

h

)3 + 3.658
( z

h

)2 − 1.875
z

h
+ 0.939,

q2 = −49.35
( z

h

)5 + 85.57
( z

h

)4 − 34.71
( z

h

)3 − 1.319
( z

h

)2 + 1.845
z

h
− 1.697,



2908 D. K. Yi, T. C. Wang

0 0.2 0.4 0.6 0.8 0.99
-3

-2.5

-2

-1.5

-1

-0.5

0

Analysis

Plane strain

10log ( )r
h

/z h

0.499v �

Fig. 8 The variation of the radii of effective regions for analytical solutions and plane strain solutions in the thickness direction

q3 = 14.79
( z

h

)5 − 20.14
( z

h

)4 + 2.504
( z

h

)3 + 2.944
( z

h

)2 − 0.893
z

h
+ 0.762,

q4 = 14.56
( z

h

)6 − 42.48
( z

h

)5 + 44.49
( z

h

)4 − 20.26
( z

h

)3 + 3.87
( z

h

)2 − 0.2
z

h
+ 0.019,

0 ≤ r

h
≤ 1, 0 ≤ z

h
0 ≤ 0.99. (33)

The variations of K (z,r)
K far in the radial direction in the mid-plane for various Poisson’s ratios are plotted in

Fig. 6. In this Figure, the analytical results of K (z, r) are given by Eq. (30), the numerical results of K (z, r) are
given by the equation that K (z, r) = σy

√
2πr , and the plane strain K -field results are given by the equation

that K (z, r) =
√

E J (z)
1−v2

. From Fig. 6, one may observe that the analytical results agree with the corresponding

numerical results. Both analytical and numerical results show that the value of K (z,r)
K far decreases with increasing

r . This may imply that the value of K (z,r)
K far decreases with decreasing Tz . Figure 6 also shows that when r tends

to zero, both analytical and numerical results tend to the corresponding plane strain K -field results. However,
the difference between the numerical results and the corresponding plane strain K -field results becomes larger
with increasing r . In the case that v ≤ 0.3, the maximum deviation from the numerical results, measured

by
∣∣∣(σy

√
2πr −

√
E J (z)
1−v2

)
/σy

√
2πr

∣∣∣, is less than 5%. So, in this case the plane strain K -field solutions are

accurate enough to depict the stress state in the region 0 < r/h < 1 in the mid-plane. But when Poisson’s
ratio has a larger value, for example, it is taken as 0.499, the maximum deviation reaches 17%, which should
not be ignored.

The variation of K (z,r)
K far in the radial direction for various normalized depths z/h is depicted in Fig. 7. This

Figure shows that the analytical results, the plane strain K -field results, and the numerical results are consistent
in the region close to the crack front. However, the radius of the region becomes smaller when approaching
the free surface. In the plane which is very close to the free surface (z/h = 0.99), the radius is about 10−3 h.

Based on a criterion that
∣∣∣(σy

√
2πr −

√
2E J

(Tz)2−3vTz+2

)
/σy

√
2πr

∣∣∣ ≤ 5% or∣∣∣(σy
√
2πr −

√
E J (z)
1−v2

)
/σy

√
2πr

∣∣∣ ≤ 5%, the radius of the region where the analytical results or the plane

strain K -field results can match the numerical results is plotted in Fig. 8. The Figure shows that the current
analytical results are effective in a larger region than the corresponding plane strain K -field results.

In comparison with numerical results, fitting results for E J

(K far)
2 and Tz

v
match the corresponding numerical

results, as shown in Fig. 9.
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6 Summary and conclusions

Considering a thin elastic plate containing a through-thickness crack under tension, we propose an analytical
solution for the three-dimensional singularity fields in the region where the gradual transition from plane
strain conditions to plane stress conditions occurs. Three-dimensional Maxwell stress functions, the principle
of minimum complementary potential energy, and three-dimensional J -integrals are employed to derive the
field equations near the crack front. Three-dimensional finite element simulations with fine meshes are carried
out to verify the analytical solutions. A comparison with numerical results shows that the current analytical
results are effective. Based on the current numerical results, two fitting equations for J (z) and Tz are given in
Eqs. (32) and (33) for possible practical applications.

This work supports the following observations and conclusions:

(i) Plane strain conditions can be met at the crack front except the corner point.
(ii) The three-dimensional effect appears within a radial distance of about one half of the plate thickness from

the crack front in the mid-plane. But, the radial distance becomes smaller when approaching the free
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surface. In the plane very close to the free surface( z/h = 0.99), the radial distance is about 1.5% of the
plate thickness.

