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A B S T R A C T

In contrast to two-dimensional oceanic internal waves which have been extensively investigated, there are
relatively few theoretical studies on three-dimensional internal waves. The most remarkable theory describing
three-dimensional internal waves is the Kadomtsev–Petviashvili (KP) equation. Nevertheless, two shortcomings
– unidirectional propagation and anisotropy – limit its application in some general cases. In the current
paper, via an asymptotic analysis, we derive an isotropic and bidirectional model, the modified Benney–Luke
equation, for a two-layer fluid with bottom topography which can vary both in time and space, therefore
tides and currents can be incorporated into the internal wave problem due to the relative motion. In the
derivation, the assumption of incompressibility and long waves are invoked and the effects of the Earth’s
rotation and dissipation are ignored. Based on this model, the generation of nonlinear internal waves by
background currents and barotropic tides flowing over topography are investigated. The resulting equation
aims to facilitate dynamical analyses, as well as the interpretation of in-situ observational data and laboratory
experimental results.
. Introduction

The importance of internal waves in the ocean has been recog-
ized for the last several decades in part because of the development
f modern observational techniques. Internal waves have a peculiar
eature manifested as large vertical fluctuations in the interior of the
ater column accompanied by much smaller sea surface displacements.
he strong horizontal currents associated with the waves can produce
erceptible responses at the ocean’s surface recorded by orbiting satel-
ites. Given the relative weakness of the buoyancy (at the order of
0−3 of gravity) acting as the restoring force, internal waves usually
ossess large amplitudes. Considering the inconspicuousness at the
urface, such waves can pose potential threats to ocean structures and
nderwater vehicles. In addition, internal waves also play a crucial role
n the marginal marine ecosystem and global energy budget, see Kunze
2017) and Woodson (2018) and the references therein. Based on
n-situ observations and laboratory experiments, a large amount of
esearch has been conducted (see the review by Helfrich and Melville,
006), among which theoretical analyses provide a deep and essential
nderstanding of this subject.

In the context of nonlinear internal waves, Benney (1966) and Ben-
amin (1966) provided among the first derivations of the celebrated

∗ Corresponding author at: Key laboratory for Mechanics in Fluid Solid Coupling Systems, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190,
hina.

E-mail address: zwang@imech.ac.cn (Z. Wang).

Korteweg–de Vries (KdV) equation for the description of unidirec-
tional weakly nonlinear long waves. Importantly, Osborne and Burch
(1980) provided a paradigm for the implementation of the KdV equa-
tion to model observed internal solitary waves. Thereafter, the re-
search of internal waves based on the KdV equation prospered and
several variants emerged, including the extended KdV equation in-
corporating an additional cubic nonlinear term (Lee and Beardsley,
1974; Djordjevic and Redekopp, 1978; Grimshaw et al., 2002), the
rotation-modified KdV equation including the Earth’s rotation (Os-
trovsky, 1978; Grimshaw, 1985), a modified KdV equation taking
bottom friction into account (Grimshaw, 2002; Grimshaw et al., 2003),
a modified KdV equation including the effect of background shear,
slowly varying depth, and continuous stratification (Grimshaw, 1981;
Zhou and Grimshaw, 1989; Holloway et al., 1997), and the two-
dimensional version of the KdV equation, namely the well-known
Kadomtsev–Petviashvili (KP) equation (Kadomtsev and Petviashvili,
1970; Grimshaw, 1981). Nonetheless, KdV-type equation is only ap-
plied to cases for which the wavelength is large with respect to the
depth, i.e. the shallow-water regime. To mitigate this shortcoming,
the weakly nonlinear Benjamin–Ono (BO) equation was derived for
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infinitely deep fluids (Benjamin, 1966; Ono, 1975) and the Interme-
diate Long Wave (ILW) equation for intermediate depth (Joseph, 1977;
Kubota et al., 1978). As pointed out by Ostrovsky and Stepanyants
(2005), the BO and ILW equations have narrower ranges of validity
and fail to make good predictions beyond these ranges. They also
cautioned that the interpretation of observational data using the BO and
ILW equations should be given much more care, although Wang and
Pawlowicz (2011) achieved a satisfactory result with the BO equation
while considering large-amplitude internal waves in deep water.

