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Ductile metallic glass foams (DMGFs) are a
new type of structural material with a perfect
combination of high strength and toughness. Owing
to their disordered atomic-scale microstructures
and randomly distributed macroscopic voids, the
compressive deformation of DMGFs proceeds
through multiple nanoscale shear bands accompanied
by local fracture of cellular structures, which induces
avalanche-like intermittences in stress–strain curves.
In this paper, we present a statistical analysis,
including distributions of avalanche size, energy
dissipation, waiting times and aftershock sequence,
on such a complex dynamic process, which is
dominated by shear banding. After eliminating the
influence of structural disorder, we demonstrate
that, in contrast to the mean-field results of their
brittle counterparts, scaling laws in DMGFs are
characterized by different exponents. It is shown that
the occurrence of non-trivial scaling behaviours is
attributed to the localized plastic yielding, which
effectively prevents the system from building up
a long-range correlation. This accounts for the
high structural stability and energy absorption
performance of DMGFs. Furthermore, our results
suggest that such shear banding dynamics introduce
an additional characteristic time scale, which leads to
a universal gamma distribution of waiting times.
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1. Introduction
Fracture of inhomogeneous materials is common in nature. Different from the catastrophic failure
of brittle materials, microcracks in a disordered medium proceed with intermittent avalanches,
which can be characterized by power laws [1–10]. These scale-free behaviours are usually
considered to be signatures of collective phenomena and of importance in predicting material
failure. Recently, similar scaling laws have been found in the compression of small and brittle
porous materials [11–14], which may provide a correlation between avalanches that extend from
geophysical scales (of the order of hundreds of kilometres) to sample scales (of the order of a
few millimetres). The mean-field theory [15–18], neglecting the relevance of detailed physics,
has been successfully applied to the explanation of these phenomena, together with universal
scaling laws and exponents corresponding to experimental observations in brittle fracture
[11–18].

Compared with simple brittle fracture, shear banding, which is a more general form
of damage fracture that is widely observed in natural fault zones [19–25] and plastic
deformation of metallic glasses [26–29], is more complicated. Highly localized deformation
induces plastic instability, which is also manifested as stick-slip sliding. In these cases, a
large amount of energy is dissipated in a narrow region, which results in a significant
temperature rise and rheological change of local materials, i.e. the viscoelastic effect. Such
additional physical processes usually introduce different characteristic time scales and act
as effective dissipation sources preventing critical failure [30,31]. This may lead to scaling
behaviours much closer to seismicity than brittle fracture of heterogeneous materials; these
behaviours have been discussed by using various seismic models with microscopic mechanisms
such as rheology damage [32,33], rate-and-state-dependent friction [34] and viscoelasticity
[35–37]. However, direct experiments comparing scaling behaviours of fracture and avalanches
triggered by localized plastic events are still lacking, which results in the critical issue under
debate: these two processes, dominated by fracture and shear banding, are either statistically
indistinguishable, such that they can be described under a unified model, or distinguishable,
such that traces reflecting their micro-dynamics can be captured from the analysis of mechanical
noise.

Ductile metallic glass foams (DMGFs) are a new type of structural material with cross-
scale disorders, i.e. disordered atomic-scale microstructures and randomly distributed millimetre
voids. Unlike crystalline metals and alloys, metallic glasses do not exhibit long-range translational
symmetry. Thus, plastic deformation in metallic glasses is usually through shear transformation
zones, which are attributed to collective rearrangements of 10–100 atoms [26–29]. At room
temperature and high stress, the deformation of metallic glasses is localized into shear bands,
which is what also happens in natural fault zones [19–22]. On the other hand, owing to the
existence of macroscopic voids in DMGFs, catastrophic failures dominated by a single crack
can be effectively prevented. Thus, the deformation of DMGFs proceeds through multiple
nanoscale shear bands prior to local fracture of cellular structures, which induces avalanche-like
intermittences in stress–strain curves [38,39].

In this paper, we present the detailed statistics of such a dynamic process in the compression
of DMGFs, where localized plastic deformation is the dominant dissipation pattern, and compare
them with fracture avalanches in a typical brittle porous material. In contrast to a brittle
material, the deformation of DMGFs exhibits fundamental scaling laws with exponents beyond
the estimation of the mean-field theory, suggesting a different universality class. This can be
attributed to additional plasticity, which prevents the system from building up long-range
correlations and accounts for the high structural stability and energy absorption performance
of DMGFs. Furthermore, we show that, by introducing a characteristic time scale, such shear
banding plasticity leads to a universal gamma distribution of waiting times, and faster Omori
decaying triggered events. Considering the existence of an internal characteristic time, we derive
a general scaling relation among these scaling exponents, which is in good accordance with our
experiments.



