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Abstract. A new method is proposed to simulate a coupled air-water two-layer turbu-
lent channel flow. A numerically effective dynamic viscosity is implemented to calcu-
late the viscous momentum flux at the interface, leading to a strong-coupling scheme
for the evolution of air and water motions. The direct numerical simulation results
are compared with those in the literature obtained from a weak-coupling scheme. It
is discovered that while the turbulence statistics of the air phase based on the strong-
and weak-coupling schemes are close to each other, the results on the water side are
influenced by the coupling approach, especially near the water surface.
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1 Introduction

The investigations of air-water interactions are foundations of many applications in ocean
science, environmental engineering, and chemical engineering. The computational fluid
dynamics (CFD) are used broadly for studying these problems. During the last two
decades, various physical models of air-water interactions have been studied through
CFD based on different numerical schemes.

CFD studies of air-water interface can be categorized into one-fluid and two-fluid
simulations. In the one-fluid simulation, the governing equations of only one fluid phase
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are solved, while the effect of the other phase is modeled through appropriate bound-
ary conditions. Specifically, in the numerical studies of air flows over a water surface, the
water surface is usually treated as a flat or wavy boundary with prescribed surface rough-
ness and velocity [1–4], while in a large number of simulations of water flows, the effect
of air is imposed through a given shear stress at the water surface [5–9]. The one-fluid
simulation is usually conducted to study physical problems without strong two-way in-
teractions between the two fluid phases.

In the two-fluid simulation, it is challenging and expensive to track or capture the
deformation of the interface between two fluid phases [10–12]. A simplified physical
model for two-fluid simulation is a two-layer channel flow [13,14], which has been stud-
ied for fundamental research of turbulent motions in the vicinity of the interface. In the
two-layer channel flow, the interface between two fluid phases is assumed to be flat [14],
corresponding to flow conditions with large gravity or large surface tension. The two-
layer channel flow features a simple interface geometry, which makes it possible to solve
the motions of two fluid phases by using a pseudo-spectral scheme [15]. The high accu-
racy and high efficiency of the pseudo-spectral method are desired features of numerical
algorithms [16–19].

While the numerical method for simulating one-layer channel flow is mature, the key
of the numerical method for simulating two-layer channel flow is the implementation of
the interface condition. Lombardi et al. [13] proposed a staggered advancement method.
In the first-half timestep of this method, the velocity at the water surface is used as the
boundary condition of the air flow, while in the second-half timestep, the shear stress at
the air bottom is used as a momentum source to drive the water motion. This method
is known as a weak-coupling approach as the continuities in velocity and stress are not
satisfied simultaneously.

To develop a strong-coupling method, the use of inner iteration is an option [14, 20].
However, this method significantly increases the computational cost. Based on the liter-
ature reviewed above, we have developed a strong-coupling method for two-layer tur-
bulent channel flow by implementing an effective viscosity at the interface, such that the
motions of two fluid phases are evolved synchronically without applying any inner it-
eration. The proposed method is then tested in the context of a low-Reynolds-number
two-layer turbulent Couette flow. The turbulent statistics are compared with the results
based on the weak-coupling method of Liu et al. [14]. The remainder of this paper is or-
ganized as follows. In Section 2, the numerical methods are introduced. Then, the results
are presented and discussed in Section 3, followed by the conclusions in Section 4.

2 Numerical method

2.1 Computational domain and governing equations

Fig. 1 shows the computational domain of a two-layer channel flow. As shown, x1, x2,
and x3 represent the streamwise, spanwise, and vertical directions, respectively. The air-
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Figure 1: Computational domain and coordinate system for two-layer turbulent channel flow.

water interface is set to x3 = 0. The bottom of water and the top of air are located at
x3=−h and x3=h, respectively. The two-layer channel flow is governed by the following
continuity and momentum equations:

∂ui

∂xi
=0, (2.1)
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where t represents the time; u1, u2, and u3 denote the velocity components in the x1-,
x2-, and x3-directions, respectively; p is the pressure; ρ=ρ(x3) and µ=µ(x3) are density
and dynamic viscosity, varying with the fluid phases; and Sij=

