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Abstract. Molecular statics (MS) based on energy minimization serves as a useful sim-
ulation technique to study mechanical behaviors and structures at atomic level. The
efficiency of MS, however, still remains a challenge due to the complexity of mathemat-
ical optimization in large dimensions. In this paper, the Inertia Accelerated Molecular
Statics (IAMS) method is proposed to improve computational efficiency in MS simu-
lations. The core idea of IAMS is to let atoms move to meta positions very close to
their final equilibrium positions before minimization starts at a specific loading step.
It is done by self-learning from historical movements (atomic inertia effect) without
knowledge of external loadings. Examples with various configurations and loading
conditions indicate that IAMS can effectively improve efficiency without loss of fi-
delity. In the simulation of three-point bending of nanopillar, IAMS shows efficiency
improvement of up to 23 times in comparison with original MS. Particularly, the size-
independent efficiency improvement makes IAMS more attractive for large-scale sim-
ulations. As a simple yet efficient method, IAMS also sheds light on improving the
efficiency of other energy minimization-based methods.

AMS subject classifications: 74G65, 74A25, 74S30
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1 Introduction

Over the past two decades, intensive research interests have been dedicated in nanome-
chanics and nanomaterials to uncover underlying deformation mechanisms resulting
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from individual atoms [1–4]. In particular, well-developed atomistic simulation methods
such as molecular dynamics (MD) [5], molecular statics (MS) [6], Monte Carlo (MC) [7]
and nudged elastic band (NEB) calculation [8] are of great importance to predict ma-
terial properties and explain deformation mechanisms, which provide alternative re-
search tools besides in situ experiments. Among these methods, empirical-based meth-
ods greatly reduce the computational cost and make simulations with millions of atoms
possible [9]. Currently, empirical-based MD and MS are two of the most commonly used
methods which are capable of dealing with more than 108 atoms with simple potential
models like Lennard-Jones (LJ) and embedded atomic model (EAM), achieving the great
accomplishment in studying nanomaterials [10] and manipulating their properties [11].
Despite the successful development of modern computer technology and new numeri-
cal algorithms, it is always important to improve computational efficiency as much as
possible in order to shorten research period and increase simulation dimension.

Various methodologies have been developed to improve simulation efficiency from
the perspectives of physics and mathematical optimization. Physically, one can develop
new methods to bridge across length and time scale gap between MD and continuum
theory. Long timescale dynamics such as EON [12] and diffusive MD [13] can be used
in simulations of experimental timescale events. One of the extreme situations is quasi-
static simulation at finite temperature without strain rate effect. Molecular Statistical
Thermodynamics (MST) [14] and Engineering Molecular Mechanics (EMM) [15] are two
representative work. Based on the local harmonic approximation [16], MST uncouples
atomic motion from thermal vibration with high frequency. The Helmholtz free energy
instead of potential energy is minimized to search local stable configuration at finite tem-
perature. MST shows excellent efficiency improvement and reliable results in simulations
of copper nanowire tensile, thin film nanoindentation and phase transformation of ZnO
nanowires [14]. For EMM method, parameters of interatomic potential are considered
temperature-dependent and are modified as functions of simulating temperature. EMM
shows good agreement with conventional MD when simulating elastic properties and
thermal stress with 100 times improving efficiency, but the feasibility of EMM on plastic
deformation simulation is unknown.

On the other hand, several multi-scale methods based on energy minimization have
been proposed in the last few decades to decrease the computational cost of ultra-large
atomistic systems [17]. Hierarchically, FE2AT utilizes information from finite element
calculation to provide appropriate initial and boundary conditions for atomistic simula-
tions, such that large parts of the elastic loading process can be accelerated [18]. Con-
currently, atomistic representation is used in regions under inhomogeneous deformation
dominated by dislocation evolutions, whereas quasi-continuum representation is used
in regions under homogeneous deformation to reduce computational cost. One of the
typical multi-scale methods is the quasi-continuum (QC) method which searches for the
positions of representative nodes by minimizing the coarse-grained potential energy [19].
By introducing discrete dislocation line in QC framework, coupled atomistics and dis-
crete dislocation mechanics (CADD) was put forward further to improve the efficiency
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in simulations of nanoindentation [20] and crack propagation [21]. Recently, CADD has
been extended into 3 dimension successfully [22].