3

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A476:20200186

...........................................................

2. Experiments and definitions of avalanches
Cylindrical DMGFs with diameter 10 mm and porosity φ = 60% were fabricated by pressure
infiltration combined with rapid cooling, as shown in appendix Aa. For comparison, brittle
alumina foams (BAFs) with diameter 30 mm and porosity φ = 80% were also prepared.
Experiments on brittle porous materials with different porosities have been reported, and there
was no observed deviation [12]. This is because, after a long loading process, the continuous
accumulation of cracks, replacing the initial porosity, becomes a main part of the system’s
heterogeneity. It is clearly different from a short-term loading process, where the initial geometry
controls the system’s heterogeneity [40]. The fundamental mechanical properties of metallic
glasses Zr41.25Ti13.75Cu12.5Ni10Be22.5 (Vit 1) and Al2O3 are listed in table 1. Uniaxial compression
tests were carried out on an MTS-810 material test system at room temperature.

Within the context of structural phase transitions, avalanche scale invariance can be manifested
in different ways depending on the driving mechanisms [41]. If the control variable is force,
disorder leads to a dominant nucleation process. The criticality can be reached by tuning the
external driving force. However, if the driving force is a constant velocity, the system will
spontaneously evolve into a stationary critical point at which the velocity vanishes, i.e. the self-
organized criticality. The influence of a driving mechanism on slip avalanches was studied in
compressed microcrystals [42]. Here, we focus on the displacement-driven mode with a slow
strain rate of 10−3 s−1 for all samples, which can be considered as the most common loading form
in nature [43].

The force on a sample was measured with a resolution of 0.1 N, and the sampling frequency
was set as 100 Hz, which has enough precision to record each peak or critical stress. The
total accumulated experimental duration is 800 s. Instead of smooth deformation, jerky flow
was observed in these two porous materials; however, their underlying physical processes are
essentially different. As illustrated in figure 1a, deformation of BAFs proceeds by brittle fracture
of disordered cellular structures along a main crack or several sub-crack tips, leading to the first
major drop in the force– or stress–time curves; in DMGFs, plastic strain is locally accumulated in
the cellular walls by formation of multiple nanoscale shear bands before final fracture, and such
an additional process can effectively avoid a larger rift valley throughout the entire structure and
the occurrence of extreme stress drops, resulting in a stable stress platform [38,39]. The typical
force–time curves for BAFs and DMGFs are shown in figure 1b,c, respectively. Before the final
compaction, there are hundreds of sudden stress drops accompanied by acoustic emission (AE)
signals.

As is well known, avalanches in brittle materials are usually quantified by the AE energy
[44,45], where the captured signals are elastic vibrations caused by fracture or friction rebound.
However, taking cellular structures into account, a part of the energy is lost through the dispersion
of stress waves near the surfaces of cavities. On the other hand, because of the high toughness
of DMGFs (table 1), a large proportion of energy is used to form new fracture surfaces and is
dissipated in nanoscale shear bands. It is difficult to accurately estimate this part of the released
energy by using AE signals. To overcome this obstacle, we resort to fluctuating force signals as
provided in the electronic supplementary material to directly measure avalanche sizes [46–48]
and their corresponding released energy.

Here, two definitions of avalanche size are adopted to characterize the dynamic process of
deformation. The first one is the commonly used instant stress drop or strain burst, which reflects
the transient instability. Compared with the direct measurement of the stress drop, we can obtain
a higher spatial resolution by calculating the irreversible displacement increment, �xj, as shown
in appendix Ab Let us consider the signal of external force, F(t), as illustrated in figure 1d. The
local burst displacement is calculated by

�xj = Fmax,j

kj−1
− Fmin,j

kj
, (2.1)
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Figure 1. (a) Illustration ofmicroscopic deformation in the two types of porousmaterials. (b,c) Typical force–time curves (with a
constant strain rate of 1 × 10−3 s−1) for BAFs and DMGFs, respectively, with (d) the definitions of avalanche size, S, and energy
dissipation, E. (e) The time evolution of avalanche size defined by equation (2.2), and the total number of events in DMGFs,
where insets aremicroscopic damage images of a full view, collapsed cellular structures and a local zoom of a fractured skeleton
(from left to right) during compression. (Online version in colour.)