(
ui,j+uj,i

)
/2 is the strain-

rate tensor. Because the values of ρ and µ are independent of x1 and x2, the momentum
equation can be rewritten as
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Considering that the value of ∂µ/∂x3 in Eq. (2.3) is zero except for the interface, while the
velocity at the interface is determined by the interface condition, the last term in Eq. (2.3)
can be omitted in the simulation. As a result, the momentum equation can be further
simplified to
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At the interface, the horizontal velocity is continuous, while the vertical velocity is
fixed to zero to keep the interface static [14], viz.

u1a =u1w, u2a =u2w, u3a =u3w =0, (2.5)
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where subscripts a and w represent air and water, respectively. Furthermore, the conti-
nuity in shear stress is also applied at the air-water interface, expressed as [14]

µa
∂u1a

∂x3
=µw

∂u1w

∂x3
, µa

∂u2a

∂x3
=µw

∂u2w

∂x3
. (2.6)

At the water bottom, a no-slip condition is prescribed as

u1(x3=−h)=u2(x3=−h)=u3(x3=−h)=0. (2.7)

At the top of the computational domain, the air is driven by a constant shear stress τtop

in the streamwise direction, while vertical velocity and spanwise shear stress are set to
zero. The boundary condition at the top is expressed as [14]

τtop =µa
∂u1(x3=h)

∂x3
= const.,

∂u2(x3=h)

∂x3
=0, u3(x3=h)=0. (2.8)

2.2 Time advancement of the velocity field

A Crack-Nicolson scheme is used for the viscous term, while a second-order Adam-
Bashforth scheme is used for the convection term. The temporally discretized form of
the momentum equation is expressed as [21, 22]
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where superscript (n) denotes the velocity field at time step n; vi is the velocity at an
intermediate step; and Ri=−∂(uiuj)/∂xj is the convection term in the momentum equa-
tion. In order to solve vi, Eq. (2.9) is rewritten as [21, 22]
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The intermediate velocity field vi is then projected to satisfy the divergence-free condition
given by Eq. (2.1). The projection step is expressed as [23]

u
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i −vi
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=−1
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, (2.11)

where Π is a pseudo pressure, which is related to the pressure p as p(n+1/2)=Π(n+1)−
∆t∇·(µ∇Π(n+1))/2. Taking the divergence of Eq. (2.11) and applying the divergence-free
condition, the Poisson equation of Π is given as [23]
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2.3 Spatial discretization

The hybrid pseudo-spectral and finite-difference method is used for spatial discretiza-
tion. The pseudo-spectral method features a high accuracy and a high computational
efficiency, which is usually used in flows with simple geometries. The present code is de-
veloped by modifying the pseudo-spectral method code developed in Xu’s group, which
has been well validated in many applications [24–30]. The detailed scheme for spatial
discretization is described below.

An arbitrary field variable φ(x1,x2,x3,t) is expanded into Fourier series in the stream-
wise and spanwise directions as [15]

φ(x1,x2,x3,t)=
N1/2−1

∑
n1=−N1/2

N2/2−1

∑
n2=−N2/2

φ̂(n1,n2,x3,t)ei(n1k01x1+n2k02x2), (2.13)

where i=
√
−1 is the imaginary unit; n1∈[−N1/2,N1/2−1] and n2∈[−N2/2,N2/2−1] are

two integers; N1 and N2 are the total resolved wavenumbers in the x1- and x2-directions,
respectively; k01 = 2π/L1 and k02 = 2π/L2 are the lowest positive wavenumbers in the
x1- and x2-directions, respectively, with L1 and L2 being the computational domain sizes
in the corresponding directions (Fig. 1). In the spectral space, the streamwise and span-
wise derivatives of φ are calculated by multiplying in1k01 and in2k02 to φ̂, respectively.
Eqs. (2.10)-(2.12) are then rewritten as
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∂û
(n)
i

∂x3

)
, (2.14)

û
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where δij is the Kronecker Delta. The term R̂i in Eq. (2.14) is defined as

