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A B S T R A C T

A semi-analytical method is presented to investigate fracture behavior of a mode-I crack in a thin
ductile plate. In the part of theoretical analysis, a total deformation theory of plasticity, in
conjunction with a power law hardening stress-strain relation, is employed. Three-dimensional
Maxwell stress functions, the minimum complementary potential energy principle and three
dimensional J-integrals are used to obtain crack front stress fields. In the part of numerical
analysis, three dimensional finite element simulations are carried out to obtain J-integrals, the
out-of-plane constraint level and crack front stress fields. Comparison with numerical results of
crack front stress fields shows the analytic solutions for crack front stress fields are valid.
Numerical and analytic results show that the value of the opening stress ahead of the crack front
deceases with increasing z (approaching the free surface) and lies between the corresponding
plane strain and plane stress solutions.

1. Introduction

Plate elements bearing tension, compression or bending are widely applied in aerospace engineering and civil engineering. Stress
analyses of cracked plate elements undoubtedly are important issues in fracture mechanics. In earlier studies, Rice and Rosengren [1]
and Hutchinson [2] presented two-dimensional solutions for singular fields near the tip of a crack in a power law hardening material,
known as HRR field solutions. Considering a three-dimensional thin elastic plate containing a through-thickness crack under pressure
on the crack surfaces, Hartranft and Sih [3] and Sih [4] derived a closed form solution to depict the distribution of stress intensity
factors in the plate thickness direction. The solution also revealed a boundary layer exists near the free surface of the plate. Nakamura
and Parks investigated three-dimensional crack front fields in a thin elastic or plastic plate with a through-thickness crack under a
remote KI field using finite element methods. In the elastic case [5], these authors concluded that three-dimensional effects appear
within a radial distance of about one-half thickness from the crack front on the mid-plane. In the plastic case [6], they concluded that
for a low thin hardening plate under small scale yielding, the existence (at the mid-plane) of plane strain HRR-dominance requires the

thickness of the plate to exceed ( )K
σ

1
2 ¯

2
I
y

. Here, σ̄y is a yield stress. Su and Sun [7] carried out a three-dimensional asymptotic stress

analysis for a cracked elastic plate under tension. They reported that the stress singularity at the crack front is of square root
singularity throughout the thickness, while the stress intensity factor is a function of the thickness-wise coordinate. Using a Global-
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local finite element technique, Kwon and Sun [8] performed three-dimensional finite element analyses for an elastic plate with a
through-thickness crack under remote loading. Based on their numerical results, Kwon and Sun proposed a K-V interaction model to
reveal the characterization of the three-dimensional crack front stress fields in the boundary layer (the region close to the plate free
surface). Based on the solution for an edge dislocation in infinite plates of arbitrary thickness and an application of the distributed
dislocation technique, Kotousov [9] investigated the effect of plate thickness on the stress intensity factor. The author believed that
the stress intensity factor matches the classical plane solution in the case of short cracks or very thick plates, and the stress intensity
factor is related to the classical plane solution by − v1 2 in the case of long cracks. Based on the strip-yield assumption and the
application of the distributed dislocation technique, Codrington and Kotousov [10] presented a new analytical method for calculating
plasticity-induced fatigue crack closure in plates of finite thickness under cyclic loading. The authors showed the effect of plate
thickness on the plastic zone size and concluded that the reverse to direct plastic zone size ratio decreases with a decrease in the plate
thickness to crack length ratio. Using a novel eigenfunction expansion technique, Chaudhuri [11] derived a three-dimensional
asymptotic crack front fields for an infinite cracked elastic plate made of a homogeneous cubic single crystal under remote mode-I/II
loading. The author concluded that no crack deviation is expected when single crystals of alkali halides (rock salt structure) are
subjected to tensile loading, but crack deflection always occurs when single crystals of bcc metals are subjected to tensile loading.
Employing finite element methods, Sobotka and Dodds [12] investigated key features of elastic–plastic fields near a steadily ad-
vancing three-dimensional crack in a thin Al-Ti alloy plate under small-scale yielding conditions. Their numerical results showed that
three-dimensional effects on the crack front stress fields begin to appear at distances of about 1.5–2.5 times the plate thickness ahead
of the advancing front. Khan et al. [13] carried out a photoelastic experiment to investigate the effect of plate thickness on the plastic
zone size in a plate with a through-thickness crack under mixed mode loading. These authors observed that the plastic zone size
decreases with increasing thickness of the plate both in the mid-plane and at the surface. Xiang and Guo [14] proposed a set of
empirical formulae to depict the three-dimensional stress fields near the front of a through-thickness crack in a ductile plate under
tensile loading. Kotousov et al. [15] investigated the effect of plate thickness on coupled stress intensity factors for an elastic plate
with a through-thickness crack under shear or anti-plane loading. These authors argued that shear or anti-plane loading always
generates coupled local fracture modes (mode-II + mode-III) due to Poisson's ratio effect and the coupled stress intensity factors can
be expressed by a power function of plate thickness. Considering a plate with a through-thickness crack under remote loading, Wang
et al. [16,17] investigated the effects of in-plane and out of-plane dimensions on crack front stress fields, J-integrals, CTOD and crack-
tip constraint parameters using three-dimensional finite element technologies. These authors believed that the distribution of the