Table 1. Mechanical properties of matrix materials (Vit 1 and Al2O3), including Young’s modulus E, yield or breaking strength
σs,b, fracture strain εf under uniaxial compression and fracture toughness K1c .

matrix E (GPa) σs,b (GPa) εf (%) K1c (MPa · m−1/2)

Vit 1 97 1.8 2.3 52
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Al2O3 370 3 0.8 3∼ 4
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

where Fmax,j (or Fmin,j) and kj are the local maximum (or minimum) force and stiffness at time tj
during the time interval [ti, tiend ], respectively.

The second one defines bursts as ‘valleys’ in a force–displacement curve [46]. Based on this
definition, an avalanche corresponding to time ti is the total of the irreversible deformation
increments in the forward direction (figure 1d), that is,

Si =
iend∑
j=i

�xj, (2.2)

in an interval starting from a current yield stress, Fmax,i, to a larger one, Fmax,iend+1 . Different from
the former, the latter concatenates smaller transient burst events, and thus can reflect the non-
instantaneous and non-local stability.
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Figure 2. Zoom of a force–time curve for BAFs at the initial deformation stage (a) and several typical macrofracture
morphologies chosen from it (b), which cover themain characteristics of deformation and failure before and after the firstmajor
stress drop. (Online version in colour.)

In addition, we can also define the energy dissipation during each avalanche �ei
corresponding to the first definition and Ei to the second one, where

Ei =
iend∑
j=i

�ej. (2.3)

Obviously, �ej and Ei are equal to the area of a force–displacement curve under the respective
definitions of avalanche size (figure 1d), which are related to the seismic moment of earthquakes
[49]. With the time evolution, we can obtain earthquake-like avalanche series. Each sample
produces typically a few thousand events (1700 ± 500) for DMGFs, and tens of thousands of
events (16 000 ± 1000) for BAFs. Figure 1e shows the typical time evolution of avalanche events
(with size more than 100 nm) and their cumulative numbers (counted at intervals of 0.1 s) for
DMGFs. Owing to the distributed nanoscale shear bands, severe plastic energy dissipation is
extremely limited in a narrow region accompanied by strain or thermal softening [50] before
local fracture of skeletons. Figure 2 shows the zoom of a force–time curve for BAFs at the initial
deformation stage and several typical macrofracture morphologies chosen from it, which cover
the main characteristics of deformation and failure before and after the first major stress drop.
A main crack splitting longitudinally across the whole sample, which is typical of brittle failure,
leads to a precipitous drop in its carrying capacity.

No matter whether they are on the macroscopic or microscopic scale, the deformation and
failure mechanisms for DMGFs are very different from those for BAFs. Figure 3 exhibits scanning
electron microscope (SEM) images of DMGFs at different strain stages. The observation was first
conducted at a strain of approximately 2.5%, where the specimen just suffered a stress drop
(figure 3a). It can be seen that many local and nonfatal shear fractures, as indicated by the
arrows, occurred in struts. Unlike catastrophic brittle fracture in BAFs, plastic shear bands in
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(a) (b)

(d)

(c)

Figure 3. SEM images of DMGFs at different strain stages. (a) ε ≈ 2.5%, (b) ε ≈ 3%, (c) ε ≈ 5% and (d) ε ≈ 75%. (Online
version in colour.)

DMGFs correspond to local unstable slips that can be stopped by cavitations, leading to a non-
zero sticking stress, as shown in figure 3b. As loading continues, crushed struts come into contact
with each other (figure 3c), which leads to elastic reloading until stress exceeds the strength. Then,
a subsequent stress drop occurs and the stress redistributes in the whole sample. However, the
loading state becomes much more complicated than the initial one. The inset in figure 3c presents
the detail of a broken strut: multiple shear bands formed under a bending load that ensures
a relatively stable deformation. Figure 3d shows interruption at a strain of approximately 75%,
which is close to the densification strain (see inset for details). The high density of shear bands
indicates that the matrix has also accommodated a considerable deformation besides the collapse
of the struts.

3. Results and discussion

(a) Avalanche statistics based on the first definition
To obtain the maximum resolution of a limited experimental dataset, the complementary
cumulative distribution function (CCDF) is used. As shown in figure 4a,c, the CCDF of avalanche
size exhibits a power-law characteristic, i.e. CCDF(�x) ∼ �x−(τ�x−1), over several magnitudes for
both BAFs and DMGFs, suggesting scale-free and self-similarity in their fracture and localized
plastic dynamics. The corresponding probability density functions are P(�x) ∼ �x−τ�x , with
τ�x = 2.0 ± 0.1 for BAFs and τ�x = 1.90 ± 0.07 for DMGFs, implying a material-independent
exponent, τ�x = 2. The same exponent, τ�e = 2, was also found in energy dissipation distributions
(figure 4b,d), with a linear relationship between �x and �e.