R̂i=−i(n1k01ûiu1+n2k02ûiu2)−
∂ûiu3

∂x3
, (2.17)

where ûiuj is the Fourier coefficients of uiuj, which is calculated in the physical space.
The 3/2 rule is applied to eliminate the aliasing error [15].
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In the vertical direction, staggered grids are used. The grid points are located at
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where the value of the coefficient β is set to 0.985. The vertical velocity u3 is defined
at the grid points, while u1, u2, and Π are defined at grid centers, located at x3,k+1/2 =
(x3,k+x3,k+1)/2. The vertical derivative ∂/∂x3 is calculated using a central difference
scheme. In Eq. (2.17), ∂(uiu3)/∂x3 are collocated with ui in the vertical direction. The
values of ∂(uiu3)/∂x3 are calculated as
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where u1,k, u2,k, and u3,k+1/2 are calculated using a linear interpolation. Note that at the
interface, ui,Iu3,I=0 holds strictly due to the condition u3,I=0, where I=N3/2 is the index
of the interface. Therefore, the values of u1,I and u2,I do not influence the simulation
results, such that no special treatment is needed for calculating u1,I and u2,I to satisfy the
interface conditions.

Nevertheless, the interface conditions need to be considered in the calculation of the
viscous terms. In Eq. (2.14) the viscous terms with the vertical derivative are discretized
as
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The viscous term on the right-hand side of Eq. (2.14) is discretized using the same scheme

by replacing v̂i with û
(n)
i . Substituting Eq. (2.20) into Eq. (2.14) results in a tridiagonal

linear equation system of v̂i. In the linear equations of v̂1 and v̂2, the value of µI is needed,
which is determined using the interface condition. According to Eqs. (2.5) and (2.6), the
streamwise shear stress at the interface can be approximated as

µ
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Because the grid is symmetric about the interface (see Eq. 2.18), x3,I−x3,I−1/2= x3,I+1/2−
x3,I =(x3,I+1/2−x3,I−1/2)/2 holds. Eq. (2.21) can be then simplified to

µw(uI−uI−1/2)=µa(uI+1/2−uI)=µI
uI+1/2−uI−1/2

2
, (2.22)
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from which it can be derived that µI is the harmonic averaging of µa and µw:

µI =
2µaµw

µa+µw
. (2.23)

Although Eq. (2.23) is derived based on the continuity of the streamwise shear stress at
the interface, the expression of µI obtained from the continuity of the spanwise shear
stress takes the same form. Equation (2.23) holds strictly at an arbitrary time instant and
an arbitrary location at the interface. As a result, the effective viscosity µI can be used
to calculate the viscous shear stress at the interface in the spectral space. Furthermore,
no approximation is involved in the derivation from Eq. (2.21) to (2.23). This indicates
that through the use of the effective viscosity, the motions of air and water are strongly
coupled, with their governing equations evolved synchronically.

After evolving the velocity field from u
(n)
i to the intermediate field vi, Eq. (2.16) is

solved to obtain the pseudo pressure Π(n+1). The term including the vertical derivative
on the left-hand side of Eq. (2.16) is approximated as

[
∂

∂x3

(
1

ρ

∂Π̂

∂x3

)]

k+1/2

=

1
ρk+1

Π̂k+3/2−Π̂k+1/2

x3,k+3/2−x3,k+1/2
− 1

ρk

Π̂k+1/2−Π̂k−1/2

x3,k+1/2−x3,k−1/2

x3,k+1−x3,k
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This equation is only used to discretize the Poisson equation of Π̂ at inner grid points (for
k= 1,··· , I−2, I+1,··· ,N3−2), while the discretizations near the boundary and interface

(for k=0, I−1, I, and N3−1) need modifications. In the proposed method, both û
(n+1)
3 =0

and v̂3=0 are imposed to satisfy the impermeable condition at the interface and boundary
given by Eqs. (2.5), (2.7) and (2.8). Therefore, the condition ∂Π̂/∂x3=0 holds according to
Eq. (2.15). Applying this condition to Eq. (2.24) results in the following discretized form
near the interface and boundary:
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(2.25)

We remark here that from Eq. (2.25), it is understood that ρI does not appear in the dis-
cretized Poisson equation of Π̂. In other words, there is no need to specify the value of
density at the interface. Substituting Eqs. (2.24) and (2.25) into Eq. (2.16) results in a tridi-
agonal linear equation system of Π̂. Once Π̂ is obtained, the velocity field is evolved to
step (n+1) based on Eq. (2.15).

