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A Spectral Microplane Model for
the Anisotropic Damage Behavior
of Shales
The development of constitutive models for shales has been a challenge for decades due to
the difficulty of characterizing the strongly anisotropic macroscopic behavior related to the
inherent mesostructure and damage mechanisms. In this paper, a spectral microplane
damage model is developed for the anisotropic damage behavior of shales. The modeling
challenge of the anisotropic elasticity in the microplane model is theoretically overcome
by the spectral decomposition theory without limitation on the degree of the anisotropy com-
pared with other microplane models. The stiffness tensor of anisotropic shales is effectively
decomposed into four different eigenmodes with the activation of certain groups of micro-
planes corresponding to the specific orientation of the applied stresses. The inherent and the
induced anisotropic behavior is thus characterized by proposing suitable microplane rela-
tions on certain eigenmodes directly reflecting the initial mesostructure and the failure
mechanisms. For the challenge of the postpeak softening behavior, two-scalar damage var-
iables are introduced to characterize the tensile and the shear damage related to the
opening and the closure of microcracks under different stress conditions. Comparison
between numerical simulation and experimental data shows that the proposed model pro-
vides satisfactory predictions for both weakly and highly anisotropic shales including
prepeak nonlinear behavior, failure strengths, and postpeak softening under different con-
fining pressures and different bedding plane orientations. [DOI: 10.1115/1.4047005]

Keywords: constitutive models, anisotropy, damage, spectral decomposition, shales,
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1 Introduction
Despite a number of research efforts have been devoted to study

the mechanical behavior of rocks, the thorough understanding of the
anisotropic deformation properties and failure mechanisms is still a
major challenge in many geotechnical applications, such as the
hydraulic fracturing, the geotechnical excavations, and the radioac-
tive waste disposal [1,2]. Most recently, the increasing attention on
shale gas has appealed many research interests to deeply investigate
the anisotropic behavior of shales [3–5]. Many laboratory investiga-
tions have been conducted to study the anisotropic deformation
behavior and failure modes for shales [6–10]. Most experimental
results exhibit a strong inherent and induced anisotropy with a
directional dependence of deformation characteristics. The
strengths and the failure modes vary with the angle between the
loading direction and the bedding planes. It is also indicated that
the intrinsic and induced anisotropic behavior is strongly character-
ized by the mesostructure, such as the existence of bedding planes.
Essentially, the macroscopic inelastic behavior of anisotropic shales
is primarily characterized by the mesoscopic mechanisms including
the plastic deformation, the microcracks-induced damage, the split-
ting, and the shear slipping regarding the weak bedding planes.

A large number of constitutive models have also been proposed
to describe the plastic deformation and the failure criteria for aniso-
tropic rocks. A comprehensive review on this subject has been con-
ducted to investigate different methods, such as the mathematical
approach, the empirical approach, and the discontinuous weakness
plane-based approach [11]. In general, the mathematical models are
theoretically rigorous based on the tensorial formulations but too
complex to solve the practical engineering problems [12]. The
empirical models are phenomenal in nature, thereby lacking clear
physical interpretations and not capable of considering the effects
of the mesostructure [13]. The discontinuous weakness plane
models are generally suitable for anisotropic rocks due to the con-
sideration of the physical mechanism of the failure process, but
the limitation is the complicated numerical implementation
[14,15]. Recently, microscopic constitutive models have been
developed based on the microstructure of anisotropic rocks
[16,17]. This approach is mathematically rigorous with simple for-
mulations and thus successfully applied to define failure criterion of
anisotropic rocks. However, it is still a major challenge for these
models to fully consider the anisotropic rocks in particular the
highly anisotropic ones such as shales. The main problem is the
complex tensorial formulated description of oriented deformation
including the elastic, the plastic, and the damage behavior
induced by the splitting and the shear slipping regarding the weak
bedding layers. Therefore, the highly intrinsic anisotropic properties
coupled with the oriented plastic and the damage behavior induced
by the mesostructure often demand very complex form of constitu-
tive laws.
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Alternatively, the oriented behavior can be straightforwardly char-
acterized by the microplane model based on the concept of vectoral
constitutive relations on the tangent planes of a unit sphere surround-
ing every material point [18]. This concept degrades the traditional
constitutive tensor model as the simple vectoral formulations
which significantly reduce the complexity of the problem. The intro-
duction of the concept “microplane” fundamentally enables the con-
stitutive model to be established on many generic planes with
different orientations to represent the certain mechanical behavior
of each direction [19]. Based on these advantages, the microplane
model was progressively established as a fully developed theory
for the damage behavior of the quasi-brittle materials [20]. In the
last few decades, it has been widely applied to concretes as the pro-
gressive softening damage constitutive model and also successfully
applied in other complex materials such as rocks, fiber composites,
foams, and some weak anisotropic materials, e.g., clays, but only
limited to weak anisotropic materials [21,22]. The challenge for pro-
nounced anisotropic materials is still open for discussion. Most
recently, the attention was called on a similar work for shales and
other anisotropic rocks by a spherocylindrical microplane constitu-
tive model [23]. The new model is mathematically elegant and veri-
fied for the high degree of anisotropy. However, for strongly
anisotropic shales, e.g., the elastic in-plane to out-plane moduli
ratio is higher than 3.75, it is still impossible to mathematically guar-
antee the consistent relationship between the microplane elastic
vectors and the macroscopic elastic tensor. Meantime, the spectral
microplane model has been rigorously proven as the only version
of the microplane model to characterize the anisotropy without lim-
itation [24]. The spectral microplane model theoretically solves the
rigorous correspondence between the microplane vector and the
macroscopic tensor without limitation on the degree of anisotropy
compared with other microplane models.
For this purpose, we develop a spectral microplane damage model