Besides the efforts on designing new algorithms by using some physical approxima-
tions, some researchers focus on developing new minimization algorithms, such as the
fast inertial relaxation engine method (FIRE) [23, 24], NVERE [25] and preconditioners
for the geometry optimization [26]. Developing new optimization algorithms for large
scale molecular simulations is more challenging when we look back the history of math-
ematical optimization. The background of physics, however, endows minimization with
more understandable meanings for mathematical terminologies and operations such as
position, velocity, energy, force and dynamics matrix. Therefore, combination of physi-
cal knowledge and mathematical algorithm could be an effective way to develop a new
method with higher efficiency.

In this paper, we intend to develop an accelerated MS method based on atomic inertia
effect named Inertia Accelerated Molecular Statics (IAMS). Our method shows promis-
ing efficiency improvement in comparison with original MS with very less extra compu-
tational burden and difficulty of code implementation, regardless of shapes, boundary
conditions and preexisting defects. The size-independent efficiency also makes IAMS
very attractive for large-scale simulations. The rest of the paper is organized as follows.
In Section 2, energy minimization algorithms and relevant simulation settings are pre-
sented. In Section 3, efficiency improvement by elastic mapping loading in simulations
of 1D atomic chain and 2D atomic bar is analyzed to point out the key of accelerated MS
simulations. The theory of the method and various applications are given in Section 4.
The efficiency analysis and discussion are presented in Section 5. Finally, in Section 6 we
conclude the paper with a brief summary.

2 Methods

In traditional MS simulations, total potential energy of the system at each loading step is
minimized. Conjugate gradient (CG) method is a typical and commonly used algorithm
for the minimization process. In CG algorithm, atomistic position vector (xk+1) is updated
according to the current conjugate direction (dk) and step size (αk):

xk+1=xk+αkdk, (2.1)

where k indicates the iteration step. dk is calculated from atomistic force vector fk and
searching direction. At each loading step, there will be different number of iteration
steps (niter) which is related to characteristics of energy profiles. At iteration step k, αk is
determined through line-searching methods in which the systems energy and atomistic
force vector needs to be evaluated for several times (nk

line). Therefore, the total times of
energy and force evaluation (neval) at a loading step is

neval =
niter

∑
k=1

nk
line. (2.2)
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For the force-based criterion adopted in this paper, the system is assumed to reach an
equilibrium state when the resolution criterion (ǫ) of minimization is satisfied:

∑
i

∣∣∣ f i
k

∣∣∣/N<ǫ, i=1,2,··· ,N, (2.3)

where N is the atom number,
∣∣ f i

k

∣∣ is the force magnitude of atom i at k iteration step.
In this work, ǫ with value of 1×10−4 eV/Å is used to assure the accuracy of energy
minimization except when different precisions are the concern.

Two types of empirical potentials are used in this paper. The first one is Lennard-Jones
(LJ) potential with form:

V(r)=4ǫ
[(σ

r

)12
−
(σ

r

)6]
, (2.4)

where ǫ = 0.4916 eV and σ = 2.60 Å for copper (Cu). LJ potential is used to describe
interatomic force for 1-dimensional (1D) atom chain, 2-dimensional (2D) compression
and 2D nanoindentation with hex lattice. The embedded atom model (EAM) developed
by Foiles et al. [27] is used to describe atomic interactions of Cu atoms in three-point
bending simulations.

OVITO is used to visualize atomistic configuration [28]. The common neighbor anal-
ysis (CNA) [29] and centro-symmetry parameter (CSP) [30] are used to identify defect
atoms.

3 MS with mapping loading

3.1 Tension of atom chain model

Fig. 1 shows the 1D atom chain with single freedom degree. Atom 1 is fixed, atom 2 is
active and atom 3 is used for loading. There are two commonly used loading operations
in molecular simulations: direct and mapping. In direct loading, atom 3 will move to the
right with distance δ. In mapping loading, atom 3 will move to the same position as in
direct loading, but atom 2 will be placed at the middle point of atom 1 and atom 3 based
on the simple mapping rule x2=(x1+x3+δ)/2. In both loading modes, atom 1 is always
fixed to avoid the chain translation, and atom 2 will move driven by unbalanced force
during the minimization process until the given convergence precision is met.