Fig. 2 shows the flowchart of the proposed method. As shown in the figure, the new
point of the proposed is the use of the effective viscosity at the interface. This allows
us to derive a consistent equation of the intermediate velocity v̂i in two fluid phases,
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Figure 2: Flowchart of the code for direction numerical simulations of two-layer turbulent channel flows.

and the solution of this equation satisfies the interface conditions given by Eqs. (2.5) and
(2.6). On the opposite, if the interface conditions are not strictly satisfied as in Lombardi
et al. [13] and Liu et al. [14], the motions of two fluid phases are weekly coupled. It is
shown in Section 3.2 that the week coupling approach results in an inaccurate prediction
of the velocity field in the water. An alternative approach for achieving strong coupling
in the simulation of the two-layer channel flow is to adopt an inner iteration. However, as
noted by Yang and Shen [20], three to five inner iterations are usually needed at each step
to satisfy the interface conditions, leading to the increase in the computational cost by
three to five times. In summary, compared with the previous methods studying the same
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problem, the proposed method is novel in both simulation accuracy and computational
cost.

3 Results

3.1 Resolution test

The new method is tested using the case considered by Liu et al. [14]. The ratios of density
and dynamic viscosity between water and air are set to ρw/ρa = 828 and µw/µa = 65.1,
respectively. The flow is driven by the plate at the top of air, moving at a constant speed
U. The computational domain size is L1×L2×L3=2πh×πh×2h. The Reynolds number is
Re=Uh/νa =9593, where νa=µa/ρa is the kinematic viscosity of air. In order to examine
the effect of grid resolution on the simulation results, the simulations are conducted on
three sets of grids. Table 1 summarizes the numbers of grid points and grid resolutions
of different cases. In the table, ∆+

1 and ∆+
2 represent the grid resolution in the streamwise

and spanwise directions, respectively, while min(∆+
3 ) and max(∆+

3 ) denote respectively
the minimum and maximum grid resolution in the vertical direction. The superscript “+”
denotes the quantities non-dimensionalized using uτ and ν/uτ as characteristic velocity
and length scales, respectively, where uτ=

√
τm/ρ is the mean wall-friction velocity, with

τm being the wall shear stress averaged over time and horizontal plane. Note that the
values of τm on the water and air sides are identical due to the continuity of shear stress
at the interface, but the values of both uτ and ν/uτ on the water and air sides are different
because of the differences in the density ρ and dynamic viscosity µ. Therefore, two values
are given for each grid resolution in Table 1, separated by the vertical line. The smaller
one is the value on the water side, while the larger one is that on the air side. The ratio
between the characteristic length scale on the water and air sides is (νw/uτ,w) :(νa/uτ,a)=
2.27. As summarized in Table 1, the grid resolution is refined progressively from case 1
to case 3. The value of the frictional Reynolds number Reτ = uτh/ν is also given in the
table. From Table 1, it is seen that the value of Reτ is 120 and 272 on the water and air
sides, respectively, in both cases 2 and 3, indicating that the resolution independency is
achieved in case 2. These two values of Reτ are also close to those of Liu et al. [14] (120
and 271 on the water and air sides, respectively). In contrast, the values of Reτa and
Reτw of case 1 (125 and 282 on the water and air sides, respectively) are larger than those
of cases 2 and 3, indicating that the grid resolution of case 1 is insufficient to make an
accurate prediction of turbulent statistics.

Table 1: Key parameters of simulation cases.

Case N1×N2×N3 ∆+
1 ∆+

2 min(∆+
3 ) max(∆+

3 ) Reτ

1 64×192×64 11.8|26.7 5.92|13.4 0.05|0.11 3.11|7.02 125|282

2 128×256×128 5.92|13.4 2.96|6.68 0.04|0.08 2.33|5.27 120|272

3 256×512×256 2.96|6.68 1.48|3.34 0.02|0.04 1.16|2.63 120|272
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Figure 3: Effect of grid resolution on the profiles of 〈u1〉+ on the (a) water side and (b) air side.
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Figure 4: Effect of grid resolution on the profiles of u+
1,rms on the (a) water side and (b) air side obtained from

the proposed method.