for the anisotropic damage behavior of shaleswithout limitation on the
degree of the anisotropy. The directional properties related to the
inherentmesostructure and damagemechanisms are described by pro-
posing appropriate microplane laws on the eigenmodes decomposed
from the stiffness tensor of anisotropic shales. In order to describe
the material softening behavior due to the oriented distribution of
induced microcracks, two-scalar damage variables are introduced to
characterize the strong dissymmetry damage mechanism under the
tensile and the compressive conditions. The proposed model is
applied to a weakly anisotropic shale, and the comparisons between
numerical results and experimental data show very satisfactory pre-
dictions for the prepeak nonlinear behavior, the failure strength,
and the postpeak softening under different confining pressures and
different bedding plane orientations. Further validation of the pre-
dictive ability for highly anisotropic shales is performed, and the
numerical results are also generally agreedwith the experimental data.

2 The Spectral Microplane Framework and
Application to Shales
2.1 The Formulation of the Spectral Microplane Model.

The formulation of the microplane model based on the spectral
decomposition theory is recalled in the following [24]. The elastic
stress–strain relation of anisotropic shales can be expressed in the
matrix notation as

(σ) = [C](ε) (1)

where (σ) and (ɛ) are the stress and the strain matrix in the form of
six-dimensional vector, [C] is the 6 × 6 dimensional elastic stiffness
matrix. According to the spectral decomposition theorem, it can be
decomposed as

[C] =
∑

I
λI [CI] (2)

where λI is the eigenvalue and [CI] is the eigenmatrix corresponding
to each other with the subscript I (Appendix C).

In order to compare with the traditional microplane model, the
procedure of the spectral microplane model is outlined as illustrated
in Fig. 1.

(1) Combining the spectral decomposition theorem and the kine-
matic constraint, the macroscopic strain (ɛ) can be projected
to be the microplane eigenstrain (ɛPI)

(εPI ) = [PI](ε) (3)

where [PI]= [P][CI], [P] is the project matrix (Appendix A).
(2) The microplane eigenstress (σPI) is obtained by the spectral

microplane constitutive laws

(σPI ) = f (εPI) (4)

(3) The macroscopic stress (σ) is calculated by the principle of
virtual work

(σ) =
3
2π

∫
Ω
[P]T

∑
I
(σPI )dΩ (5)

where Ω is the surface of a unit hemisphere and [P]T is the
transpose of the projection matrix.

2.2 Application to Transversely Isotropic Shales. The aniso-
tropic shales are known as typical transversely isotropic materials
and the anisotropic features are strongly related to the inherent
bedding layers as shown in Fig. 2(a). Thus, the elastic tensor of
shales is a function of the direction of the bedding planes relating
to the orientation of the coordinates. As shown in Fig. 2(b), the
angle between the bedding layers (S1−O− S2 local coordinate
system) and the loading direction (the uniform arrows along z-axis
in the z− o− y global coordinate system) is α, where α = 0 deg indi-
cates that the loading direction is parallel to the bedding planes, and
α = 90 deg perpendicular to the bedding layers.
Thanks to the transformation of the stress and strain components

(Appendix B), the material matrix in the microplane model remains
unchanged, and the corresponding eigenvalues and featured matri-
ces remain the same. After the macrostress is calculated, an inverse
transformation can be performed to obtain the final macrostress.