Tensile simulations of the atom chain were performed using the two loading modes
respectively, and relevant results are presented in Fig. 2. For the force-displacement
curves in Fig. 2(a), two simulations coincide until B. The force of mapping loading de-
creases slowly after B, whereas the force of direct loading decreases quickly with an
abrupt drop at B. Potential profiles of the atomic system at different displacement are also
given in the insets of Fig. 2(a). At point A, the potential landscape has a single local min-
ima, and atom 2 in the two simulations locates at the bottom of the well. At point B, there
are two shallow potential wells with local minima. After convergence, atom 2 using map-
ping loading stays on saddle point while atom 2 using direct loading lies at the bottom
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Figure 1: Initial state and two loading modes of 1D atom chain.

Figure 2: Comparison of two loading modes for (a) stress-strain curves and evolution of potential energy profiles
at different states, (b) position of active atom 2 during the tensile simulation, (c) computational cost and (d)
minimization history near point B.

of the left well. Atom 2 starts to move towards atom 1 after B with direct loading, indi-
cating the bond break between atom 2 and 3 as shown in Fig. 2(b). On the contrary, atom
chain with mapping loading deforms as a super-elastic chain without fracture. Fig. 2(c)
gives the computational cost in terms of function calls during the minimization process.
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Simulation using mapping loading is much faster than that of direct loading. Only one
function call is needed to converge in mapping loading, but around 7 function calls are
needed in direct loading for normal loading steps. Particularly, more than 200 function
calls are required to terminate the iterations at B. Fig. 2(d) presents the atomistic trajec-
tories of atom 2 during the minimization processes with two loading styles at B. After
mapping loading, atom 2 lies exactly at saddle point of potential and thus no unbalanced
force drives it to move. However, as the potential profile is changed by direct loading,
atom 2 lies at the left side of the saddle point, resulting in the migration towards left well
bottom driven by unbalanced force. The long distance migration from one well bottom
to the other needs much more iterations than normal steps, which leads to the huge com-
putational cost difference between step B and normal steps. Therefore, the loading mode
affects not only the deformation mechanism but also the computational cost, and map-
ping loading can effectively improve the efficiency. It is worth noting that after point B
in mapping loading, atom 2 locates at a metastable position in the potential landscape,
and any small disturbance to atom 2 will let it move to one of the minima. However, the
metastable solution obtained from mapping loading can be avoided by introducing some
factitious disturbance.

3.2 Compression of 2D atomic system

As the essence of the two different loading modes is depicted in the 1D atom model, here
a more realistic 2D atomic model is considered to study the collective behavior of atoms
under different loading styles. The corresponding 2D atomistic configuration is given
in the inset of Fig. 3(a) with the similar definition of fixed, active and loading atoms.
Direct loading here is the same as in 1D atom chain, and mapping loading follows a
more complex rule. In mapping loading, all the active atoms will be mapped to new
positions based on:

xnew
active = xold

active+
xold

active−min(xold
active)

max(xold
active)−min(xold

active)
. (3.1)

Fig. 3(a) plots the force-displacement curves. Two loading modes have the same re-
sponse until A. Force of direct loading drops firstly at A and then increases, while force
of mapping loading drops relatively later at B and further at C and then increases, indi-
cating that direct loading advances the initial dislocation nucleation. Again, as plotted in
Fig. 3(b), results of mapping loading show the promising efficiency improvement (about
10 times faster than that of direct loading in average) at most loading steps except points
B and C with dislocation nucleations.

Fig. 4 shows snapshots of atomic configuration colored by force magnitude during
minimization process. As the direct loading is imposed, the loading effect propagates
from right side to left layer by layer as indicated by the non-equilibrium force distri-
bution in Fig. 4(a) to Fig. 4(c). After that, the system reaches to an equilibrium state as
shown in Fig. 4(d). A lot of minimization iterations are used for the propagation process.
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Figure 3: Comparison of two loading modes in (a) stress-strain curves and (b) computational cost. Inset figure
of (a) gives the configuration of the 2D atom bar under compression.