Figs. 3 and 4 compare the profiles of mean streamwise velocity 〈u1〉+ and root-mean-
square (RMS) velocity u+

1,rms = 〈u′
1u′

1〉1/2 of different cases, respectively. To present the
results, a pair of angular brackets 〈·〉 are used to denote the averaging over time and hor-
izontal plane; the difference between instantaneous velocity and mean velocity is defined
as velocity fluctuation, denoted using a prime. As shown in Fig. 3, the mean velocity pro-
files of the three cases are close to each other on both the water and air sides. The RMS
velocity u+

1,rms is more sensitive to the grid resolution than the mean velocity 〈u1〉+. From

Fig. 4, it is seen that the profiles of u+
1,rms of cases 2 and 3 also agree well with each other,

indicating that the grid resolution of case 2 is sufficient to make an accurate prediction
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of both mean streamwise velocity and RMS velocity. In contrast, the profiles of u+
1,rms of

case 1 deviates from those of cases 2 and 3, indicating that the grid resolution of case 1 is
unsatisfactory for direct numerical simulations (DNS).

3.2 Comparison with results obtained from weak-coupling approach

To demonstrate the effect of the coupling approach on the turbulent statistics, we com-
pare the results of case 2 (Table 1) based on the strong-coupling approach with those of
Liu et al. obtained from the weak-coupling approach [14]. Fig. 5 compares the profiles
of mean streamwise velocity 〈u1〉+ based on strong- and weak-coupling approaches. As
shown in Fig. 5(b), the profiles of 〈u1〉+ based on strong- and weak-coupling approaches
collapse on the air side. However, the discrepancy in 〈u1〉+ between strong- and weak-
coupling approaches is evident on the water side, particularly near the interface. The ef-
fect of the coupling approach on the RMS velocity is similar from Fig. 6, which compares
the profiles of u+

i,rms obtained from strong- and weak-coupling approaches. As shown,

the differences in the results mainly exhibit in the profiles of u+
1,rms on the water side,

near the interface.

The observation that the coupling approach does not influence the results on the air
side can be explained by the analogy between the two-fluid flows and the fluid-solid
interaction problems. It is known from many numerical studies of fluid-solid interaction
problems that if the density ratio between the solid body and fluid is much larger than
unity, the results obtained from strong- and weak-coupling approaches are consistent [31,
32]. This situation is satisfied on the air side in the two-layer channel flow as the density
ratio between water and air is ρw/ρa =828. However, the water is different from a solid
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Figure 5: Profiles of 〈u1〉+ on the (a) water side and (b) air side obtained from the proposed method. The
results of Liu et al. [14] are superimposed for comparison.
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Figure 6: Profiles of u+
i,rms on the (a) water side and (b) air side obtained from the proposed method. The

results of Liu et al. [14] are superimposed for comparison.

body. In the flow-structure interactions, the motion of solid body is mainly driven by
the normal stress of fluid exerted on the body surface, while in the two-layer channel
flow, the motion of water is driven by the shear stress at the interface. The results shown
in Figs. 5 and 6 indicate that the strong-coupling approach is necessary if the motion of
water is of interest.

4 Conclusions

In the present research, a new strong-coupling method is proposed for numerical simu-
lations of two-layer turbulent channel flows. The key of the proposed method is the im-
plementation of an effective dynamic viscosity at the interface, defined as the harmonic
averaging of the dynamic viscosities of two fluid phases. By adopting this effective dy-
namic viscosity, the motions of two fluid phases are strongly coupled in the simulation.
As such, no inner iteration is needed, while the interface condition is satisfied automati-
cally. Therefore, the use of the effective interface viscosity significantly reduces the com-
putational cost and improves the simulation accuracy.

The proposed method is tested in the context of the direct numerical simulation of
a two-layer turbulent Couette flow at a low Reynolds number. The turbulent statistics
obtained from the proposed strong-coupling method are compared with the results of
Liu et al. [14], who used a weak-coupling numerical method to simulate the same case.
It is found that the profiles of mean velocity and RMS velocity on the water side ob-
tained from the strong- and weak-coupling approaches are significantly different. This
observation evidently shows the importance of applying the strong-coupling method for
numerical simulations of two-layer turbulent channel flows.
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