Although most of the aforementioned equations have been suc-
cessfully and widely used to study the properties of solitary wave
solutions as well as to interpret data from in-situ measurements and
laboratory experiments, the weakly nonlinear assumption limits their
applications especially when large-amplitude waves are involved. As
a useful extension of the extended KdV equation (with the cubic
nonlinear term), the Miyata–Choi–Camassa (MCC) equations with full
nonlinearity and weak dispersion were derived by Miyata (1985, 1988)
and Choi and Camassa (1999). The MCC equations are bidirectional
(cf. the unidirectional feature of the KdV equation), and Choi and
Camassa (1999) illustrated very good agreement with results from both
laboratory experiments and numerical solutions of the Euler equations.
Later on, Ostrovsky and Grue (2003) obtained unidirectional evolu-
tion equations taking nonlinear dispersive effects into account. These
equations generally agree well with the MCC equations and further pre-
clude the intrinsic Kelvin–Helmholtz instability at high wavenumbers
in the MCC equations. Nevertheless, a more accurate way to investigate
solitary waves is in the framework of the full Euler equations without
assumptions of weak nonlinearity or/and weak dispersion. The Dubreil-
Jacotin–Long (DJL) equation describes the streamline displacement in
the form of a strongly nonlinear elliptic partial differential equation,
which amounts to the full set of stratified Euler equations, see the
early references by Long (1955) and later by Benjamin (1966) and
Tung et al. (1982). A further extension of the DJL equation taking the
effect of background shear into consideration was proposed by Stastna
and Lamb (2002) and Lamb (2003). Note that the DJL equation is
time-independent and incapable of examining wave evolutions. The in-
terested reader is referred to a more comprehensive review by Helfrich
and Melville (2006).

Previous theoretical work has been primarily focused on internal
waves in one horizontal dimension, albeit we note that Pierini (1989),
Cai and Xie (2010), Yuan et al. (2018a) and Yuan et al. (2018b)
conducted research based on the KP equation. However, the KP equa-
tion is unidirectional and, moreover, it assumes that the variations in
the transverse direction are one-order smaller than those in the wave
propagation direction indicating that it is an inappropriate model for
general cases where the variations are comparable along perpendicular
axes. It concludes that isotropic models for internal waves are of
interest. Therefore, in this paper, we derive an isotropic bidirectional
model equation in two horizontal dimensions based on the assump-
tion of weak nonlinearity. The derivation is provided in Section 2,
together with the associated numerical method. To check the capability
of the derived equation, several numerical experiments are carried
out in Section 3. The cases of constant background current passing
over topography are illustrated, which can be further categorized as
subcritical, critical and supercritical scenarios according to the compe-
tition of strength between background current and intrinsic linear wave
phase speed, while the generation processes excited by barotropic tides
flowing in two perpendicular directions are also demonstrated. Finally,
we give concluding remarks in Section 4.

2. The modified Benney-Luke equation

2.1. Model setup

We consider three-dimensional incompressible, inviscid and irrota-

tional flows, composed of two immiscible layers with a lighter one f

2

Fig. 1. The schematic representation of two-layer fluid characterized by densi-
ties 𝜌+, 𝜌− and thicknesses ℎ+, ℎ−. A moving Gaussian topography mimicking
ackground current 𝑈 (𝑡) and 𝑉 (𝑡) passing over topography is given by 𝑏 =

0 exp
{

−
[

(𝑥 − 𝑈𝑡)∕𝑥𝑤
]2 −

[

(𝑦 − 𝑉 𝑡)∕𝑦𝑤
]2
}

.

ying above a heavier one. The two fluids are separated by a sharp
nterface 𝑧 = 𝜂(𝑥, 𝑦, 𝑡), where 𝑥 , 𝑦 are horizontal coordinates and the
-axis points upwards with 𝑧 = 0 the undisturbed interface. The upper
ayer (denoted by +) is bounded above by a rigid lid located at 𝑧 = ℎ+,
nd the lower layer (denoted by −) is bounded below by a bottom
opography 𝑧 = −ℎ−+𝑏(𝑥, 𝑦, 𝑡) varying in space and time where 𝑏(𝑥, 𝑦, 𝑡)
s a prescribed function. The density of the fluid in each layer is subject
o be constant designated by 𝜌+ and 𝜌− corresponding to + and −

espectively, where 𝜌+ < 𝜌− as in the realistic ocean (see Fig. 1).
The velocity potential 𝜙(𝑥, 𝑦, 𝑧) in each layer satisfies Laplace’s

quation,

𝜙− + 𝜙−
𝑧𝑧 = 0, for −ℎ− + 𝑏(𝑥, 𝑦, 𝑡) < 𝑧 < 𝜂(𝑥, 𝑦, 𝑡)