Nomenclature

a normalized half crack length
ā half crack length
A, B, C, D, E, F functions in Eq. (33)
A (Γ )2 domain bounded by Γ2
A B C D E F H~, ~, ~, ~, ~, ~, functions in Eq. (35)
Ē elastic modulus
h̄ half thickness of plate
I function relative to J
K z( ), K z( )i amplitude of ϕ and ϕi, i = 1, 2, 3
KI mode-I stress intensity factor
σe equivalent stress
σ~e part of equivalent stress
J z( ), J η( ) three-dimensional J-integral (in dimensionless

quantity)
J0 J-integral (in dimensionless quantity) caused by

remote uniform tensile loading
n stain hardening coefficient
nj components of a unit vector outward normal to

integral path, j = x, y
r, θ, z normalized cylindrical coordinates
R radius of cylindrical body
r0 normalized radius of Ω0
r1, r2 normalized radius of integral path
rp plastic zone size
r̄ , θ, z̄ cylindrical coordinates
g s s s s, , , ,1 2 3 exponents of r
sij components of deviatoric stress normalized by σ̄y
T out-of-plane constraint level
ui components of normalized displacement, i = x, y,

z in rectangular coordinates or i = r, θ, z in cy-
lindrical coordinate

u~i part of ui
x, y, z normalized rectangular coordinates
x y z¯, ¯, ¯ rectangular coordinates
W strain energy density (in dimensionless quantity)
Γ1, Γ2 integral path with radius r1, r2
ε strain tensor
εij components of strain normalized by ε̄y, i or j = x,

y, z in rectangular coordinates, i or j = r, θ, z in
cylindrical coordinates

ε~ij part of εij
ε̄y yield strain
v Poisson’s ratio
ρ one of spherical coordinates
σ stress tensor
σij components of normalized stress, i or j = x, y, z in

rectangular coordinates, i or j = r, θ, z in cylind-
rical coordinates

∞σ normalized remote uniform tensile loading
∞σ̄ remote uniform tensile loading

σ̄ij components of stress, i or j = x, y, z in rectangular
coordinates, i or j = r, θ, z in cylindrical co-
ordinates

σ̄y yield stress
ϕ, ϕi normalized Maxwell stress function, i = 1, 2, 3
ϕ̄i Maxwell stress function, i = 1, 2, 3
ϕ~ part of ϕ
Ω0 a cylindrical body including the crack front
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local J-integral or the out-of-plane constraint level along the crack front becomes more uniform with increasing plate thickness. Using
single-edge-notched bend and compact specimens as well as three-dimensional finite element methods, Shlyannikov et al. [18]
carried out experimental and numerical studies on the fracture toughness of ductile plates. Experimental and numerical results
obtained by these authors demonstrated that the plastic stress intensity factor which is sensitive to in-plane and out-of-plane con-
straint levels can be used to characterize the fracture resistance characteristics as a unified single parameter for a variety of specimen
geometries. Using three dimensional finite element methods, Nikishkov and Matvienko [19] investigated the distributions of J-
integral and the constraint parameter A along the front of a mode-I crack in a power-law hardening plate. Here, the constraint
parameter A is an amplitude of the second and third terms in an elastic–plastic asymptotic expansion for the crack tip stress field and
is considered as a measure of stress field deviation from the HRR field solutions. These authors concluded that the constraint
parameter A significantly decreases with increasing specimen thickness. Kotousov et al. [20] applied the first order plate theory to
analytically obtain the transverse displacement at the tip of a semi-infinite crack loaded in mode-I.

In the papers mentioned above, there are a number of numerical results on three-dimensional elastic or plastic fracture problems.
However, there are a very limited number of analytical solutions available. In the current paper, we focused on obtaining semi-
analytical solutions for stress fields near the front of a crack in a ductile plate. In Section 2, physical backgrounds, basic equations and
hypotheses for the current problem are described. In Section 3, solutions for crack front stress fields and the plastic zone size ahead of
the crack front are presented. Three-dimensional finite element simulations for J(z), T(z), the distribution of the opening stresses in
the thickness direction and the angular-variations of in-plane stresses on the mid-plane are carried out. In Section 4, analytic and

Fig. 1. A thin plate containing a through-the-thickness crack subjected to remote tensile loading ∞σ̄ . (a) A cracked thin plate under tension and (b) a
triaxial stress state near the crack front.
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numerical results are discussed and compared. In Section 5, a brief summary and some conclusions are given.

2. Basic equations and expressions of crack front fields

2.1. Basic equations

Consider a thin hardening plate containing a through-thickness crack subjected to remote tensile loading ∞σ̄ . The thickness of the
plate is 2h̄, illustrated in Fig. 1a. Disregarding elastic deformations, the tensile stress–strain relations of power hardening materials
may be presented as

=ε ασ .n (1)

Throughout this paper, unless otherwise stated, all unbarred quantities are non-dimensional quantities. Length quantities if
unbarred will be non-dimensionalized by the half thickness of the plate h̄. Stress quantities if unbarred will be non-dimensionalized
by a yield stress σ̄y and unbarred quantities ε will be normalized with respect to the corresponding yield strain =ε σ E¯ ¯ / ¯y y where Ē is
the elastic modulus. α is a constant and n is the stain hardening coefficient.