Figure 4: Evolution of atomic force during MS minimization with direct loading ((a)-(d)) and MS with mapping
loading ((e)-(f)).

While in mapping loading mode, the non-equilibrium force due to compressive loading
can be mapped onto all atoms instantaneously at the beginning, and the layer-by-layer
propagation process can be avoided, as shown in Fig. 4(c) and Fig. 4(d). Therefore, a lot
of computational cost can be saved.

After convergence, atoms at A and B with higher force are relatively unstable in
Fig. 4(d) because they are close to the loading side. Our simulations show that dislo-
cations will nucleate from A and B. Atoms in Fig. 4(f), however, with uniform and small
forces after convergence make the system more stable, which can explain why mapping
loading can avoid premature dislocation nucleation.
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The simulation results from 1D and 2D atomic systems reveal that a key to effec-
tively improve efficiency of MS is to find an atomistic configuration as close as possible
to its optimal state at a specific loading step, as done by the mapping loading. How-
ever, there is no simple rules to apply mapping loading to configurations with complex
shapes, defects or boundary conditions. Even for simple loading like tensile or com-
pression, mapping loading based on conventional elastic solution cannot handle surface
inhomogeneity in nanoscale [31]. Therefore, it is quite necessary to develop a new algo-
rithm with more generality and high efficiency to accelerate MS simulations based on the
ideology of mapping loading.

4 Accelerated MS based on atomic inertia effect

Here the Inertia Accelerated Molecular Statics (IAMS) is proposed to overcome the lim-
itation of mapping loading and improve the efficiency further. It is expected to be effec-
tively applied in most energy minimization based methods with discrete nodes, particles
and/or coupled systems (multiscale method like QC [19] and CADD [20]). In this sec-
tion, computational procedure and efficiency of the IAMS will be presented along with
MS in some classical applications.

4.1 Methodology of IAMS

For a given molecular system, no matter what atomic type and interatomic potential are,
it usually shows similar response when facing similar external loadings, especially when
the timescale of external loadings is much larger than that of atomic thermal motions.
That is, most atoms in the system may behave like their last movement due to inertia ef-
fect. Therefore, the core idea of IAMS is to let atoms move by self-learning from historical
movements without knowledge of external loadings. Specifically, for an arbitrary atom
in the configuration shown in Fig. 5, assume its equilibrium position at loading step k−1
and k are xk−1 and xk, the displacement dk−1=xk−xk−1 can be considered as the response
of this atom to the (k−1)th external loading step. Under the next similar kth external
loading step, the atom is expected to have the similar response of dk−1, such that the new
equilibrium position can be predicted as

x′k+1=dk−1+xk =2xk−xk−1. (4.1)

The vector form for predicting positions of all atoms at loading step k+1 can be writ-
ten as

X′
k+1=2Xk−Xk−1. (4.2)

Fig. 6 gives the flow charts of three MS methods: MS with direct loading, MS with
mapping loading based on the knowledge of elastic deformation (denoted as EAMS)
and, the IAMS. It is worth noting that IAMS may fail to decrease energy when the system
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Figure 5: Schematic of the movement of an atom due to inertia effect in IAMS method.

Figure 6: Flow charts of (a) conventional MS, (b) MS with mapping loading based on the knowledge of elastic
deformation and (c) IAMS.

becomes unstable, so an energy monitor is used to check whether the system goes up-
hill. If the energy increases, inertia update must be cancelled and IAMS will degenerate
to conventional MS, and the situation will be discussed in following applications. It is
quite easy to implement IAMS into existing software codes without extra computational
burden.