2.3 Analysis of Microplane Eigenstrain Modes and Physical
Interpretation. The transversely isotropic shales possess a rotation
axis (z axis) with five independent elastic parameters as shown in
Fig. 2(a). The elastic parameters of the anisotropic direction
(z axis) are denoted as E⊥, ν⊥ and the ones of the isotropic direction
(x/y direction) E//, ν//, G//. The corresponding elastic compliance
matrix [S] is expressed as

[S] =

1
E//

−
ν//
E//

−
ν⊥
E//

0 0 0

−
ν//
E//

1
E//

−
ν⊥
E//

0 0 0

−
ν⊥
E//

−
ν⊥
E//

1
E⊥

0 0 0

0 0 0
1

2G//

0 0

0 0 0 0
1

2G//

0

0 0 0 0 0
1 + ν//
E//

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(6)

The microplane eigenstrain vector (ɛPI)= (ɛNI, ɛMI, ɛLI)
T can be

thus calculated according to Eq. (A7) and the analytical formulae
of strain modes components are reported in the Table 1. The
angle θ and φ are the microplane spherical angles as illustrated in
Fig. 2(c) and α1, α2, α3 are the macroscopic strain functions. It is
noted that the microplane eigenstrain components ɛNI, ɛMI, ɛLI
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depend on the parameters of α1, α2, α3, ɛ4, ɛ5, ɛ6, θ, φ, and ω.
Namely, the microplane eigenstrain modes are strongly affected
by the macroscopic strain. Therefore, three typical loading direc-
tions on transversely isotropic shales are analyzed with physical
interpretation for the distribution of normal strain components.
As the macroscopic uniaxial strain is applied in the anisotropic

direction (Fig. 3(a)), it is found that only normal components of
the modes II and III are nonzero but the modes I and IV are
exactly zero. It means that the response in anisotropic direction
depends only on the modes II and III but independent from the
modes I and IV. As can be noted from Figs. 3(b) and 3(c), the dis-
tribution of the two active normal strain components on the micro-
plane sphere is illustrated for a weakly anisotropic shale (ω=
0.5365) and a highly anisotropic shale (ω= 0.218). It is indicated
that the normal strain of mode II is near-uniformly distributed for
the weakly anisotropic shale. The magnitude of the anisotropic dis-
tribution for the highly anisotropic shale is negligible compared
with the one of the mode III. On the contrary, the distribution of
the mode III is strongly anisotropic representing that the micro-
planes are mainly activated along the loading direction matching
exactly with the structure of the bedding planes. This analysis

reveals that the response of shales subjected to the loading along
the anisotropic direction strongly depends on the behavior of the
bedding planes and can be dominated by mode III.
As the macroscopic uniaxial strain is applied in the transverse

direction (Fig. 5(a)), the normal strains of modes I, II, and III are
nonzero which means that these three modes codetermine the prop-
erty in the transverse direction. The distribution of the three active
normal strains on the microplane sphere is shown in Figs. 4(b)–
4(d ). For the highly anisotropic shale, the normal strain of modes
I and III are negligible compared with mode II. The corresponding
microplanes are mainly activated in transverse direction which is
completely opposite to the case of the anisotropic loading direction.
Thus, the response of the highly anisotropic shale subjected to the
loading in the transverse direction strongly depends on the matrix
of the shale and can be mainly controlled by mode II. For the
weak anisotropic shale, the distribution of modes I and III is slightly
directional in 3-axis and 2-axis, respectively, but mode II acts vol-
umetrically. It reveals that the properties of the matrix are codeter-
mined by all three active modes.
As expected from the formulae of the strain components in

Table 1, the normal strain of mode IV is only activated for the

Fig. 1 Flowchart of the calculation of the spectral microplane model

(a) (b) (c)

Fig. 2 (a) Illustration of the structure of transversely isotropic materials, (b) definition of the
angle α, and (c) spherical coordinates

Table 1 Microplane eigenstrains: normal and tangential components [24]

Mode Normal component ɛN Tangential component ɛM Tangential component ɛL

I sin2 θ[α1(cos2 φ − sin2 φ) + 2ε6 sinφ cosφ] sin θ cos θ[α1(cos2 φ − sin2 φ) + 2ε4 sinφ cosφ] sin θ[−2α1 sinφ cosφ + ε6(cos2 φ − sin2 φ)]
II α3(cosω sin2 θ/




2

√
+ sinω cos2 θ) α3 sin θ cos θ( cosω/




2

√
− sinω) 0

III α2(−sinω sin2θ/



2

√
+ cos ω cos2 θ) α2 sin θ cos θ(−sinω/




2

√
− cos ω) 0

IV 2 sin θ cos θ (ɛ4 sin φ+ ɛ5 cos φ) ( cos2 θ − sin2 θ)(ε4 sinφ + ε5 cosφ) cos θ(ε4 cosφ − ε5 sinφ)