According to the total deformation theory, the generalized stress–strain relation which reduces to Eq. (1) in simple tension may be
written as

= = ⎛
⎝

− ⎞
⎠

− −ε ασ s ασ σ σ δ3
2

3
2

1
3

.ij e
n

ij e
n

ij kk ij
1 1

(2)

Here,

=σ s s3
2

.e ij ij (3)

Equilibrium equations disregarding body forces may be written as

=σ̄ 0.ij j, (4)

When Maxwell stress functions are introduced, the stress components satisfying Eq. (4) may be written as
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Considering a cylindrical coordinate system, shown in Fig. 1a, one may have the following relationships
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Substituting Eq. (6) to Eq. (5), the stress components may be re-written as
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The relationship between stress components in cylindrical coordinates and those in rectangular coordinates may be expressed as
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Substituting Eq. (7) into Eq. (8), one may obtain
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Here, =∙ ∂
∂( ) θ and ′ = ∂

∂( ) r . The non-dimensional Maxwell stress functions ϕi, r and z are given in terms of the dimensional
quantities (barred) by
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It can be proved that Eq. (9) satisfies the equilibrium equations in cylindrical coordinates, expressed as
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2.2. Expressions for three-dimensional crack front fields

It is well known that a thin plate without a crack under tension is in a state of plane stress. However, When a thin plate containing
a through-thickness crack is subjected to tensile loading, materials near the crack front should contract in the x̄ and z̄ directions due
to the high stresses normal to the crack plane, but these materials are prevented from doing so by the surrounding materials. The out-
of-plane and in-plane constraints cause a three-dimensional stress state near the crack front, as Fig. 1b shows.

Consider a cylindrical body Ω0 including the crack front (see Fig. 1a) where < <r h0 . In the mid-plane, the out-of-plane constrain
level is high, and at the free surface, the out-of-plane stress vanishes. According to the description above, the stress functions are
attempted in the form

= =ϕ ϕ K z r ϕ θ z( ) ~ ( , )s
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Here, T represents the out-of-plane constraint level varying in the thickness direction.
Substituting Eq. (12) and Eq. (13) to Eq. (9) and disregarding terms containing r s and r s - 1, one may obtain
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Here, one may find
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Substituting Eq. (14) to Eq. (2), the strain components near the crack front may be written as
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( ) ( )
( )

σ s s ϕ ϕ s ϕ sϕ ϕ ϕ s ϕ

ϕ s ϕ s ϕ

~ ( 1) ~ (~ ~) ~ ~ (~ ~)

(~ ~) 2(1 ) (~ )
¯

.

e
T T

T

3
2

1
3

2 2 1
3

2 2

2 1
3

2 2 2 2
(18)

According to the principle of minimum complementary potential energy, one may have

∭ + + + + + =ε δσ ε δσ ε δσ γ δσ γ δσ γ δσ dxdydz( )  0
V

x x y y z z xy xy xz xz yz yz
(19)

Substituting Eq. (5) into Eq. (19) and employing variational methods, one may obtain

∭

∭

∭ ⎜ ⎟

+ + +

= ⎛
⎝

+ − + ⎛
⎝

+ ⎞
⎠

⎞
⎠

= ⎛
⎝

⎛
⎝

+ − ⎞
⎠

+ + ⎞
⎠

=

⎫

⎬

⎪
⎪⎪

⎭

⎪
⎪
⎪

∂
∂

∂
∂

∂
∂ ∂

∂
∂

∂
∂

∂
∂

∂
∂

∂

∂ ∂
∂
∂

∂
∂( )

( ) ( )
ε δσ ε δσ ε δσ γ δσ dxdydz

ε δ ε δ γ δ ε δ T dV

T δϕdV

( )

0.

x x y y z z xy xy

x
ϕ

y y
ϕ

x xy
ϕ

x y z
ϕ

y
ϕ

x

ε
y

ε
x

γ

x y
ε

y
ε

x

V

V

V

x y xy z z

2

2

2

2

2 2

2

2

2

2
2

2

2

2 2

2

2

2
(20)

Here, γxz and γyz are disregarded.
Considering δϕ is arbitrary, one may obtain the equation which strain components near the crack front should meet, shown as

⎜ ⎟ ⎜ ⎟
⎛

⎝

∂
∂

+
∂
∂

−
∂
∂ ∂

⎞

⎠
+ ⎛

⎝

∂
∂

+
∂
∂

⎞
⎠

=ε
y

ε
x

γ
x y

T
ε

x
ε

y
0.x y xy z z

2

2

2

2

2 2

2

2

2
(21)

The expression of Eq. (21) in terms of cylindrical coordinates may be written as

⎜ ⎟
⎛
⎝

″ + − ′ −
′ ⎞
⎠

+ ⎛
⎝

+ ″ − ′⎞
⎠

=
∙∙ ∙

∙∙rε ε
r

ε
γ r

r
T

r
ε ε r ε( ) ( ) ( )

(( ) ) 1 ( ) ( ) ( ) 0.θ
r

r
rθ

z z z
(22)

3. Solutions for three-dimensional crack front fields

3.1. Solution for s

In order to obtain s, a three-dimensional J-integral (in dimensionless quantity) may be introduced. A mathematical expression for
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the three-dimensional J-integral [21–27] is

∫

∫ ∫

= − →

= − − = =∂
∂

J η Wdy σ n u ds r

Wdy σ n u ds dA i x y z j x y

( ) ( ), ( 0)

( ) (Γ ), , , , , .

ij j i x

ij j i x
A

σ u
z

Γ
, 1

Γ
,

(Γ )

( )
2

iz i x

1

2 2

,

(23)

Here, η is a point along the crack front, J η( ) is the point-wise value of the J -integral at a given point η along the crack front (see
Fig. 2), W is the strain energy density (in dimensionless quantity) for a linear or non-linear material, σij and ui are the Cartesian
components of stress and displacement. Integral paths Γ1 (radius r1) and Γ2 (radius r2) lie in the plane perpendicular to the crack front,
and nj are the components of a unit vector outward normal to the integral paths and normal to the crack front. A (Γ )2 is the domain
bounded by Γ2.