4.2 Applications of IAMS

4.2.1 Compression of 2D atomic system

In order to compare the efficiency of three methods in Fig. 6, compression simulation
of 2D configuration in Section 3 was also performed with IAMS. As shown in Fig. 7(a),
IAMS exhibits similar force-displacement response as the former two methods. The ini-
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Figure 7: Comparison of the three methods: (a) force-displacement curves and (b) computational cost.

tial force drop of IAMS is the same as that of EAMS, but is slight later than that of MS,
indicating that inertia update delays the premature dislocation nucleation as EAMS does.
The computational cost shown in Fig. 7(b) highlights the efficiency superiority of IAMS.
Even though EAMS speed up about 10 times in comparison with MS, IAMS reduces the
computational cost further to half of that of EAMS in average. The inset figure of Fig. 7(b)
presents the snapshot of atomic force magnitude after self-learning from previous steps.
The system is much closer to the final equilibrium state compared with Fig. 4(e) after elas-
tic mapping, which can explain the better efficiency of IAMS. Near the loading step at A,
there is no efficiency improvement with IAMS due to dislocation events. Nonetheless,
IAMS shows the reliable results with higher efficiency.

4.2.2 Three-point bending of nanopillar

The advantage of IAMS over EAMS lies not just in higher efficiency, but also in generality.
Fig. 8(a) shows three different nanopillar configurations: single crystal with round sec-
tion, nanotwinned pillar with round section and, single crystal with hexagonal section,
respectively. The spacing between twin boundaries (TBs) is 2.08 nm. The three-point
bending setup is illustrated in Fig. 8(b). Atoms at the two ends with thickness of 2.00
nm are fixed. Atoms in the middle section with thickness of 1.00 nm are moved down-
wards step by step to simulate the bending load. For the nanopillars with various shapes
and intrinsic defects, it is difficult to find corresponding elastic solution even under sim-
ple loading as bending and torsion, therefore, only simulations with the conventional MS
and IAMS were performed. CNA is used to identify atomic structures [30] after deforma-
tion as shown in Fig.8 (c). The deformed configurations from MS and IAMS simulations
are quite similar except for the premature dislocations. Force-displacement curves from
both MS and IAMS in Fig. 8(d) demonstrate the reliability of IAMS for complex configu-
rations. Computational cost in Fig. 8(e) shows that simulations of IAMS are much faster
than that of MS. Notably, the maximum efficiency improvement is up to about 23 times



F. Shuang et al. / Commun. Comput. Phys., 28 (2020), pp. 1019-1037 1029

Figure 8: (a) Atomic configurations of single crystalline with round cross section, nanotwinned pillar with round
cross section and, nanopillar with hexagonal cross section; (b) schematic of three-point bending setup; (c)
deformed configurations, (d) force-displacement curves and (e) computational cost from different methods.

before elastic limit. After dislocation nucleations, the computational cost gap between the
two methods stays almost the same, indicating IAMS has less efficiency improvement in
the case of plastic deformation.

4.2.3 Nanoindentation of 2D atomic system

Above examples show that IAMS improves much the efficiency in elastic deformation
but less in plastic deformation due to dislocations. Therefore, it is necessary to inves-
tigate its efficiency in a more complex deformation case like nanoindentation in which
dislocation nucleation and interaction dominate almost the whole process. Fig. 9(a) and
(b) show the initial and final snapshot of nanoindentation simulations using MS and
IAMS. Atoms in the snapshots are colored by CSP to identify dislocations. Atoms at the
bottom layers with thickness of 2.00 nm are fixed to avoid vertical translation. Periodic
and free boundary conditions are imposed on x and y directions respectively. Results of
the two methods show similar pile-up dislocations, showing that IAMS can effectively
capture the related dislocation nucleation and evolution. Force-depth curves in Fig. 9(c)
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Figure 9: 2D Configurations of nanoindentation from (a) MS and (b) IAMS simulations; (c) force-displacement
curves and (d) computational cost of MS and IAMS simulations.

from IAMS and MS simulations present similar trend with frequent drops due to dislo-
cation events. The computational cost shown in Fig. 9(d) indicates that IAMS still needs
less function calls than MS, and the maximum efficiency improvement is about 80% at
the displacement of 2.40 nm. Function calls have similar jumps in Fig. 9(d) as the force
drops in Fig. 9(c) due to dislocation events, which reduce the efficiency improvement of
IAMS. However, slope of function calls in ranges between two jumps in IAMS is smaller
than that in MS, resulting in the efficiency improvement of IAMS.