Notes: α1 = (ε1 − ε2)/2, α2 = − sin ω(ε1 + ε2)/



2

√
+ ε3 cos ω, α3 = cos ω(ε1 + ε2)/




2

√
+ ε3 sin ω
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shear macroscopic strain (Fig. 5(a)) which mainly acts on the micro-
planes in the direction θ = 45 deg as illustrated in Fig. 5(b). It
reveals that the shear behavior is highly dominated by the
bedding planes such as shear slip mechanism.
The above analysis shows that the anisotropic properties of the

transversely isotropic shales are strongly related to its microstruc-
tures. The anisotropic behavior is dominated by the bedding
planes, while the transverse properties are mainly related to the
matrix. Owing to the stiffness decomposition, the anisotropic prop-
erties can be effectively decomposed into different eigenstrain
modes with specific activation of microplanes for description of
the directional behavior.

3 The Formulation of the Damage Constitutive Model
Based on the above analysis, the mechanical behavior of shales

can be characterized by defining constitutive relations on the
decomposed eigenmodes instead of directly on microplanes. In
Sec. 3, emphasis is on the definition of microplane constitutive
laws by considering the mesostructure and failure mechanism of
transversely isotropic shales.
According to the spectral microplane framework, in the elastic

phase the eigenstress and eigenstrain satisfy the proportional rela-
tionship, and the normal eigenstress σNI and the two shear eigens-
tresses σMI, σLI are corresponding to the eigenmodes of each
microplane

σNI = λIεNI , σMI = λIεMI , σLI = λIεLI (7)

where ɛNI, ɛMI, ɛLI represent the normal eigenstrain and the two shear
eigenstrains on the Ith eigenmode, and λI the Ith eigenvalues. The

total eigenstress must satisfy the specific stress–strain boundaries

σb−I (εI , εII , θ, . . . h) ≤ σI ≤ σb+I (εI , εII , θ, . . . h) (8)

where σb+I and σb−I are the tensile and the compressive boundaries in
function of the eigenstrains ɛI, ɛII…, the spherical angle θ, and the
internal variables h. These two stress–strain boundaries are defined
to simulate the inherent and the induced anisotropic characteristics.

3.1 The Modeling of the Inelastic Behavior. The inelastic
response of shales can be described by the stress–strain boundaries
on themicroplanewhich are equivalent to the yield functionof the tra-
ditional plasticity theory [25]. The key advantage of this concept is
that different independent boundaries for different stress components
canbedefinedon the samemicroplane, namely, stress components on
the same microplane are independent of each other. It is completely
different from the tensorial constitutive relations and quite conve-
nient to characterize the anisotropic behavior from the microscopic
level. The aim of this section is to define the inelastic behavior of
the transversely isotropic shales according to the main physical phe-
nomenaof themicroscopic level, suchas the effects of themicrostruc-
tures and failure mechanism related to the bedding planes.
It is known that the mechanical behavior of shales strongly

depends on the loading path. For example, the dissymmetry
between the responses under tensile and compressive stress is
related to the open and closure of microcracks while the shear
failure essentially associated with the frictional sliding along micro-
cracks surfaces. For this purpose, three stress–strain boundaries are
proposed similar to the traditional microplane model, i.e., the
normal tensile stress boundary, the normal compressive stress
boundary, and the shear stress boundary.

Fig. 3 Distribution of the normal strain components for themacroscopic strain in the anisotropic direc-
tion: (a) illustration of the structure frame and the lording direction, (b) mode II, and (c) mode III
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Fig. 4 Distribution of the normal strain components for the uniaxial macroscopic strain in the trans-
verse direction: (a) illustration of the structure frame and the lording direction, (b) mode I, (c) mode II,
and (d ) mode III

Fig. 5 Distribution of the normal strain components for the shear macroscopic strain in
the transverse direction: (a) illustration of the structure frame and the lording direction
and (b) mode IV
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(1) Normal tensile stress boundary
The normal tensile stress boundary is proposed to describe

the tensile failure and the microcracks-induced damage, in
particular the opening and propagation mechanism under
tensile stress [26]. In other words, the normal tensile stress
boundary is used to limit the tensile stress σb+N . It is known
that the tensile strength is constant for isotropic materials
but varies with the orientation of the bedding layers for aniso-
tropic shales, namely, the strength is a function of the sphe-
rical angle θ (Fig. 2(b)). Thus, the normal tensile stress
boundary equation σb+N can be formulated as

σb+N = T0α(θ) (9)

where T0 is the reference tensile strength, α(θ) is the function
of the microplane spherical angle θ regarding to the bedding
layers. Specifically, according to the experimental data for
shales, the maximum strength occurs for the bedding
planes either parallel or perpendicular to the loading direc-
tion while the minimum strength is typically associated
with the sample orientation within the range
30 deg−60 deg. Thus, the phenomenon can be characterized
by the proposed function (Fig. 6)

α(θ) = f0 cos
2 (2θ) + 1 (10)

where f0 is a material parameter representing the degree of
the strength variation, for example, for shales studied in
this paper the parameter can be calibrated as 0.5.