The strain energy density W can be expressed as [2]

∫ ∫= = =
+

+ − + +W σ dε αn σ dσ αn
n

K r σ
1

~ .
ε

ij ij
σ

e
n

e
n s n

e
n

0 0
1 ( 2)( 1) 1ij e

(24)

Near the crack front, σzx and σzy may be disregarded, then we have [2]

= + + +
= − − +

+ − + +
= =

+ − + ∙ ∙

σ n u σ n u σ n u σ n u σ n u
αK r θ σ u u σ u u

n s θ σ u σ u
i x y z j x y

{sin (~ ((~ ) (~ ) ) ~ ((~ ) ~ ))
( ( 2) 1) cos (~ ~ ~ ~ )},

, , , , .

ij j i x x x x x xy y x x yx x y x y y y x
n s n

r θ r rθ θ r

r r rθ θ

, , , , ,
1 ( 2)( 1)

(25)

Here, taking strain–displacement relations into account, u~r , ∙u(~ )r , ∙u(~ )θ and u~θ may be expressed as

∫ ∫= = = =

= =

= − = − =

= − =

⎫

⎬

⎪
⎪⎪

⎭

⎪
⎪⎪

−
− +

− +

∙
− +

∙ − + ∙

∙ − + − + ∙

− + − +
−

− +

− +

− +

− ∙ ∙

u ε dr K r ε dr αK r u θ z

u ε αK r u θ z

u ε r u αK r ε u αK r u θ z

u αK r αK r u θ z

~ ~ ( , )

( ) (~ ) (~ ( , )) ,

( ) (~ ~ ) (~ ( , )) ,
~ ( , ).

r r
α n s n

r
αK r ε

n s
n s n

r

r
αK r

s n r
n s n

r

θ θ r
n s n

θ r
n s n

θ

θ
n s n σ s ϕ u

n s
n s n

θ

2
( 2) ~

2( ( 2) 1)
( 2) 1

2(( 2) 1)
( 2) 1

( 2) 1 ( 2) 1

( 2) 1(3~ ( 1) ~ (~ ) )
( 2)

( 2) 1

n s n r

n s n

e
n r

( 2) 1

( 2) 1

1

(26)

Here, the last term in Eq. (26) may be obtained by the following expression, written as

⎛
⎝

+ ′ − ⎞
⎠

=∙
r

u u u
r

ε1
2

1 ( ) ( )r θ
θ

rθ (27)

Substituting =∙ − + ∙u αK r u( ) (~ )r
n s n

r
( 2) 1 , = − +u αK r u~θ

n s n
θ

( 2) 1 and = − −− − ∙ε K r σ s ϕ~ ( 1) ~
rθ

α n s n
e
n3

2
( 2) 1 into Eq. (27), one may have

= −
− +
−

− ∙ ∙

u
σ s ϕ u

s n
~ 3~ ( 1) ~ (~ )

( 2)θ
e
n

r
1

(28)

Substituting Eq. (26) into Eq. (25), then substituting Eq. (24) and Eq. (25) into Eq. (23), the J-integral on Γ may be written as

∫

∫

= − = →

=

− − − + + − + +

+ − + +

− +
+

∙ ∙

{
J Wdy σ n u ds αK r I r

I σ θ

θ σ u u σ u u θ s n σ u σ u dθ

( ) , ( 0),

(~ ) cos

(sin (~ (~ (~ ) ) ~ ((~ ) ~ )) cos (( 2) 1)(~ ~ ~ ~ ))} .

ij j i x
n s n

π
π n

n e
n

r θ r rθ θ r r r rθ θ

Γ
,

1 ( 2)( 1) 1

1
1

(29)

When r tends to zero, the three-dimensional J-integral should not be zero or infinity. Hence, we have

Fig. 2. Three-dimensional J-integral.
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=
=

⎫
⎬⎭

+

+
+

J αK I
s

,
.

n

n
n

1

2 1
1 (30)

3.2. Solutions for σ σ~ , ~
r θ and σ~rθ

Considering the expressions for the strain components shown in Eq. (16), one may obtain the following expressions, written as

⎜ ⎟

⎜ ⎟

″ = ⎡
⎣

″ ′ − ′ − − ′ + ′ +

+ ′⎛
⎝

′ + ′ − + − ⎛
⎝

′ + ′ + − ⎞
⎠

⎞
⎠

+ ⎛

⎝
⎜ ′ + ′ − + − − ⎛

⎝
′ + ′ + − + ⎞

⎠

⎞

⎠
⎟

⎤

⎦
⎥

− ′ ′

− ′′ ′ ′′ ′

− ′′′ ′′ ′′′ ′′

∙∙ ∙∙

∙∙′ ∙∙ ∙∙′ ∙∙

∙∙′′ ∙∙′ ∙∙ ∙∙′′ ∙∙′ ∙∙

( )( )rε σ rϕ ϕ T rϕ ϕ

σ rϕ ϕ T rϕ ϕ

σ rϕ ϕ T rϕ ϕ

( ) ( ) 2

2( ) 2 3

2 3 3

θ
α

e
n ϕ

r
ϕ
r

e
n ϕ

r
ϕ
r

ϕ
r

ϕ
r

e
n ϕ

r
ϕ
r

ϕ
r

ϕ
r

ϕ
r

ϕ
r

2
1

1

1 2 2 2 2

2 2

2 3 2 3
(31)