𝜙+ + 𝜙+
𝑧𝑧 = 0, for 𝜂(𝑥, 𝑦, 𝑡) < 𝑧 < ℎ+

here 𝛥 = 𝜕𝑥𝑥+𝜕𝑦𝑦 is the two-dimensional Laplace operator in the hor-
zontal variables. On the interface 𝑧 = 𝜂(𝑥, 𝑦, 𝑡), the nonlinear kinematic
nd dynamic boundary conditions read, respectively, as follows

𝑡 = 𝜙−
𝑧 − ∇𝜙− ⋅ ∇𝜂 = 𝜙+

𝑧 − ∇𝜙+ ⋅ ∇𝜂 , (1)
−𝜙−

𝑡 − 𝜌+𝜙+
𝑡 +

𝜌−

2

[

|

|

|

∇𝜙−|
|

|

2
+ (𝜙−

𝑧 )
2
]

−

𝜌+

2

[

|

|

|

∇𝜙+|
|

|

2
+ (𝜙+

𝑧 )
2
]

+ (𝜌− − 𝜌+)𝑔𝜂 = 0 , (2)

here ∇ and ∇⋅ are the respective gradient and divergent operator in
he horizontal variables, and 𝑔 is the acceleration due to gravity. The
inematic boundary condition (1) implies that the normal velocity is
ontinuous across the interface

𝜙−
𝑥 , 𝜙

−
𝑦 , 𝜙

−
𝑧
)⊤

⋅ n =
(

𝜙+
𝑥 , 𝜙

+
𝑦 , 𝜙

+
𝑧
)⊤

⋅ n (3)

where n = (−𝜂𝑥,−𝜂𝑦, 1)⊤
/

√

1 + |∇𝜂|2 is the unit normal vector pointing
pwards on the interface. Finally, the boundary conditions

𝜙+
𝑧 = 0 , at 𝑧 = ℎ+ , (4)

−
𝑧 − ∇𝑏 ⋅ ∇𝜙− = 𝑏𝑡 , at 𝑧 = −ℎ− + 𝑏(𝑥, 𝑦, 𝑡) , (5)

omplete the whole system.

.2. Derivation

Recently, Ablowitz et al. (2006) introduced an explicit non-local
ormulation for the classical water-wave problem in both two and
hree dimensions. It was then generalized to study interfacial fluids
ith a free surface by Haut and Ablowitz (2009) and to include time-
ependent bottom topography by Curtis and Shen (2015). Stemming
rom these work, the derivation of the desired modified Benney–Luke
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equation for internal waves is achieved as shown in the subsequent
analyses.

Following Ablowitz et al. (2006), it is straightforward to verify that
the identity
(

𝜙𝑧𝜓𝑥 + 𝜙𝑥𝜓𝑧
)

𝑥 +
(

𝜙𝑧𝜓𝑦 + 𝜙𝑦𝜓𝑧
)

𝑦 +
(

𝜙𝑧𝜓𝑧 − 𝜙𝑥𝜓𝑥 − 𝜙𝑦𝜓𝑦
)

𝑧 = 0 (6)

holds for an arbitrary harmonic function 𝜓(𝑥, 𝑦, 𝑧), where 𝜙(𝑥, 𝑦, 𝑧) are
the aforementioned velocity potentials in both layers and the subscripts
denote the partial derivative with respect to corresponding variables.
Applying the Divergence Theorem to Eq. (6) in the lower layer −,
one obtains

0 = ∫

[

−𝜂𝑥
(

𝜙−
𝑧 𝜓𝑥 + 𝜙

−
𝑥𝜓𝑧

)

− 𝜂𝑦
(

𝜙−
𝑧 𝜓𝑦 + 𝜙

−
𝑦 𝜓𝑧

)