(2) Normal compressive stress boundary
According to a series of experimental data on shales [1,6,7],

it is obvious that the behavior of the shales is generally pres-
sure sensitive essentially relating to the closure of micro-
cracks. It is evident that the most significant closure effects
occur in the orientation that the axial stress is normal to the
bedding planes compared with other orientations. However,
it is noteworthy that the closure effects also exist for θ =
90 deg corresponding to the axial stress parallel to the
bedding planes due to the existence of initial cracks in shale
matrix. Meanwhile, strain hardening due to the closure of
internal micropores andmicrocracks is observed for all exper-
imental investigations. Therefore, the normal compressive
stress boundary is proposed to characterize the pressure sensi-
tivity, the anisotropic microcracks closure effects as well as
the hardening process with the following form:

σb−N = βC0α(θ) (11)

where C0 denotes the reference compressive strength, α(θ)
takes the same form in Eq. (10), β the hardening parameter
related to the confining pressure taking the form β= a1σc+
a2 in which σc is the confining pressure, and a1, a2 are the
microplane material parameters related to the studied shales.

(3) Shear stress boundary
Laboratory investigation shows that the nonlinear mechani-

cal behavior such as the irreversible deformation, the confining
pressure effects, and the frictional hardening is strongly related
to the frictional sliding of microcracks under shear stress
[15,27]. The shear strength generally increases with the confin-
ing pressure and varies with the angle from the bedding planes.
It is apparent that the shear strength parallel to the bedding
layers is minimal for low confining pressures; however, shear
band often occurs in shale matrix under high confining pres-
sures and fractures cross the bedding layers. Therefore, the
description of the shear failure in the function of the orientation
of bedding planes and confining pressures is given as

σbT = βS0α(θ) (12)

where S0 is the reference shear strength, α(θ) is consistent with
the definition in Eq. (10), and β the hardening parameter asso-
ciated with the confining pressure. As the shear elastic stress is
pulled back to the stress boundary, the shear stress resultant
force σT =











σ2M + σ2L

√
is used as the criterion, and the final

shear stress component value is obtained according to the
vector direction of the respective components.

3.2 The Damage Modeling. As is known that the damage
process is inevitable for most rock-like materials due to the initial
and induced microcracks, and the orientation distribution of
induced microcracks in most rock materials depends strongly on
the loading path and leads to pronounced anisotropic behavior
[28–30]. The high asymmetrical failures under the tensile and the
compressive stress are strongly associated with the state of micro-
cracks. The microcracks are generally open and propagate perpen-
dicular to the loading direction under the tensile stress, but the
frictional sliding along the crack surfaces mainly determines the
mechanical behavior of closed microcracks under compression
stress. Therefore, the induced anisotropic behavior related to the
strong asymmetrical failure is required to be considered in the con-
stitutive model. In the present work, two-scalar damage variables dt
for the tensile damage and ds for the shear damage are introduced to
describe the asymmetrical failure mechanisms.
The damage criterion should be derived in the framework of irre-

versible thermodynamics; however, for the sake of simplicity, an
explicitly physical equation is adopted in the present work. Based
on the physical phenomena in shales, the tensile damage is
induced by the tensile strains with opening cracks, but the compres-
sive damage is generally associated with the frictional sliding along
the closed crack surfaces. Therefore, two damage evolution equa-
tions for the tensile and the shear stress conditions based on the pre-
vious works are proposed

dt = 1 − e−b1 ε+N−ε
0
N〈 〉, ds = 1 − e−b2 εT−ε0T−εv〈 〉 (13)

where ε+N is the microplane normal tensile normal strain, ɛT the
microplane shear strain, ɛv the microplane volume strain, b1, b2
the material parameters that controls the rate of damage evolution,
and ε0N , ε

0
T the initiation threshold of the normal tensile damage and

the shear damage, respectively.
According to the analysis of the induced damage related to the

failure mechanisms, it is necessary to introduce the damage evolu-
tion equations to the normal tensile and shear boundaries, respec-
tively. Therefore, in the framework of microplane theory, the final
stress boundaries can be defined as

σb+N = (1 − dt)T0α(θ)

σb−N = βC0α(θ)

σbT = (1 − ds)βS0α(θ)

(14)

To this end, a damage constitutive model for the damage beha-
vior of the highly anisotropic shales is fully established.