⎜ ⎟

⎜ ⎟′ = ⎡
⎣⎢

′⎛
⎝

+ − ′ − ⎛
⎝

+ + ′ ⎞
⎠

⎞
⎠

+ ⎛
⎝

− + − − ′ − ⎛
⎝

− + − + ′ ⎞
⎠

⎞
⎠

⎤
⎦⎥

′ ′

− ′ ′

− ′′ ′′

∙∙ ∙∙

′ ∙∙′ ∙∙ ′ ∙∙′ ∙∙

ε σ ϕ T ϕ

σ ϕ T ϕ

( ) ( )r
α

e
n ϕ

r
ϕ
r

ϕ
r

ϕ
r

e
n ϕ

r
ϕ

r
ϕ
r

ϕ
r

ϕ
r

ϕ
r

ϕ
r

ϕ
r

2
1 2 2

1 2 2 2 4 2

'

2

'

2

'

2 2 3

'

2 2 3
(32)

⎜ ⎟

⎜ ⎟

⎜ ⎟

= ⎡
⎣⎢

⎛
⎝

+ − ′ − ⎛
⎝

+ + ′ ⎞
⎠

⎞
⎠

+ ⎛
⎝

+ − − ⎛
⎝

+ + ⎞
⎠

⎞
⎠

+ ⎛
⎝

+ − − ⎛
⎝

+ + ⎞
⎠

⎞
⎠

⎤
⎦⎥

∙∙ − ∙∙ ∙∙ ′ ′

− ∙ ∙ ∙∙∙ ∙ ∙

− ∙∙ ∙∙∙∙ ∙∙ ∙∙

∙∙

∙ ∙∙∙

∙∙ ∙∙∙∙

ε σ ϕ ϕ ϕ T ϕ

σ ϕ ϕ ϕ T ϕ

σ ϕ ϕ ϕ T ϕ

( ) ( )

2( )

r
α

e
n

r r
ϕ
r

ϕ
r

e
n

r r
ϕ
r

ϕ
r

e
n

r r
ϕ

r
ϕ

r

2
1 2 ' 2

1 2 ' 2 '' ''

1 2 ' 2 '' ''

2

'

2

2

'

2

2

'

2
(33)

′ = − ⎡
⎣⎢

− + ⎛
⎝

− + ⎞
⎠

+ ′ − + ⎛
⎝

− + ⎞
⎠

⎤
⎦⎥

′

′

∙ − ∙′ ∙′ − ∙ ∙

− ∙∙′ − ∙∙

∙ ′ ∙′ ∙

∙∙ ′ ∙∙′ ∙∙

( )
( )

γ r α σ ϕ σ ϕ

σ ϕ σ ϕ

(( ) ) 3 ( ) ( )

( )

rθ e
n ϕ

r e
n ϕ

r
ϕ
r

e
n ϕ

r e
n ϕ

r
ϕ
r

1 1

1 1

2

2
(34)

+ ″ − ′

= ⎡
⎣

″ ′ + + ′ + ′⎛
⎝

′ + ′ + − − ⎞
⎠

+ ⎛
⎝

+ + ⎞
⎠

+ ⎛
⎝

+ + ⎞
⎠

+ ⎛
⎝

′ + ′ + − − + + + ⎞
⎠

⎤
⎦⎥

′

′ ′

′

∙∙

− − ∙∙ ′ − ′′′ ′

− ∙∙ − ∙ ∙

− ′′′ ′′ ∙∙∙∙

∙∙′ ∙∙

∙∙ ′ ∙ ∙∙

∙∙ ′ ∙∙ ∙∙

( )( )
ε ε r ε

α σ ϕ ϕ rϕ σ rϕ ϕ

σ σ ϕ

σ rϕ ϕ ϕ

( ) ( ) ( )

( ) ( ) 2 3

( ) ( )

( ) 2

r z z z

T
e
n

r e
n ϕ

r
ϕ
r

ϕ
r

e
n ϕ

r
ϕ
r

ϕ
r e

n
r

ϕ
r

ϕ
r

e
n ϕ

r
ϕ
r

ϕ
r

ϕ
r

ϕ
r r

1

2 1
2

1 1 1 2 3

1 1 2 '' 2 2

1 2 2 4 1

2

2 3

'

2 3

'' '

2

'

2 3 3
(35)

Substituting Eqs. (31)–(35) into Eq. (22), one may obtain the following equations

″ + + + ′ + + =− − ∙∙ − ∙′ − − ∙ −A σ B σ C σ D σ E σ Fσ( ) ( ) ( ) ( ) ( ) 0e
n

e
n

e
n

e
n

e
n

e
n1 1 1 1 1 1 (36)

Here,

Table 1
Values of I with various T and n.