Here, it is worth noting that, once the spatial distribution of avalanches becomes larger than 2,
the mean avalanche size becomes finite and is independent of the system size. This is significantly
different from the mean-field criticality, where τ = 1.5. A possible reason for this may be the
presence of extreme disorder in both materials, which prevents the system from building up a
long-range correlation and ultimately destroys the critical state. It has been demonstrated that, in



7

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A476:20200186

...........................................................

C
C

D
F 

(D
x)

1

10–1 1

0.9 0.9

1

10–2

10–3 C
C

D
F 

(D
e)

C
C

D
F 

(D
e)

1

10–1

10–2

10–3

10–3 10–2 10–1

individual displacement increment, Dx (mm)
1

10–3 10–2 10–1 1 10

10–310–4 10–2

individual energy dissipation, De (kJ)

BAFsBAFs

individual energy dissipation, De (kJ)

10–4

C
C

D
F 

(D
x)

1

10–1

10–2

10–3

10–310–4 10–2 10–1

individual displacement increment, Dx (mm)

DMGFs DMGFs

1
10–4

1

10–1

10–2

10–3

10–4

(a) (b)

(c) (d)

Figure 4. (a,c) The avalanche size distributions based on equation (2.1) that follow a power law, i.e. CCDF(�x)∼ �x−(τ�x−1),
over several decades of magnitude, suggesting a material-independent exponent τ�x = 2. (b,d) Their corresponding energy
dissipation distributions. The solid lines represent different experimental samples, symbols are their average values within a
fixed bin size and error bars are the standard deviations. (Online version in colour.)

the presence of randomness or quenched disorder, a system can organize into a stationary state
characterized by avalanches with a larger exponent of approximately 2, which is different from
the commonly recommended self-organized criticality [51].

(b) Avalanche statistics based on the second definition
To rebuild the long-range correlation destroyed by disorder, we turn to the other avalanche
definition, equation (2.2), i.e. the total irreversible displacement that needs to restore the load-
carrying capacity of a system from the latest disaster. Figure 5a,c shows the CCDF of S,
which exhibits a power-law characteristic, CCDF(S) ∼ S−(τS−1), for both BAFs and DMGFs; their
corresponding probability density functions are P(S) ∼ S−τS . Here, significant deviations in τS-
values imply that there are two different sorts of universality class in brittle and ductile disordered
materials under stress. In the case of BAFs, P(S) is well fitted by using a maximum-likelihood
method (see appendix Ac), with τS = 1.43 ± 0.05, which is close to the τS = 1.5 predicted by mean-
field models [52]. However, a non-trivial scaling exponent, τS = 1.70 ± 0.05, is obtained in DMGFs.
That is, extreme events in DMGFs decay faster than those in BAFs. This difference also exists
in the distributions of energy dissipation, as shown in figure 5b,d, which reveals a power-law
decay with different scaling exponents, τE = 1.65 ± 0.03 in BAFs and τE = 2.00 ± 0.05 in DMGFs.
Notably, the discrete bursts based on equation (2.1) tend to follow similar statistics independent
of the material type. However, the accumulated sum, defined in equation (2.2), results in the two
distinct power-law regimes associated with brittle and ductile samples. This suggests the presence
of a relation between the individual bursts with a correlation strength. That is, such a relation is
material dependent.

For BAFs, through a simple scaling analysis, we can establish the relationship between τS and
τE as well as other exponents. Here, we have experimentally demonstrated that the avalanche
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size S satisfies

P(S) ∼ S−τS G(S/Sm), (3.1)

where G(x) is a fast decay function as x > 1 and Sm is the cut-off size. Following the notation of
Ben-Hur & Biham [53], let us introduce a scaling hypothesis that relates Sm to the characteristic
propagation length ξ and time tm of microcracks, that is,

Sm ∼ ξD, tm ∼ ξ z, (3.2)

where D is the avalanche dimension and z is the dynamical exponent. Based on equations (3.1)
and (3.2), we can calculate the average avalanche size, namely

〈S〉 =
∫Sm

0
SP(S) dS ∼ S2−τS

m ∼ ξD(2−τS). (3.3)

On the other hand, we can calculate 〈S〉 by using equation (2.2), i.e. 〈S〉 ∼ N 〈�x〉, where 〈�x〉 =∫
�xP(�x) d�x ∼ ∫