(iii) When r tends to zero, analytical and numerical results for K (z, r) tend to the corresponding plane strain
K -field results. However, both analytical and numerical results show that the value of K (z, r) decreases
with increasing r , or decreasing Tz . If Poisson’s ratio is less than 0.3, the difference between numerical
results and the corresponding plane strain K -field results may be ignored. But if Poisson’s ratio is taken a
larger value, such as 0.499, the maximum deviation from the numerical results is up to l7%.

(iv) Compared with plane strain K -field solutions, the current analytical solutions for crack front fields can be
applied in a larger region.

Appendix

According to the principle of minimum complementary potential energy, one may have∫∫∫
V

(
εxδσx + εyδσy + εzδσz + γxyδσxy + γxzδσxz + γyzδσyz

)
dxdydz = 0. (A.1)

Stress components related to three-dimensional Maxwell functions in a rectilinear coordinate system may be
expressed as

σx = ∂2φ2

∂z2
+ ∂2φ3

∂y2
, σy = ∂2φ1

∂z2
+ ∂2φ3

∂x2
, σz = ∂2φ1

∂y2
+ ∂2φ2

∂x2
,

σxy = − ∂2φ3

∂x∂y
, σxz = − ∂2φ2

∂x∂z
, σyz = − ∂2φ1

∂y∂z
. (A.2)

Substituting Eq. (A.2) into Eq. (A.1) , one may have
∫∫∫
V

[
εxδ

(
∂2φ2

∂z2
+ ∂2φ3

∂y2

)
+ εyδ

(
∂2φ1

∂z2
+ ∂2φ3

∂x2

)
+ εzδ

(
∂2φ1

∂y2
+ ∂2φ2

∂x2

)

−γxy
∂2δφ3

∂x∂y
− γxz

∂2φ2

∂x∂z
− γyz

∂2φ1

∂y∂z

]
dxdydz = 0. (A.3)

According to derivation rules, one may have

εxδ

(
∂2φ2

∂z2
+ ∂2φ3

∂y2

)
= ∂

∂z

(
εx

∂ (δφ2)

∂z
− ∂εx

∂z
δφ2

)
+ ∂2 (εx )

∂z2
δφ2 + ∂

∂y

(
εx

∂ (δφ3)

∂y
− ∂εx

∂y
δφ3

)

+∂2 (εx )

∂y2
δφ3,

εyδ

(
∂2φ1

∂z2
+ ∂2φ3

∂x2

)
= ∂

∂z

(
εy

∂ (δφ1)

∂z
− ∂εy

∂z
δφ1

)
+ ∂2

(
εy

)
∂z2

δφ1 + ∂

∂x

(
εy

∂ (δφ3)

∂x
− ∂εy

∂x
δφ3

)

+∂2
(
εy

)
∂x2

δφ3,

εzδ

(
∂2φ1

∂y2
+ ∂2φ2

∂x2

)
= ∂

∂y

(
εz

∂ (δφ1)

∂y
− ∂εz

∂y
δφ1

)
+ ∂2 (εz)

∂y2
δφ1 + ∂

∂x

(
εz

∂ (δφ2)

∂x
− ∂εz

∂x
δφ2

)

+∂2 (εz)

∂x2
δφ2,

−γxy
∂2 (δφ3)

∂x∂y
= −

∂
(
γxy

∂
∂y δφ3

)
∂x

+ ∂

∂y

(
∂γxy

∂x
δφ3

)
− ∂2

(
γxy

)
∂y∂x

δφ3,
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−γxz
∂2 (φ2)

∂x∂z
= −

∂
(
γxz

∂
∂z δφ2

)
∂x

+ ∂

∂z

(
∂γxz

∂x
δφ2

)
− ∂2 (γxz)

∂z∂x
δφ2,

−γyz
∂2 (φ1)

∂y∂z
= −

∂
(
γyz

∂
∂z δφ1

)
∂y

+ ∂

∂z

(
∂γyz

∂y
δφ1

)
− ∂2

(
γyz

)
∂z∂y

δφ1. (A.4)

Substituting Eq. (A.4) into Eqs. (A.3), (A.3) may be re-written as∫∫∫
V

∂

∂x

(
−∂εz

∂x
δφ2 − ∂εy

∂x
δφ3 + εz

∂ (δφ2)

∂x
− γxz

∂ (δφ2)

∂z
+ εy

∂ (δφ3)

∂x
− γxy

∂ (δφ3)

∂y

)
dxdydz

+
∫∫∫
V

∂

∂y

(
−∂εz

∂y
δφ1 +

(
∂γxy

∂x
− ∂εx

∂y

)
δφ3 + εz

∂ (δφ1)