I T

n 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

3 3.86 4.14 4.46 4.80 5.12 5.38 5.46 5.39 5.36 5.43 5.51
5 3.41 3.71 4.03 4.40 4.76 5.08 4.89 4.73 4.81 4.91 5.02
9 3.04 3.31 3.66 4.07 4.45 4.85 4.27 4.21 4.37 4.49 4.61
13 2.87 3.14 3.51 3.96 4.40 4.70 4.00 4.01 4.14 4.29 4.40
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⎜ ⎟

⎜ ⎟

= − − + − + +

= − + + + − ⎛
⎝

+ + ⎞
⎠

= ⎛
⎝

− ⎞
⎠

= + + − − + − ⎛
⎝

+ + − − ⎞
⎠

= − + + + − ⎛
⎝

+ + ⎞
⎠

= + − ⎛
⎝

+ + − − + + + ⎞
⎠

⎫

⎬

⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎭

⎪
⎪
⎪
⎪
⎪
⎪
⎪

∙∙ ∙∙

∙∙ ∙∙

∙′ ∙

∙∙′ ∙∙ ∙∙′ ∙∙

∙′′ ∙ ∙∙∙ ∙ ∙′′ ∙′ ∙∙∙

∙∙′′ ∙∙′ ∙∙ ∙∙∙∙

( )A rϕ ϕ T T rϕ ϕ

B T T

C

D rϕ ϕ T T rϕ ϕ

E T T

F T T rϕ ϕ

2 2 ( 1) ,

2 ( 1) ,

6 ,

4 3 2 ( 1) 2 3 ,

4 ( 1) ,

(2 2 ( 1))  2 .

ϕ
r

ϕ
r

ϕ
r

ϕ
r

ϕ
r

ϕ
r

ϕ
r

ϕ
r

ϕ
r

ϕ
r

ϕ
r

ϕ
r

ϕ
r

ϕ
r

ϕ
r

ϕ
r

ϕ
r

ϕ
r

ϕ
r

ϕ
r

ϕ
r

ϕ
r

ϕ
r

ϕ
r

ϕ
r

ϕ
r

ϕ
r

ϕ
r

ϕ
r

'' ' '' '

2 2

''' '' 4 2 6 ''' '' 2 3

4 2 4 6

'''' ''' 2 2 4

'' '

2 3

'' '

2 3

2

'

2

'

2

'

2 3 3 2 3

''

2

'

2 3 3
(37)

Considering Eq. (17), one may obtain the following expressions, written as

(a) 
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-0.5
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2

0 180
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-0.5

0
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0
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0.5 :T
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0.1 

n=3 

r

+  Plane stress from[2] 
• Plane strain from[2] 

+  Plane stress from[2] 
• Plane strain from[2] 

(b)

(c) (d) 
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r
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• Plane strain from[2] 

:T
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0.2 
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0.3 
:T

Fig. 3. Effects of the out-of-plane constraint level T on the in-plane stresses when n is 3. (a) θ-variation of σ~θ, (b) θ-variation of σ~r , (c) θ-variation of
σ~rθ and (d) θ-variation of σ~e.
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′ = ′ = − −
″ = − − − − −

= = −

= − −
= −

= − − +

⎫

⎬

⎪
⎪
⎪

⎭

⎪
⎪
⎪

− − − − − − − − − −

− − − − − −

− ∙ − − − − ∙ − − − − ∙

− ∙′ − − − − − ∙

− ∙∙ − − − − ∙ ∙

− − − − ∙ − ∙∙

σ K r σ K s n r σ
σ K s n s n r σ
σ K r σ K r n σ σ

σ K s n r σ σ
σ K r n σ σ

K r n n σ σ σ σ

( ) ( ~ ) ( 2)( 1) ~ ,
( ) ( 2)( 1)(( 2)( 1) 1) ~ ,
( ) ( ~ ) ( 1)~ (~ ) ,

( ) ( 2)( 1) ~ (~ ) ,
( ) ( 1)(~ (~ ) ) ,

( 1)(( 2)~ ((~ ) ) ~ (~ ) ).

e
n n s n

e
n n s n

e
n

e
n n s n

e
n

e
n n s n

e
n n s n

e
n

e

e
n n s n

e
n

e

e
n n s n

e
n

e
n s n

e
n

e e
n

e

1 1 ( 2)( 1) 1 1 ( 2)( 1) 1 1

1 1 ( 2)( 1) 2 1

1 1 ( 2)( 1) 1 1 ( 2)( 1) 2

1 1 2 ( 2)( 1) 1 2

1 1 ( 2)( 1) 2

1 ( 2)( 1) 3 2 2
(38)

Here,

=

= −

⎫

⎬
⎪

⎭⎪

∙ ∙

∙∙ ∙∙ ∙( )
σ σ

σ σ σ

(~ ) (~ ) ,

(~ ) (~ ) ((~ ) ) .

e σ e

e σ e σ e

1
2~

2

1
2~

2 1
2~

2 2

e

e e
2 (39)

Substituting Eq. (38), Eq. (39) into Eq. (36) and Substituting =ϕ Kr ϕ~s into Eq. (37), one may obtain the following equation,
written as .

= − − +

+ − − +

+ − − − − − + − − +

∙∙∙∙ ∙ ∙∙ ∙∙∙ ∙ ∙∙

− ∙

( )ϕ ϕ ϕ ϕ ϕ T n B n n σ σ

C s n E σ

A s n s n D s n F σ

~ (~, ~ , ~ , ~ , , ) [ ~ ( 1) ( 3) ((~ ) ) (~ )

( ~ ( 2)( 1) ~)(~ )

( ~ ( 2)( 1)(( 2)( 1) 1) ~ ( 2)( 1) ~)~ ].