�x�x−2 d�x ∼ ln(�xc), Here, �xc is the cut-off of P(�x) and N is the number
of subevents in the largest avalanche Sm. Because the accumulated sum, defined in equation (2.2),
contains a large number of discrete bursts, the maximum accumulated characteristic length ξ

should be larger than �xc. Considering the logarithm function is less than a power law, i.e.
ln(�xc) < ln(ξ ) < ξα for α > 0, the power-law dependence of < x > on ξ can be neglected. That
is, the power-law dependence of 〈S〉 on ξ originates from N. Here, the avalanches in experiments
have nothing to do with the specific form of disorder [51], and there is also no other dynamic
process involved in BAFs. Thus, the number of subevents �x per unit time should only depend
on the loading rate. In consideration of a constant loading velocity and also a constant triggering
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rate of subevents, we have N ∼ tm ∼ ξ z. Then,

〈S〉 ∼ N ∼ tm ∼ ξ z. (3.4)

Combining equations (3.3) and (3.4), we obtain the first scaling relationship,

τS = 2 − z
D

. (3.5)

In fact, such a scaling relation only applies to the self-organized criticality, where the critical state
is stationary, and it does not generally apply to a system that can be tuned to be critical [54].

Analogously, we can calculate the average energy dissipation, 〈E〉 = ∫
EP(E) dE ∼ E2−τE

m ,
because Em = σASm, where σ is the strength and A is the rupture area that scales as ξ2, and
thus 〈E〉 ∼ ξ (D+2)(2−τE). Moreover, 〈E〉 can be determined by using equation (2.3), which leads to
〈E〉 ∼ N ∼ ξ z. Then, we can have the second scaling relationship,

τE = 2 − z
D + 2

. (3.6)

Thus, there are only two independent exponents among (τS, τE, z, D), which can be applied to
identify a self-organized critical state. The mean-field model predicts the critical exponents, z =
2 and D = 4 [52], and, based on equations (3.5) and (3.6), we can further calculate τS = 1.5 and
τE = 5/3 ≈ 1.67; these values are consistent with experimental observations in BAFs, where τS =
1.43 ± 0.05 and τE = 1.65 ± 0.03.

For DMGFs, we have τS = 1.70 ± 0.05 and τE = 2.00 ± 0.05, which obviously deviate from
the scaling relationships (equations (3.5) and (3.6)). These non-trivial exponents are related to
plasticity in DMGFs, which can also prevent long-range correlations and ultimately invalidate
the scaling hypothesis (equation (3.2)). In fact, a similar avalanche exponent, τS ≈ 1.7, was
recently reported by using a forest fire model, which includes a second kind of tree that is
delayed from catching fire to represent the additional process [36]. Our experiments may provide
direct experimental evidence that different deformation and collapse mechanisms lead to very
different avalanche exponents, which also supports previous experimental studies, such as τE �
1.7 (fracture) and τE � 2 (twinning-induced plasticity) [55].

In analogy with the relationship log10 E = 3/2M + 11.8 in earthquakes, between the released
energy E and earthquake magnitude M, and combining with P(E) dE = P(M) dM, we have
τE = 1 + 2b/3, where b is the slope of the Gutenberg–Richter frequency-magnitude relation, i.e.
log10 P(M) = a − bM [2]. Thus, we can further estimate the b-value from τE, which gives that
b = 0.975 ± 0.045 for BAFs and b = 1.500 ± 0.075 for DMGFs. Interestingly, the crossover of b-
values from 1 to 1.5 also occurs in scaling of small and large earthquakes [56–58], and our work
may provide a new perspective on these natural phenomena.

(c) Distributions of waiting time
For a preselected size Sm, the waiting time is defined as the interval between two successive
events with S > Sm. The probability density functions, P(τ ), as shown in figure 6a,c for BAFs and
DMGFs with different values of Sm, are collapsed onto a single curve by rescaling the vertical
and horizontal coordinates with the mean rate of event activities 〈r〉 or 1/〈τ 〉 (figure 6b,d). This
suggests that there is a generalized scaling formula [4,59], that is,

P(τ ) = 〈r〉ω/(2−ω) F(τ 〈r〉1/(2−ω)), (3.7)

where ω and F(·) are the scaling exponent and function, respectively.
In BAFs, we have F(x) ∼ x−ω with ω ≈ 1.5 in the main time range (figure 6b). Thus,

equation (3.7) can be reduced to a simple power-law relation, P(τ ) ∼ τ−ω, independent of the
mean rate of fracture activities, 〈r〉. Moreover, a steeper decay emerges on the right tail of the
distributions, corresponding to the smaller values of Sm in figure 6a, which leads to a second
power-law-like curve as proposed for the system with a non-stationary activity rate [3–5].
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A similar crossover was also observed in other brittle porous materials [11–13]. The power-law
distributed occurrence time suggests that there is a long temporal correlation [60].