+
(

𝜙−
𝑧 𝜓𝑧 − ∇𝜙− ⋅ ∇𝜓

)

]

𝑧=𝜂
𝑑r

+ ∫

[

𝑏𝑥
(

𝜙−
𝑧 𝜓𝑥 + 𝜙

−
𝑥𝜓𝑧

)

+ 𝑏𝑦
(

𝜙−
𝑧 𝜓𝑦 + 𝜙

−
𝑦 𝜓𝑧

)

−
(

𝜙−
𝑧 𝜓𝑧 − ∇𝜙− ⋅ ∇𝜓

)

]

𝑧=−ℎ−+𝑏
𝑑r , (7)

where r = (𝑥, 𝑦) is a vector in the horizontal plane. Substituting 𝜓 =
𝑒ik⋅r+𝑘𝑧 into Eq. (7) yields

0 = ∫ 𝑒ik⋅r+𝑘(𝜂+ℎ−) [𝑘𝜂𝑡 − ik ⋅ ∇𝛷−] 𝑑r + ∫ 𝑒ik⋅r+𝑘𝑏 [−𝑘𝑏𝑡 + ik ⋅ ∇𝛷𝑏] 𝑑r ,

(8)

where k = (𝑘𝑥, 𝑘𝑦) is the wavenumber vector, 𝑘 = (𝑘2𝑥 + 𝑘2𝑦)
1∕2 is its

modulus, 𝛷− = 𝜙−(𝑥, 𝑦, 𝜂, 𝑡), and 𝛷𝑏 = 𝜙−(𝑥, 𝑦, 𝑏, 𝑡). Since 𝑒ik⋅r−𝑘𝑧 is also
a solution to Laplace’s equation, a substitution into (7) then leads to

0 = ∫ 𝑒ik⋅r−𝑘(𝜂+ℎ−) [−𝑘𝜂𝑡 − ik ⋅ ∇𝛷−] 𝑑r + ∫ 𝑒ik⋅r−𝑘𝑏 [𝑘𝑏𝑡 + ik ⋅ ∇𝛷𝑏] 𝑑r .

(9)

Adding and subtracting (8) and (9) yield, respectively,

0 = ∫ 𝑒ik⋅r [𝑘 sinh 𝑘(𝜂 + ℎ−)𝜂𝑡 − ik ⋅ ∇𝛷− cosh 𝑘(𝜂 + ℎ−)
]

𝑑r

+∫ 𝑒ik⋅r [−𝑘 sinh(𝑘𝑏)𝑏𝑡 + ik ⋅ ∇𝛷𝑏 cosh(𝑘𝑏)
]

𝑑r (10)

and

0 = ∫ 𝑒ik⋅r
[

cosh 𝑘(𝜂 + ℎ−)𝜂𝑡 − ik ⋅ ∇𝛷− sinh 𝑘(𝜂 + ℎ−)
𝑘

]

𝑑r

+∫ 𝑒ik⋅r
[

−cosh(𝑘𝑏)𝑏𝑡 + ik ⋅ ∇𝛷𝑏 sinh(𝑘𝑏)
𝑘

]

𝑑r . (11)

In the same vein, one can obtain the global relation in the upper layer
+,

0 = ∫ 𝑒ik⋅r
[

cosh 𝑘(ℎ+ − 𝜂)𝜂𝑡 + ik ⋅ ∇𝛷+ sinh 𝑘(ℎ+ − 𝜂)
𝑘

]

𝑑r , (12)

where 𝛷+ = 𝜙+(𝑥, 𝑦, 𝜂, 𝑡). Furthermore, if the density ratio of the upper
and lower layer is denoted by 𝜎 = 𝜌+∕𝜌− < 1, then the dynamic
boundary condition on the interface can be rewritten as
(

𝛷− − 𝜎𝛷+)
𝑡 + (1 − 𝜎)𝑔𝜂 + 1

2
|∇𝛷−

|

2 − 𝜎
2
|

|

∇𝛷+
|

|

2

−1
2
(𝜂𝑡 + ∇𝜂 ⋅ ∇𝛷−)2

1 + |∇𝜂|2
+ 𝜎

2
(𝜂𝑡 + ∇𝜂 ⋅ ∇𝛷+)2

1 + |∇𝜂|2
= 0 . (13)

The Boussinesq scaling is introduced through the typical length 𝐿 and
ave amplitude 𝑎:

, 𝑦 ∼ 𝐿 , 𝜂 ∼ 𝑎 , 𝑡 ∼ 𝐿
√

𝑔ℎ−(1 − 𝜎)
, 𝛷±,𝑏 ∼

𝑎𝑔𝐿
√

1 − 𝜎
√

𝑔ℎ−
, 𝑏 ∼ 𝑎2

ℎ−
.