Fig. 6 Schematic of the functions α(θ) representing the aniso-
tropic strength related to the bedding plane orientations
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4 The Parameter Calibration and the Numerical
Simulation
The proposed damage constitutive model is then implemented

into a finite element commercial package ABAQUS by VUMATmate-
rial subroutine. In order to calibrate and validate the model, two
types of shales are investigated according to the experimental
data. As a medium degree of anisotropic rocks, the shale from
West Hubei and East Chongqing in China (WHEC) is calibrated
and studied. The proposed model is then applied to a strongly aniso-
tropic shale from Tournemire in France to show the predictive
ability for high degree of anisotropic shales.

4.1 Application to the WHEC Shales. The samples of the
WHEC shale were taken from Shizhu, Chongqing belonging to the
Lower Silurian Longmaxi formation. The shale in this area is
widely distributed with large thickness and high organic matter,
mainly composed of brittle minerals such as quartz and clay.
Among them, the highest content of quartz is up to 51%, and the
content of brittle minerals such as K-feldspar and albite up to
61.4%, which is very significant. TheWHEC shales were conducted
with scanning electron microscope (SEM) and triaxial compression
tests for systematically investigating the microstructures, the physi-
cal and mechanical parameters such as the elastic modulus, the
tensile strength, the compressive strength, and failure modes to
reveal the anisotropic properties and failure mechanisms [31]. The
elastic parameters of the experimental data are as follows:

E⊥=14.21 GPa, E// = 22.9 GPa, ν⊥ = 0.36,

ν// = 0.28, G// = 6.51 GPa
(15)

For the parameters of the inelastic part, it is calibrated by the exper-
imental uniaxial and the triaxial compressive strengths with different
bedding layer orientations (Fig. 7). The tensile damage parameters
are approximated by the Brazilian splitting strength parameters,
and the compression damage parameters are calibrated by a set of
experimental data, and the remaining data are reserved for the com-
parative analysis. All calibrated parameters are listed in Table 2. The
remaining parameters a1, a2 are fixed parameters as follows:a1=
0.05/MPa, a2= 1.0, and the normal strain thresholds are taken as
ε0N = 1.5 × 10−4, 1.0 × 10−4, 1.8 × 10−4, and 1.2 × 10−4.
Three angles between the core drilling direction and the bedding

layers are investigated as 0 deg, 45 deg, and 90 deg (Fig. 8(a)). The
angle between the loading direction (the uniform arrows along z-
axis) and the bedding plane (dashed line) is shown in Fig. 8(b).
The proposed model is performed to simulate the WHEC shales

for a series triaxial tests under different confining pressures and
bedding layer orientations. The comparison between the numerical
results and the experimental data points is shown in Fig. 9. It is
noted that the numerical results are generally well agreed with the
laboratory data. The model is capable of characterizing the main
anisotropic characteristics such as the strength, the nonlinear
mechanical behavior, and the effects of the confining pressure. It
is also noted that the model can further describe the residual
strength after peak strength, the increase of the peak and residual
strength with the confining pressure related to the effects of the
closure of microcracks. As expected that the strength of the shale
for α = 45 deg is obviously lower than the case for α = 0 deg and
α = 90 deg which is consistent with the U-shaped distribution of
the shale peak strength from the experimental investigations. The
numerical simulation also exhibits that the WHEC shales are
mainly characterized by elastic-brittle damage mechanical behavior
which reveals the fact that the shale is mainly composed of brittle
minerals. It is worth noting that comparing with the compression
shear failure for α = 90 deg, the failure mechanism for α = 0 deg
and α = 45 deg is mainly splitting damage characterized by the
tensile damage parameters due to the existence of bedding layers.

Fig. 7 Comparison between experimental tests and the numer-
ical simulation of compression strengths for different bedding
layer orientations

Table 2 Inelastic material parameters for WHEC shales under
triaxial compression tests

Mode I Mode II Mode III Mode IV

T0/MPa 18 0.1 7 3
C0/MPa 55 50 36 5
S0/MPa 28 20 31 5.5
ε0T 0.012 0.01 0.0025 0.01
b1 600 200 800 100
b2 200 2000 1000 200

(a) (b)

Fig. 8 Illustration of specimens with different bedding layer orientations
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Those parameters are approximately calibrated by the rough estima-
tion of the tensile strength provided by the Brazilian split-cylinder
test, especially for the anisotropic shale with rather scattered
results. Thus, the results for α = 90 deg have a better match with
the experimental data when compared with the other two cases.
In general, the proposed spectral damage microplane model is
capable of predicting the macroscopic anisotropic mechanical beha-
vior of anisotropic shales. However, further validation of the predic-
tive ability for highly anisotropic shales is still needed.