H σ e e

n
e

e

1 1
4~

2 2 1
2

2 *

( 1)
2

2

2

e
2

(40)
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Fig. 4. Effects of the out-of-plane constraint level T on the in-plane stresses when n is 5. (a) θ-variation of σ~θ, (b) θ-variation of σ~r , (c) θ-variation of
σ~rθ and (d) θ-variation of σ~e.
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Here,

= − − − + + +

− + −

− + ∙∙ − ∙∙( )( )H s sϕ ϕ ϕ s ϕ

T T σ

1 ( 1) ~ ~ (~ ~)

2(1 ( 1) )~ ,

B n T T T

e

3 ~ ( 1)
2

1
3

(2 1)
3

2

2 (41)

= − − + − +
= + − + − +

= −
= − + + − + − − + −

= − + + + − +
= − + − + − +

⎫

⎬

⎪
⎪
⎪

⎭

⎪
⎪
⎪

∙∙ ∙∙

∙∙ ∙∙

∙

∙∙ ∙∙

∙ ∙∙∙ ∙∙∙ ∙

∙∙

A s s ϕ ϕ T T ϕ s ϕ
B ϕ s s ϕ T T ϕ s ϕ

C s ϕ
D s s s ϕ s ϕ T T s s s ϕ s ϕ

E s s ϕ ϕ T T ϕ s ϕ
F T T s s ϕ s s ϕ

~ (2 3 ) ~ ~ 2 ( 1)(~ ~),
~ 2~ (3 ) ~ 2 ( 1)(~ ~),

~ 6( 1) ~ ,
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2 2

2 2 2 2 (42)
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e
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T

2 1
3

2 1
3

2

1
3

2 1
3

2
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2 2 2 2
(43)

and

Fig. 5. Effects of the out-of-plane constraint level T on the in-plane stresses when n is 9. (a) θ-variation of σ~θ, (b) θ-variation of σ~r , (c) θ-variation of
σ~rθ and (d) θ-variation of σ~e.
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(44)

Eq. (40) can be solved by a fourth-order Runge-Kutta method when T and n are given. Following Hutchison's paper [2], the values
of ϕ~ (0) and ∙∙ϕ~ (0) can be determined when stress-free boundary conditions on the crack surfaces and an additional condition that

=σmax{~ }  1e are satisfied at the same time.
Stress-free boundary conditions on the crack surfaces ( ± = ± =σ π σ π( ) ( ) 0θ rθ ) require

± = ± =∙ϕ π ϕ π~ ( ) ~ ( ) 0 (45)

The imposed symmetry ( = = = ==
∙

=
∙

=
∙

=σ σ σ σ( ) ( ) ( ) ( ) 0rθ θ r θ θ θ z θ0 0 0 0 ) requires

= =∙∙∙ ∙ϕ ϕ~ (0) ~ (0) 0 (46)

After the numerical results of ϕ~, ∙ϕ~ , ∙∙ϕ~ and ∙∙∙ϕ~ are obtained, one may substitute those results into Eq. (14) and Eq. (16) to obtain
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Fig. 6. Effects of the out-of-plane constraint level T on the in-plane stresses when n is 13. (a) θ-variation of σ~θ, (b) θ-variation of σ~r , (c) θ-variation of
σ~rθ and (d) θ-variation of σ~e.
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the corresponding numerical results of the crack front stress and stain fields. Further, one may also obtain the numerical results of u~r ,
∙u(~ )r , ∙u(~ )θ , u~θ and I . The numerical results of I, σ~θ, σ~r , σ~rθ and σ~e for various T and n have been shown in Table.1 and Figs. 3–6.

4. Three dimensional finite element simulations

We consider a thin plate (the thickness is 2h̄) containing a long crack(the length of the crack is 2ā) under remote tension. The near
crack front region of the thin plate may be modeled by a circular disk (cylinder), as shown in Fig. 7(a). Only a quarter of circular disk
(region 0≤θ ≤ π, 0≤z h¯/ ¯ ≤ l) is modeled with finite elements since the symmetry of the current problem, as shown in Fig. 7(b). The

(b) 

(a) 

rmax=10

rmax=1

Fig. 7. Finite element simulation for a thin cracked plate with thickness h2 ¯ subjected remote tensile loading ∞σ̄ . Here, =a h¯ 10 ¯. (a) Schematic of a
cracked circular disk which represents the near crack front region of a thin plate. (b) finite element mesh of the quarter-mode.
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finite element mesh is constructed with 8-node brick elements. It contains inner and outer regions as shown in Fig. 7(b). Within each
region, in the plane perpendicular to the crack front, the element size is gradually increased with increasing radial distance from the
crack front (the progression ratios are 1.07 in the inner region and 1.24 in the outer region.), while the angular increment of each
element is kept constant, =θΔ π

36 . The identical planar mesh is repeated along the z̄ axis from the symmetry plane ( =z̄ 0) to the free-
surface ( =z h¯ ¯). The thickness of successive element layers gradually increases towards the symmetry plane (the progression ratio is
1.25). There are 25 layers through the half thickness of the plate, and the thickness of the layer at the free surface is − h10 ¯3 . The radial
size of the elements around the crack front is − h10 ¯4 . The entire mesh consists of 91,800 elements.