In DMGFs, a distinct scaling behaviour is observed with ω ≈ 1. As shown in figure 6d,
all distributions are well fitted by a gamma distribution, F(x) ∼ x−(1−γ ) exp(−x/a) with γ =
0.77 ± 0.06 and a = 1.4 ± 0.1. Therefore, we have a decreasing power law with an exponent of
approximately 0.23, up to the largest value x = τ 〈r〉, where the exponential factor comes into
play. The exponential decay suggests the existence of a stationary period, which is related to
plastic shear bands. Here, it is worth noting that, in contrast to that in BAFs, such a scaling
formula is similar to results (i.e. γ = 0.67 ± 0.05 and a = 1.58 ± 0.15) obtained from earthquake
catalogues [3–5]. As far as the laboratory scale is concerned, the scaling formula, with almost the
same values of γ and a, was also observed in the compression of rocks with a confining pressure
[61] and in charcoal dampened with ethanol [62], suggesting universality. Besides the gamma
distribution, Poisson and Gaussian distribution functions have also been used to fit experimental
data; however, both of them failed to fit the complete dataset well (figure 6d).

(d) Distributions of aftershocks
Next, let us focus on the spatial–temporal correlation of the triggered subsequence. However,
before that, we need to define the ‘main shock’ (MS) and ‘aftershock’ (AS) in an avalanche series.
Based on the traditional approach, the MS is defined as the events around a narrow selected size
band [11–13]; after each MS, the subsequent smaller avalanches consist of an AS sequence. We
divide the time from a MS into several parts, and count the number of ASs in each interval to
calculate the generation rate. Subsequently, we average the curves over all MSs with size falling
into the prescribed interval [13].
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As seen in figure 7a,c, the time decay of the AS generation rate for these two porous materials
exhibits two different regimes: for smaller arguments, it decays as a power law with exponents
of approximately 0.8 for BAFs and approximately 1 for DMGFs, corresponding to the p-value in
the Omori–Utsu relation [6]; for larger arguments, we find a steeper power-law-like decay for
both BAFs and DMGFs. A similar crossover behaviour was also observed in AE experiments
[63], which is considered as a lack of spatial information and makes the measurement of
the q-value problematic. Furthermore, we show that rAS/Sα

m can be represented as a unified
function of t − tMS (figure 7b,d), suggesting K ∼ Sα

m, which is consistent with the prediction of
the productivity law. Interestingly, the exponent α exhibits an obvious insensitivity to material
rheological properties (α ≈ 0.4 for BAFs and α ≈ 0.48 for DMGFs).

To acquire a more accurate estimation of p-values, and to take advantage of the fact that the
larger the event size, the more ASs are triggered, let us extend the definition of MSs to all the
events with size larger than Sm. Similarly, we average the curves over all MSs with size falling
into the prescribed interval. For each individual AS sequence, the triggering rate follows the
modified Omori law, i.e. r(t) = k/(tc + t)p, where k ∼ Sα and p and α are constants independent
of the magnitude of the triggers. If we collect sequences with S > Sm, and calculate their average
value, we have

R = 1
P(S > Sm)

∫∞

Sm

P(S)r(t) dS. (3.8)

Here, the integral from Sm to infinity is calculated instead of a narrow size band from Sm − � to
Sm + �. The influence of bin size � on AS distributions is shown in figure 8a,b. It can be seen that
the increase of � can effectively prolong the AS sequence and does not change its distribution. By
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substituting P(S) ∼ S−τS and P(S > Sm) ∼ S−(τS−1)
m into equation (3.8), we can further obtain

R ∼ 1

S−τS+1
m

∫∞

Sm

S−τS+α

(tc + t)p dS ∼ Sα
m

(tc + t)p , (3.9)

with the assumption that α < τS − 1. Thus, the average AS rate decays with the elapsed time since
the MS can preserve the complete information of each AS sequence. That is, this method has an
obvious advantage in estimating the p-value, especially for a small value of Sm.

As shown in figure 9a,c, the time decay of AS generation rate for these two porous materials
represents a onefold power law, rAS = K/(tc + t − tMS)p, as proposed by Omori [6]. The exponent
p is independent of Sm, and, conversely, K and tc increase with Sm. Similarly, rAS/Sα

m can also
be represented as a unified function of t − tMS (figure 9b,d), consistent with the prediction of the
productivity law. Interestingly, the exponent α obtained by such an extended definition of MSs
(≈ 0.44 for BAFs and ≈ 0.46 for DMGFs) is consistent with the traditional method.