(14)

mall parameters 𝜖 = 𝑎∕ℎ− and 𝜇 = ℎ−∕𝐿 are defined to measure
he nonlinearity and dispersion respectively, and the ratio of the upper
ayer to lower layer thickness 𝜏 = ℎ+∕ℎ− is assumed to be of order one.
fter non-dimensionalization using scaling (14), the global relations

10)–(12) read

= 𝑒ik⋅r [𝜇𝑘 sinh𝜇𝑘(1 + 𝜖𝜂)𝜂𝑡 − ik ⋅ ∇𝛷− cosh𝜇𝑘(1 + 𝜖𝜂)
]

𝑑r
∫

3

+∫ 𝑒ik⋅r [−𝜖𝜇𝑘 sinh(𝜖2𝜇𝑘𝑏)𝑏𝑡 + ik ⋅ ∇𝛷𝑏 cosh(𝜖2𝜇𝑘𝑏)
]

𝑑r , (15)

0 = ∫ 𝑒ik⋅r
[

cosh𝜇𝑘(1 + 𝜖𝜂)𝜂𝑡 − ik ⋅ ∇𝛷− sinh𝜇𝑘(1 + 𝜖𝜂)
𝜇𝑘

]

𝑑r

+∫ 𝑒ik⋅r
[

−𝜖 cosh(𝜖2𝜇𝑘𝑏)𝑏𝑡 + ik ⋅ ∇𝛷𝑏 sinh(𝜖2𝜇𝑘𝑏)
𝜇𝑘

]

𝑑r , (16)

and

0 = ∫ 𝑒ik⋅r
[

cosh𝜇𝑘(𝜏 − 𝜖𝜂)𝜂𝑡 + ik ⋅ ∇𝛷+ sinh𝜇𝑘(𝜏 − 𝜖𝜂)
𝜇𝑘

]

𝑑r . (17)

he dynamic boundary condition (13) becomes

𝛷− − 𝜎𝛷+)
𝑡 + 𝜂 +

𝜖
2
|∇𝛷−

|

2 − 𝜖𝜎
2

|

|

∇𝛷+
|

|

2 −
𝜖𝜇2

2
(𝜂𝑡 + 𝜖∇𝜂 ⋅ ∇𝛷−)2

1 + 𝜖2𝜇2|∇𝜂|2

+
𝜖𝜇2𝜎
2

(𝜂𝑡 + 𝜖∇𝜂 ⋅ ∇𝛷+)2

1 + 𝜖2𝜇2|∇𝜂|2
= 0 . (18)

reating Maclaurin series expansions for the global relations (16)–(17)
nd retaining terms valid up to 

(

𝜖, 𝜇2
)

yield

∫ 𝑒ik⋅r
[

𝜇2𝑘2𝜂𝑡 − ik ⋅ ∇𝛷−
(

1 + 1
2
𝜇2𝑘2

)

+ ik ⋅ ∇𝛷𝑏
]

𝑑r = 0 , (19)

∫ 𝑒ik⋅r
[(

1 + 1
2
𝜇2𝑘2

)

𝜂𝑡 − ik ⋅ ∇𝛷−
(

1 + 𝜖𝜂 + 1
6
𝜇2𝑘2

)

− 𝜖𝑏𝑡
]

𝑑r = 0 , (20)

∫ 𝑒ik⋅r
[(

1 + 1
2
𝜇2𝑘2𝜏2

)

𝜂𝑡 + ik ⋅ ∇𝛷+
(

𝜏 − 𝜖𝜂 + 1
6
𝜇2𝑘2𝜏3

)]

𝑑r = 0 . (21)