5 Discussion

5.1 Efficiency improvement of IAMS

As mentioned in Section 4.2, inertia update can speed up MS simulations 23 times with-
out loss of fidelity. To get a more quantitative understanding of the efficiency improve-
ment of IAMS, the efficiency improvement of IAMS is analyzed based on one loading
step of the three-point bending simulation in Section 4.2.2. The improved efficiency of
IAMS compared with MS is defined as η=NMS/NIAMS which is plotted in Fig. 10(a) with
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Figure 10: (a) Dependence of efficiency improvement () on convergence precision obtained from the three-point
bending simulations with IAMS; (b) dependence of computational cost on model size in 2D bar compression
simulations with MS and IAMS.

respect to different convergence precisions (ǫ). The lowest ǫ is set as 1×10−4 eV/Å to as-
sure the reliability of simulations. It can be seen that the efficiency improvement is highly
dependent on ǫ. The maximum η reaches to 23 times at ǫ = 1×10−5 eV/Å, which means
there exists an optimal precision with the highest efficiency improvement. It is known
that computational cost of MS (n) depends on precision ǫ and model size (Lmax) for CG
minimization as [32]:

n ∝
Lmax

a
|log(ǫ)|, (5.1)

where a is a typical inter-atomic distance. This relation indicates that more computation
cost is required for simulations with higher precision and larger size. When the precision
ǫ is relatively low, the experience from previous step is not so accurate and will misleads
the system evolution after inertia update, and thus extra computation is needed to fix
the wrong attempt. When the precision is relatively high, the inertia based experience
is good enough to predict the next movement, and thus less computation is needed. In-
creasing the precision further, however, the self-learned experience is more accurate, but
not enough for the same precision in next step due to computational round-off error, lead-
ing to the decrease of efficiency improvement. Therefore, it is the competition between
information loss with inertia update and the given precision that controls the efficiency
improvement of IAMS.

The other important advantage of IAMS over MS is the size-independent computa-
tional cost as shown in Fig. 10(b). When the length of the 2D bar under compression
in Section 4.2.1 was increased, the computational cost of MS increases linearly which is
in agreement with Eq. (5.1), whereas computational cost of IAMS keeps constant, indi-
cating the efficiency improvement will increase linearly with the size of the model. The
different size dependence of IAMS and MS on computational cost can be explained from
Fig. 4 and the inset of Fig. 7(b). In MS simulations, non-equilibrium forces propagate
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from the loading side to the other side layer by layer as shown in Fig. 4, so the larger
the length is, the more computational cost is needed. IAMS however, successfully avoids
such size-dependent process by inertia update and maximizes the efficiency improve-
ment. Therefore, the size-independent efficiency is another beneficial property of IAMS.

Applications of IAMS also indicate that efficiency improvement is primary from stages
of elastic deformation. The efficiency improvement is not obvious when the system be-
come an unstable state, e.g. atomic bond rearrangement due to dislocation nucleation
and propagation and fracture, which is a local unstable event in atomic scale [1,33,34]. Al-
though there are some theories for predicting dislocation nucleation, they are not suitable
for describing system evolution in atomistic scale. Moreover, dislocation propagation
is path-dependent which needs repeated trial by searching the lower energy path [35].
Therefore, it is hard to accelerate MS in dislocation evolution by utilizing atomic inertia
effect, and IAMS will degenerate to MS in these cases. However, similar strategy can be
applied in grain-scale methods such as discrete dislocation in dislocation dynamic (DD)
simulations [36] to improve efficiency.

5.2 High-order IAMS

The proposed IAMS is similar to the predictor-corrector operation in solving ordinary
differential equations (ODE) [37]. The similar strategy is also used in Limited memory
BFGS method [38] in which the experience from last m steps is used to approximate
the Hessian matrix. Accordingly, IAMS algorithm can be extended by learning more
information from previous steps. Currently, operation of IAMS can be considered as
one-order dynamics equation:

X̃i(k+1)=Xi(k+1)+vi(k+1). (5.2)

If two-order dynamics is considered, the update equation can be expressed as:

X̃i(k+1)=Xi(k+1)+vi(k+1)+
1

2
ai(k+1), (5.3)

where v and a can be obtained from history of atomic positions:

vi(k)=Xi(k)−Xi(k−1), (5.4)

ai(k)=vi(k)−vi(k−1)=Xi(k)−2Xi(k−1)+Xi(k−2). (5.5)

The high-order IAMS is expected to accelerate nonlinear elastic deformation such as
nanoindentation of 2D materials (such as graphene [39, 40] and MoS2 [41–43]). Fig. 11(a)
illustrates the linear force-displacement curve with inertia update strategy for one-order
IAMS. In this situation, the trajectories of atoms are almost straight sections, and thus
one-step experience is enough to predict the next movement. For large nonlinear defor-
mation, however, atoms move along the curve with nonlinear directions and distances
as shown in Fig. 11(b). The two-order IAMS would transfer more information of moving
direction and distance with higher efficiency improvement for nonlinear deformation.
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Figure 11: Schematic of IAMS for (a) linear and (b) nonlinear problems.

5.3 Comparison with path following methods and the significance of IAMS

Notably, the basic idea of IAMS is similar to path following methods (PFM) or numerical
continuation, which are well-developed in solving nonlinear ODE equations, nonlinear
eigenvalue problems [44] and bifurcation problems [45]. In particular, PFMs are also
widely used to solve engineering problems such as quasi-static nonlinear structural [46]
and fracture problems [47, 48] through finite element methods (FEM). It is known that
FEM is usually solved by Newton-Raphson method with available Hessian matrix, while
MS simulations need to search local energy minima with million or even billion degree of
freedoms [38]. Due to the nonlocal interatomic force of atoms, it is computationally ex-
pensive for MS to utilize Hessian matrix in higher-order optimization algorithms and
as a result, MS simulations are very sensitive to initial configuration and very time-
consuming [49]. From the viewpoint of mathematics, therefore, FEM and energy min-
imization in MS simulations are two different applications. Though PFMs have been
widely used in nonlinear structural and fracture problems, it doesn’t mean these meth-
ods are applicable for large-scale atomistic simulations using energy minimization. The
significance of IAMS is that atomic self-learning strategy by inertia effect (or path fol-
lowing method) is shown to be applicable to MS simulations for the first time, which
becomes more exciting for researchers who work on computational nanomechanics be-
cause considerable time and economic cost can be saved with very less extra burden.

Besides improving efficiency, another contribution of IAMS is overcoming some is-
sues of previous MS methods. For example, IAMS can avoid premature dislocation nu-
cleation by moving the system to a more reasonable initial configuration. IAMS can effec-
tively accelerate molecular statics simulations regardless of interatomic potentials, intrin-
sic defects, boundary conditions and model shapes. More importantly, IAMS makes the
computational cost of MS simulations independent of simulation size, which is very at-
tractive for extra-large scale simulations. These findings can help us to better understand
energy minimization and how it affects the fidelity and efficiency of MS simulations.
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6 Summary

In summary, the IAMS method based on atomic inertia effect is proposed to improve the
efficiency of MS simulations. Design of the IAMS is inspired by mapping loading opera-
tion in MS simulations. By analyzing the results from MS simulations of simple 1D and
2D atomic systems, it is found that the mapping loading mode based on the knowledge
of classical elastic solution can dramatically improve computational efficiency for MS
simulations. Therefore, an update operation based on atomic inertia effect is introduced
into IAMS to simulate mapping loading for more general systems regardless of shapes,
boundary conditions and preexisting defects. It is done by self-learning from histori-
cal movements without knowledge of external loadings. Various simulations including
compression of 2D atom bar, bending of different nanopillar and nanoindentation of 2D
atom system are performed to validate the method. The results indicate that IAMS gains
obvious efficiency improvement without loss of fidelity in comparison with conventional
MS. Particularly, IAMS shows size-independent efficiency improvement. The upper limit
of efficiency improvement of IAMS is also analyzed theoretically using different conver-
gence precisions. Simplicity, generality and superior efficiency make IAMS a competitive
method in MS simulations. IAMS also sheds light on improving other numerical meth-
ods such as large nonlinear deformation using finite element method and phase filed
modeling.
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