In BAFs, the inherent non-stationarity in brittle fracture leads to a slow decay of AS occurrence
rate, which is characterized by a small value, p = 0.5 ± 0.1 (figure 9a). However, in DMGFs, as
shown in figure 9c, a faster decay rate of ASs with p = 0.80 ± 0.05 is related to nanoscale shear
bands, where plastic energy is dissipated in extremely narrow regions, usually accompanied by
thermal softening. The correlation between a higher p-value and heat flow has also been observed
in earthquake fault systems [64–66]. Note that, just like other AE experiments of rock fracture,
the p-values in both cases are significantly lower than 1, suggesting that the number of ASs is
diverging in the long-time limit, i.e.

∫∞
0 r(t) dt ∼ (t + tc − tMS)1−p → ∞, as p < 1 and t → ∞. This

can be attributed to the continuous loading process at a short laboratory time scale that leads to
an infinite number of triggered events.

Another significant difference in these two porous materials lies in the scaling relationship
between tc and Sm, i.e. tc ∼ Sν

m, where tc is the characteristic time; after that, the AS generation
rate follows a unified power law, as shown in the insets of figure 9b,d. For BAFs, the observed
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ν value is about 1.85, as shown in the inset of figure 9b, which is much greater than that
in DMGFs; see inset of figure 9d. This scaling law allows us to further test the similarity of
fractures and avalanches triggered by localized plastic events in laboratory experiments to real
earthquakes: for moderate size earthquakes, e.g. 28 September 2004, Mw 6.0 Parkfield, the average
slip was measured as approximately 15 cm [67]. Combining the relation tc ∼ Sν

m with ν ∼ 1.85
and the point (tc ∼ 1s, Sm ∼ 10−3 mm) from BAFs, we can estimate the characteristic time in
earthquakes, tc ∼ 40 000 days. This value is however much greater than that directly calculated
from the real earthquake sequence, tc ∼ 0.13 days [68]. If we use ν = 0.78 obtained from DMGFs,
the characteristic time can be estimated as tc ∼ 0.126 days, which is close to the expected one
(tc ∼ 0.13 days).

(e) The relationship among scaling exponents
Let us consider a time series with N avalanche events. The number of avalanches with size larger
than Sm can be calculated by NP(S > Sm) ∼ NS1−τS

m , which constitutes an MS sequence. Given
that MSs are uniformly distributed, the average number of ASs after an MS can be calculated by
〈NAS〉 = N[1 − P(S > Sm)]/[NP(S > Sm)], that is,

〈NAS〉 ∼ SτS−1
m , (3.10)

which can be numerically verified, as shown in figure 10a.
On the other hand, the average number of ASs can be also determined by

〈NAS〉 =
∫ 〈TAS〉

0
rAS(t) dt ∼ K〈TAS〉1−p, (3.11)
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where 〈TAS〉 is the mean duration time of ASs or the mean waiting time of MSs. It scales as the
reciprocal of the mean activity rate, i.e. 〈TAS〉 ∼ 1/〈r〉, where the mean activity rate 〈r〉 is related to
Sm by 〈r〉 ∼ S−(τS−1)

m [69]. Thus, we can obtain

〈TAS〉 ∼ SτS−1
m , (3.12)

which is further verified numerically, as shown in figure 10b.
Combining K ∼ Sα

m with equations (3.10), (3.11) and (3.12), we have a scaling relation,

α = p(τS − 1). (3.13)

As expected, τS = 1.7, p = 0.8 and α = 0.46 in DMGFs are in good agreement with equation (3.13).
In BAFs, however, large-scale events mainly occur at the beginning of a time series,

accompanied by the fracture of major support structures. This results in a large number of ASs,
at which point the upper limit of the integral in equation (3.11) is independent of Sm. Thus, we
obtain another scaling relation,

α = τS − 1, (3.14)

which compares well with the results of BAFs. The same scaling relation in a form of
energy, αE = τE − 1, was reported in AE experiments [70]. Actually, the scaling relation
(equation (3.14)) deduced from brittle fracture experiments was found to be valid for earthquakes
[70]. For instance, analysis of the seismicity catalogue of Southern California [10] yields
τE = 1.72 ± 0.07, p ≈ 0.9 and αE ≈ 0.54, which do not fulfil equation (3.14). Conversely, the
newly obtained relationship (equation (3.13)) seems to be well consistent with the outputs of
earthquakes.

4. Conclusion
As a new artificial porous material, DMGF with an extremely high strength possesses a stable
stress platform under compression. Thus, understanding its deformation mechanism is important
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for developing novel energy-absorbing materials. In this paper, we have compared the avalanche
dynamics in compression of DMGFs and BAFs, which are dominated by shear banding and
fracture, respectively.