∂y
− γyz

∂ (δφ1)

∂z
+ εx

∂ (δφ3)

∂y

)
dxdydz

+
∫∫∫
V

∂

∂z

((
∂γyz

∂y
− ∂εy

∂z

)
δφ1 +

(
∂γxz

∂x
− ∂εx

∂z

)
δφ2 + εy

∂ (δφ1)

∂z
+ εx

∂ (δφ2)

∂z

)
dxdydz

+
∫∫∫
V

[(
∂2 (εz)

∂y2
+ ∂2

(
εy

)
∂z2

− ∂2γyz

∂z∂y

)
δφ1 +

(
∂2 (εz)

∂x2
+ ∂2 (εx )

∂z2
− ∂2γxz

∂z∂x

)
δφ2

+
(

∂2
(
εy

)
∂x2

+ ∂2 (εx )

∂y2
− ∂2γxy

∂y∂x

)
δφ3

]
dxdydz = 0. (A.5)

Equation (A.5) may be re-written as∫∫
S1

(
−∂εz

∂x
δφ2 − ∂εy

∂x
δφ3 + εz

∂ (δφ2)

∂x
− γxz

∂ (δφ2)

∂z
+ εy

∂ (δφ3)

∂x
− γxy

∂ (δφ3)

∂y

)
dydz

+
∫∫
S2

(
−∂εz

∂y
δφ1 +

(
∂γxy

∂x
− ∂εx

∂y

)
δφ3 + εz

∂ (δφ1)

∂y
− γyz

∂ (δφ1)

∂z
+ εx

∂ (δφ3)

∂y

)
dxdz

+
∫∫
S3

(
∂γyz

∂y
− ∂εy

∂z

)
δφ1 +

(
∂γxz

∂x
− ∂εx

∂z

)
δφ2 + εy

∂ (δφ1)

∂z
+ εx

∂ (δφ2)

∂z
dxdy

∫∫∫
V

[(
∂2 (εz)

∂y2
+ ∂2

(
εy

)
∂z2

− ∂2
(
γyz

)
∂z∂y

)
δφ1 +

(
∂2 (εz)

∂x2
+ ∂2 (εx )

∂z2
− ∂2 (γxz)

∂z∂x

)
δφ2

+
(

∂2
(
εy

)
∂x2

+ ∂2 (εx )

∂y2
− ∂2

(
γxy

)
∂y∂x

)
δφ3

]
dxdydz = 0. (A.6)

Considering compatibility equations, the last integral in Eq. (A.6) should be zero. Furthermore, considering
φ1 = φ2and φ3 = φ, one may have

∫∫∫
V

[(
∂2 (εz)

∂x2
+ ∂2 (εz)

∂y2
− ∂2 (γxz)

∂z∂x
− ∂2

(
γyz

)
∂z∂y

+ ∂2 (εx )

∂z2
+ ∂2

(
εy

)
∂z2

)
δφ1

+
(

∂2
(
εy

)
∂x2

+ ∂2 (εx )

∂y2
− ∂2

(
γxy

)
∂y∂x

)
δφ

]
dxdydz = 0. (A.7)

Ignoring higher terms of r and using cylindrical coordinates r , θ , and z, Eq. (A.7) may be re-written as

∫∫∫
V

[(
∂2 (εz)

∂x2
+ ∂2 (εz)

∂y2
− ∂2 (γxz)

∂z∂x
− ∂2

(
γyz

)
∂z∂y

+ ∂2 (εx )

∂z2
+ ∂2

(
εy

)
∂z2

)
δφ1
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+
(

∂2
(
εy

)
∂x2

+ ∂2 (εx )

∂y2
− ∂2

(
γxy

)
∂y∂x

)]
δφdxdydz

≈
∫∫∫
V

[(
∂2 (εz)

∂x2
+ ∂2 (εz)

∂y2

)
δφ1 +

(
∂2

(
εy

)
∂x2

+ ∂2 (εx )

∂y2
− ∂2

(
γxy

)
∂y∂x

)
δφ

]
dxdydz

=
∫∫∫
V

[(
1

r
(εz)

·· + (εzr)
′′ − (εz)

′
)

δφ1

+
(

(rεθ )
′′ + (εr )

··

r
− (εr )

′ − (γrθ )
·′ −

(γrθ

r

)·)
δφ

]
rdrdθdz = 0. (A.8)

Considering that δφ and δφ1 are arbitrary, one may have

(rεθ )
′′ + (εr )

..

r
− (εr )

′ − (γrθ )
.′ −

(γrθ

r

). = 0,

(rεz)
′′ +

(εz

r

).. − (εz)
′ = 0. (A.9)
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