The symmetry conditions require:
1. the normal displacements on the surface where =ȳ 0 and ⩾x̄ 0 should be zero,
2. and the normal displacements on the symmetry plane where =z̄ 0 should be zero.
The stresses on the surface where r = a ( = =a a h¯/ ¯ 10) are given by

= −

= +

=
=

⎫

⎬

⎪
⎪

⎭

⎪
⎪∞

( )
( )

σ θ

σ θ

σ
K σ πa

5 cos cos ,

sin sin ,

0.

r
K

πa
θ

rθ
K

πa
θ

rz
far

2
1
4 2

3
2

2
1
4 2

3
2

far

far

(47)

The material behavior of the plate follows isotropic J2 deformation theory, and under uniaxial tension, the stress–strain relation
follows the Ramberg-Osgood equation

= +ε σ α σ( )n (48)

In the current finite element simulations, Poisson's ratio v = 0.3, the material constant α = 1, the yield stain =ε̄ 0.002y and the
hardening exponents are taken as 5 and 9.

(a) 

(b) 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0

J
J 0

2 2
J K a

increasing loading

0.063, 0.211, 0.316, 0.356, 0.415, 0.5

0

J
J 2 2

0J K a

increasing loading

0.094, 0.316, 0.356, 0.371, 0.393,0.426, 0.476, 0.5

z

z

n=5 

n=9 

Fig. 8. Variations of J/J0 in the thickness direction with various loading levels. Here, a = 10. (a) n = 5, (b) n = 9.
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5. Results and discussions

The effects of the out-of-plane constraint level (T) on in-plane stresses (σ~θ, σ~r , σ~rθ) and the effective stress σ~e with various stain
hardening coefficients are plotted in Figs. 3–6. The stain hardening coefficient n is taken as 3, 5, 9 and 13. These figures show that the
value of σ~θ increases with increasing T. Fig. 3 and Fig. 6 show that when T = 0 and T = 0.5, the current results can reduce to the
corresponding plane stress and plane strain results given by Hutchinson [2].

A fine three-dimensional finite element mesh is constructed for a thin ductile plate with a through-thickness crack under remote
tension. The variations of the normalized J-integral J J/ 0, T and the opening stress σθ near the crack front in the thickness direction
haven been plotted in Fig. 8, Fig. 9 and Fig. 10 separately. Fig. 8 shows that the value of J J/ 0 decreases slowly first, then drops rapidly
near the free surface. Fig. 8 also demonstrates that the value of J J/ 0 increases with increasing remote loading ∞σ on the mid-plane.
When the loading level is given, the value of J J/ 0 increases with increasing stain hardening coefficient n.

Fig. 9 shows the variations of T in the thickness direction with various remote loading ∞σ . The results in Fig. 9 demonstrates that
the value of T decreases by less than 10% in the range of 0 < z less than 0.95 and falls quickly to zero when approaching the free
surface. Fig. 9 illustrates that the value of T increases with increasing ∞σ . On the mid-plane, the value of T increases from 0.36 to 0.48
when the remote loading ∞σ increases from 0.065 to 0.5. Fig. 9 also shows that the value of T is higher in a soft material (n = 9) than
that in a hard material (n = 5) when a given remote loading is applied. An explanation for the observation is that higher loading
levels or higher stain hardening coefficients will cause larger plastic deformations near the crack front, which result in the decrease of
the out-of-plane constraint level.

Fig. 10 shows that the value of the opening stress σθ decreases with increasing z and lies between the corresponding plane stress
and plane strain solutions given by Hutchinson [2]. This implies that the decrease of the out-of-plane constraint level T will result in
the decrease of σθ. Fig. 10 also shows that the current analytical results are in good agreement with the corresponding finite element
results.

The comparison of analytical and numerical results for the θ-variation of in-plane stresses (σθ, σr and σrθ) near the crack front on

(a) 

(b) 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

z

increasing loading

T

0.063, 0.094, 0.141, 0.211, 0.316, 0.356, 0.415, 0.5

r=1.2 10-3   n=9 

increasing loading

z

0.0313, 0.063, 0.094, 0.141, 0.211, 0.316, 0.5

r=1.2 10-3 n=5 

T
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the mid-plane is illustrated in Fig. 11. Analytical results are in good agreement with the corresponding finite element results
The values of I for various T and n have been shown in Table 1. When T is taken as 0 and 0.5 separately, the values of I are in good

agreement with the corresponding values from plane stress and strain solutions given by Hutchinson [2]. Table1 shows that the value
of I increases with deceasing hardening coefficient n.

6. Summaries and conclusions

In the current paper, a total deformation theory of plasticity, a power law hardening stress–strain relation, three-dimensional
Maxwell stress functions and the minimum complementary potential energy principle are used to obtain solutions for the stress fields
near the front of a crack in a thin ductile plate. A fine finite element mesh consisting of 91,800 elements is constructed to compute the
three-dimensional J–integral, the out-of-plane constraint level T and the crack front stress fields. Comparison with the finite element
results shows that the analytical results are valid.

The main contribution of the current paper is to propose a semi-analytical method which is employed p obtain solutions for the
crack front stress fields in the region where the plane stress and strain conditions can’t be met. Considering no analytical solution and
few semi-analytical solutions available for three-dimensional crack front fields in ductile materials, the current research may promote
the development of the three-dimensional theory of ductile fracture.

The work supports the following conclusions

1. The current J-T solutions may characterize the crack front stress fields in the region where the plane stress and strain conditions
can’t be met.

2. The value of the out-of-plane constraint level T increases with increasing remote tensile loading , and the value of opening stress
increases with increasing T.

3. The value of the out-of-plane constraint level T is higher in a soft material (n = 9) than that in a hard material (n = 5).
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