To avoid omission in estimating the total released energy, instead of AE signals, we adopted
the avalanche size, which is and its corresponding energy dissipation, which can be directly
abstracted from the compressed stress time series. Specifically, two definitions of avalanche size
were used to characterize the dynamic process of deformation. The first one is the commonly used
strain burst, which reflects the transient instability behaviour. Because of the extreme disorder,
we obtained a robust scaling exponent, τ�x,�e = 2 in both materials, which deviates from the
self-organized criticality, where τ = 1.5.

To rebuild the long-range correlation destroyed by disorder, we have tried another avalanche
size, which is defined as the total irreversible displacement. It is shown that there are two
sorts of universality classes, characterized by significantly different power-law exponents. For
BAFs, the avalanche size exponent τS is approximately 1.5, the energy dissipation exponent τE is
approximately 1.65 and their corresponding b-value is about 1; these values are consistent with
the prediction of self-organized criticality models. In contrast, for DMGFs, a higher avalanche
size exponent of 1.7, an energy dissipation exponent of 2 and their corresponding b-value of 1.5
are obtained, suggesting a higher structural stability. This can be attributed to plastic events in
DMGFs, which prevent long-range correlations and invalidate the scaling hypothesis at a critical
point. The same avalanche exponent τS close to 1.7 was also reported by some modified numerical
models [36], and the larger τE ∼ 2 was found in twinning-induced plasticity [55]. These non-trivial
scaling behaviours suggest that there is still room for optimization of these material properties,
which is different from the most common self-organizing criticality, where no parameters can be
tuned.

In addition to avalanche and energy distributions, the statistics of waiting time of these two
porous materials are also distinctly different. For BAFs, a power-law distributed waiting time
was observed, suggesting a long-time correlation between fracture events; for DMGFs, there
was a gamma distribution, implying the existence of an internal characteristic time. Analysis
of AS sequences reveals detailed differences in the spatial–temporal correlation of triggered
events, characterized by different p-values and scaling relations between tc and Sm in these two
porous materials. Considering the existence of an internal characteristic time in localized plastic
dynamics, we further derived a new scaling relationship, which is in good accordance with our
experiments. This, in turn, provides good evidence that these non-trivial scaling laws found in
DMGFs are connected to an additional plastic process.

Finally, our results allow comments on the viewpoint that compression experiments of
disordered materials at the laboratory scale may serve as scaled-down models of earthquake
faults. Just from scaling laws, the fracture of brittle porous materials exhibits a striking
analogy to small earthquakes, while the shear banding plasticity is more similar to large
ones. Thus, our work might also provide a new perspective on such extremal natural
phenomena.
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Appendix A

(a) Preparation of ductile metallic glass foams
We chose Vit 1 as a parent material and alumina cenospheres with an average size of 500–600 µm
and a relative wall thickness of t/R = 0.13 as placeholder particles. DMGFs were fabricated by
combination of pressure infiltration invasion and rapid cooling [39].

(b) The spatial resolution of burst displacements
Equation (2.1) allows us to estimate the spatial resolution, i.e. δx ∼ δF/k, where k is the stiffness
of porous materials. Considering that the stiffness of BAFs and DMGFs is about 9 × 106 and
5 × 107 N m−1, respectively, and the nominal force uncertainty of a force sensor is of the order
of 0.1 N, a displacement increment, �xj, less than δF/k ∼ 10−8 m, is considered as noise. In this
paper, we set the cut-off value as 10−7 m, above which a power-law distribution is obvious, as
shown in figure 5a,c. By using this algorithm, we have an extremely high spatial resolution of
approximately 100 nm, which is comparable to an average shear band slip distance (approx. 2 µm)
in metallic glasses.

(c) Maximum-likelihood estimation
Suppose that a statistic x follows a power-law distribution, i.e. P(x) = Ax−τ , with a prespecified
minimum value, xmin. According to the normalization condition,

∫∞
xmin

P(x) dx = 1, we can obtain

A(τ ) = τ − 1

x−τ+1
min

. (A 1)

Then, the likelihood function for N times of independently and identically distributed tests,
(x1, x2, . . . , xN), can be written as

L =
i=N∏
i=1

P(xi) = A(τ )N

⎛
⎝

i=N∏
i=1

xi

⎞
⎠

−τ

. (A 2)

We can obtain the maximum-likelihood estimate of the parameters τ by maximizing ln L, i.e.
solving equation ∂ ln L/∂τ = 0,

τ̂ = 1 + 1
1
N

∑N
i=1 ln xi − ln xmin

, (A 3)

where the value of xmin can be determined by the cut-off �x (see appendix Ab).
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