4.2 Application to the Tournemire Shales. A strongly aniso-
tropic shale from Tournemire in France is then studied. The Tour-
nemire shale is taken from the large Toarcian shale area in the

Tournemire region of the Central Plateau in France. The mineral
composition includes kaolinite (27.5%), illite (16.5%), quartz
(19%), calcite (15%), and other minerals (22%). The typical aniso-
tropic behavior of Tournemire shale was studied and its failure
modes were divided into the shear failure and the tensile failure
[7]. It is pointed out that the elastic properties of shales are affected
by confining pressure, and the nonlinear elastic constitutive rela-
tionship should be used. Since the core of this study is to simulate
the nonlinear anisotropic behavior of shales, the elastic parameter is
referred as follows [12]:

E⊥=7000 MPa, E// = 22000 MPa, ν⊥ = 0.12,

ν// = 0.14, G// = 4000 MPa
(16)

For the inelastic parameters, it is first calibrated by the compres-
sive strength under different confining pressures with different
bedding plane orientations as shown in Fig. 10. The tensile
damage parameters are calibrated approximately by the Brazilian
splitting strength parameters. The compression damage parameters
are calibrated using a set of experimental data, and the remaining
experimental data are reserved for comparative analysis. All cali-
brated parameters in the model are listed in Table 3 and the normal
strain thresholds are ε0N = 1.8 × 10−2, 1.5 × 10−5, 1.2 × 10−5, and
1.4 × 10−4.
Different from the WHEC shale, the Tournemire shale possesses

strongly anisotropic properties, namely, the elastic moduli ratio
between the anisotropic and transverse direction (degree of anisot-
ropy) is high to be 3.14. Meanwhile, the Tournemire shale exhibits
an elastic-brittle damage behavior under low confining pressure, but
as the confinement grows the pronounced prepeak hardening
process is observed with the rapid postpeak softening and the resid-
ual strength. The proposed model is applied to simulate Tournemire
shales for a series triaxial tests under different confining pressures
and different bedding layer orientations and the comparison is
shown in Fig. 11. In general, the numerical results are well fitted
with the main mechanical behavior of the highly anisotropic
shales. The comparison shows that the model can well describe
the gradual prepeak hardening, the plastic deformation, and the
gradual weakening of the brittle feature as well as the progressive
increase of the ductile feature under the growth of the confining
pressure. It also reveals that the strength at α = 45 deg is signifi-
cantly lower than the ones at α = 0 deg and 90 deg. It is noted
that the numerical simulation of the postpeak softening behavior
under low confinement is not quite satisfactory, but in general the
proposed spectral damage microplane model can be used to
predict the anisotropic behavior of highly anisotropic shales.

5 Concluding Remarks

(1) A spectral microplane damage model is developed for the
anisotropic damage behavior of the transversely isotropic

Fig. 9 Numerical results of the triaxial tests under different con-
fining pressures and different bedding plane orientations:
(a) α= 0deg, (b) α= 45deg, and (c) α= 90deg

Fig. 10 Comparison between experimental tests and numerical
simulation of compression strength for different bedding layer
orientations
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shales. The modeling challenge of high degree of anisotropic
shales is theoretically solved without limitation on the degree
of anisotropy compared with other microplane models.

(2) The elastic stiffness tensor of anisotropic shales is decom-
posed into four eigenmodes corresponding to different

loading path with negligible interactions. This feature
allows to define constitutive laws from microscopic level
to consider the physical mechanisms such as the effects of
the mesostructure, the damage induced by the splitting and
sliding process related to the bedding layers.

(3) A two-scalar damage model is proposed to characterize the
tensile and shear damage related to the opening and closure
of microcracks under different stress conditions. The
induced anisotropic postpeak softening depending on the
loading path and the effects of microcracks are thus well
described.