In the same vein, one can obtain the approximation of the dynamic
boundary condition (18)
(

𝛷− − 𝜎𝛷+)
𝑡 + 𝜂 +

𝜖
2
|∇𝛷−

|

2 − 𝜖𝜎
2

|

|

∇𝛷+
|

|

2 = 0 . (22)

pon noting ik ∼ −∇ and 𝑘2 ∼ −𝛥, the inverse Fourier transforms of
19)–(21) give

𝛷− −𝛷𝑏 − 𝜇2
(

𝜂𝑡 +
1
2
𝛥𝛷−

)

= 0 , (23)
(

1 −
𝜇2

2
𝛥
)

𝜂𝑡 +
(

𝛥 −
𝜇2

6
𝛥2

)

𝛷− + 𝜖∇ ⋅ (𝜂∇𝛷−) − 𝜖𝑏𝑡 = 0 , (24)

1 −
𝜇2𝜏2

2
𝛥
)

𝜂𝑡 −
(

𝜏𝛥 −
𝜇2𝜏3

6
𝛥2

)

𝛷+ + 𝜖∇ ⋅
(

𝜂∇𝛷+) = 0 . (25)

q. (23) is used to decouple 𝛷𝑏 from the system, while (24) and (25)
an be respectively rewritten as

𝑡 + 𝛥𝛷− +
𝜇2

3
𝛥2𝛷− + 𝜖∇ ⋅ (𝜂∇𝛷−) − 𝜖𝑏𝑡 = 0 , (26)

𝜂𝑡 − 𝜏𝛥𝛷+ −
𝜇2𝜏3

3
𝛥2𝛷+ + 𝜖∇ ⋅

(

𝜂∇𝛷+) = 0 , (27)

based on equivalent replacement. It is easy to deduce 𝛷− = −𝜏𝛷+ +
(𝜖, 𝜇2) from (26) and (27). If we define 𝜉 = 𝛷− − 𝜎𝛷+, then

+ = − 1
𝜏 + 𝜎

𝜉 + (𝜖, 𝜇2) , 𝛷− = 𝜏
𝜏 + 𝜎

𝜉 + (𝜖, 𝜇2) . (28)

aking the derivative of Eq. (22) with respect to 𝑡 and then replacing
𝑡 with (27), one obtains

𝑡𝑡 +
[

𝜏𝛥𝛷+ +
𝜇2𝜏3

3
𝛥2𝛷+ − 𝜖∇ ⋅

(

𝜂∇𝛷+)
]

+ 𝜖
2
|∇𝛷−

|

2
𝑡 −

𝜖𝜎
2

|

|

∇𝛷+
|

|

2
𝑡 = 0 .

(29)

In Eq. (29), 𝛷± associated with 𝜖 and 𝜇 can be replaced by 𝜉 directly
using (28). It then suffices to deal with 𝛥𝛷+. Subtracting (26) from (27)
yields

𝛥𝛷+ = − 1
𝜏 + 𝜎

{

𝛥𝜉 +
𝜇2

3
𝛥2(𝛷− + 𝜏3𝛷+) + 𝜖∇ ⋅

[

𝜂∇(𝛷− −𝛷+)
]

− 𝜖𝑏𝑡

}

.

(30)

To derive the governing equation, we substitute (30) into (29), replace
𝜂 with −𝜉 , cancel 𝛷± using (28), and retain terms valid up to 

(

𝜖, 𝜇2
)

.
𝑡
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A tedious but straightforward calculation results in a time evolution
equation for 𝜉:

𝜉𝑡𝑡 −
𝜏

𝜏 + 𝜎
𝛥𝜉 −

𝜇2𝜏2(1 + 𝜏𝜎)
3(𝜏 + 𝜎)2

𝛥2𝜉 + 𝜖𝜏
𝜏 + 𝜎

𝑏𝑡 +
𝜖(𝜏2 − 𝜎)
(𝜏 + 𝜎)2

[

|∇𝜉|2𝑡 + 𝜉𝑡𝛥𝜉
]

= 0 .