(4) Comparison between the numerical simulation and the
experimental data shows a good agreement for both weakly
and highly anisotropic shales. The proposed model generally
provides satisfactory predictions including the prepeak non-
linear behavior, the failure strength, and the postpeak soften-
ing under different confining pressures and different bedding
plane orientations.
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Appendix A
The stress matrix (σ) and the strain matrix (ɛ) in the elastic stress–

strain relation of anisotropic material (σ)= [C](ɛ) takes the form of
six-dimensional vector in terms of components as

(σ) = σ11 σ22 σ33



2

√
σ23




2

√
σ13




2

√
σ12

( )T
(A1)

(ε) = ε11 ε22 ε33



2

√
ε23




2

√
ε13




2

√
ε12

( )T
(A2)

where [C] is the 6 × 6 dimensional elastic stiffness matrix. With the
eigenmatrix [CI], the stress matrix (σ) and the strain matrix (ɛ) can
be thus decomposed into orthogonal eigenstresses (σI) and eigen-
strains (ɛI)

(σI) = [CI ](σ), (εI ) = [CI](ε) (A3)

Coupling with the former formulation and some deduction, it can
be easily proven that (σ) =

∑
I (σI), (ε) =

∑
I (εI), and the relation

between the eigenstress and the eigenstrain can be thus formulated
as

(σI) = λI (εI ) (A4)

In the microplane model, the macroscopic strain (ɛ) can be pro-
jected to be the microplane strain vectors (ɛP)

(εP) = [P](ε) (A5)

where (ɛP)= (ɛN, ɛL, ɛM)
T and ɛN, ɛM, ɛL denote the normal and the

two tangent components. [P] is the projection matrix

[P] =
N11 N22 N33
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√
N23




2

√
N13




2

√
N12

M11 M22 M33
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√
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√
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√
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√
L13
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√
L12

⎡
⎣

⎤
⎦ (A6)

where Nij= ninj,Mij= (minj+mjni)/2, Lij= (linj+ ljni)/2, in which ni
is the unit normal vector and mi, li are the two orthogonal unit
vectors of the microplane in the global coordinate system with

Table 3 Inelastic material parameters for Tournemire shales
under triaxial compression tests

Mode I Mode II Mode III Mode IV

T0/MPa 5 10 12 1
C0/MPa 30 50 28 1
S0/MPa 5 12 14 7
ε0T 0.0095 0.01 0.0065 0.019
b1 1500 200 2000 2000
b2 300 1000 1100 500

Fig. 11 Comparison between experimental tests and numerical
simulation of triaxial tests under different confining pressures
and different bedding plane orientations: (a) α= 0deg,
(b) α= 45deg, and (c) α= 90deg
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local Cartesian coordinates l=m× n. Similarly, the microplane strain (ɛP) can be also decomposed with the spectral theorem as

(εPI ) = [PI ](ε) (A7)

where [PI]= [P][CI] and (εP) =
∑

I (εPI ).

Appendix B
For the convenience of the calculation, the local stress can be transferred as

(σ′) = [Tσ](σ) (B1)

where the rotated and the original stress are (σ′) = (σ′1, σ
′
2, σ

′
3, σ

′
4, σ

′
5, σ

′
6)

T and (σ) = (σ1, σ2, σ3, σ4, σ5, σ6)T . The rotational matrix [Tσ]
can be expressed as

[Tσ] =

cos2 α sin2 α 0 2 cos α sin α 0 0
sin2 α cos2 α 0 −2 cos α sin α 0 0
0 0 1 0 0 0

−cos α sin α cos α sin α 0 cos2 α − sin2 α 0 0
0 0 0 0 cos α −sin α
0 0 0 0 sin α cos α

⎡
⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎦

(B2)

The local strain can be transferred by the rotation matrix as well and takes the form

(ε′) = [Tε](ε) (B3)

Appendix C
According to the spectral decomposition theorem, the elastic stiffness matrix [C] can be decomposed into four independent analytical

eigenvalues

(λI )
−1 =

1 + ν//
E//

(C1)

(λII )
−1 =

1 − ν//
2E//

+
1

2E⊥
−
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(C3)

(λIV )
−1 =

1
2G⊥

(C4)

with the corresponding eigenmatrices

[CI ] =

0.5 −0.5 0 0 0 0
−0.5 0.5 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 1

⎡
⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎦

(C5)

[CII ] =

cos2 ω/2 cos2 ω/2 cos ω sin ω/



2

√
0 0 0

cos2 ω/2 cos2 ω/2 cos ω sin ω/



2

√
0 0 0

cos ω sin ω/



2

√
cos ω sin ω/




2

√
sin2 ω 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎡
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⎤
⎥⎥⎥⎥⎥⎥⎦

(C6)

[CIII ] =
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[CIV ] =

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 0

⎡
⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎦

(C8)

where ω is the eigen angle defined by the independent elastic
parameters as

tan 2ω =
−2




2

√
ν⊥/E⊥

(1 − ν//)/E// − 1/E⊥
(C9)

and this parameter can be treated as an overall indicator for material
anisotropy.
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