(31)

When 𝜎 = 0 and 𝑏 = 0, that is no stratification and bottom topography,
Eq. (31) reduces to the so-called Benney–Luke equation (see Benney
and Luke, 1964 for details). Thus Eq. (31) is named the modified
Benney–Luke equation. To study solitary waves, we usually assume
𝜖 = (𝜇2) to balance dispersion and nonlinearity. Returning back to
physical space, in dimensional variables the corresponding equation
is

𝜉𝑡𝑡 −
𝑔ℎ+(1 − 𝜎)
𝜏 + 𝜎

𝛥𝜉 −
𝑔(ℎ+)2(ℎ− + 𝜎ℎ+)(1 − 𝜎)

3(𝜏 + 𝜎)2
𝛥2𝜉

+
𝑔𝜏(1 − 𝜎)
𝜏 + 𝜎

𝑏𝑡 +
𝜏2 − 𝜎
(𝜏 + 𝜎)2

[

|∇𝜉|2𝑡 + 𝜉𝑡𝛥𝜉
]

= 0 . (32)

t is well known that the linear dispersion relation for the two-layer
nterfacial wave problem takes the form

2 =
𝑔𝑘(𝜌− − 𝜌+) tanh(ℎ−𝑘) tanh(ℎ+𝑘)
𝜌− tanh(ℎ+𝑘) + 𝜌+ tanh(ℎ−𝑘)

. (33)

For long waves, we can expand the dispersion relation at 𝑘 = 0 using
the Taylor series:

𝜔2 =
𝑔ℎ+(1 − 𝜎)𝑘2

𝜏 + 𝜎
−
𝑔(ℎ+)2(1 − 𝜎)(ℎ− + 𝜎ℎ+)𝑘4

3(𝜏 + 𝜎)2
+⋯ , (34)

which verifies the linear part of the resulting equation.
Note that it seems quite difficult to find analytical solutions to the

modified Benney–Luke Equation (31) or (32), and hence we will resort
to numerical methods. Nonetheless, the dispersion relation (34) indi-
cates that the proposed model is linearly ill-posed since the frequency 𝜔
becomes purely imaginary for large wavenumbers 𝑘, therefore, for long
waves, an equivalent replacement 𝜉𝑡𝑡 = 𝑐2𝛥𝜉 (where 𝑐 is the linear wave
phase speed as given below) as pointed out by Milewski and Tabak
(1999) is used. Then Eq. (32) can be rewritten as

𝜉𝑡𝑡 − 𝑐2𝛥𝜉 − 𝛼𝛥𝜉𝑡𝑡 + 𝛽𝑏𝑡 + 𝛾
[

|∇𝜉|2𝑡 + 𝜉𝑡𝛥𝜉
]

= 0 (35)

with the coefficients

𝑐2 =
𝑔ℎ+(1 − 𝜎)
𝜏 + 𝜎

, 𝛼 =
ℎ+(ℎ− + 𝜎ℎ+)

3(𝜏 + 𝜎)
, 𝛽 =

𝑔𝜏(1 − 𝜎)
𝜏 + 𝜎

,

𝛾 = 𝜏2 − 𝜎
(𝜏 + 𝜎)2

, 𝜏 = ℎ+

ℎ−
, 𝜎 =

𝜌+

𝜌−
< 1 . (36)

Note that in the realistic ocean, 𝜎 ∼ 1, and 𝛽 is usually small. In
imensional variables, the leading-order approximation of the interface
(𝑥, 𝑦, 𝑡) can be expressed as

= −
𝜉𝑡

𝑔(1 − 𝜎)
. (37)

It is clear that the modified Benney–Luke equation without bottom
topography admits solitary-wave solutions propagating in any direction
given by

𝜉𝑡 = 𝐴(𝑘) sech2(k ⋅ r − 𝑣𝑘𝑡) , 𝜉 = − 𝐴
𝑣𝑘

tanh(k ⋅ r − 𝑣𝑘𝑡) + P ⋅ r , (38)

where the wavevector k = (𝑘𝑥, 𝑘𝑦) is in the r = (𝑥, 𝑦) direction, with the

modulus of 𝑘 =
(

𝑘2𝑥 + 𝑘
2
𝑦

)1∕2
. When numerical experiments are carried

out in a periodic box, the constant P is chosen to keep 𝜉 periodic. The
amplitude 𝐴(𝑘) and nonlinear wave speed 𝑣(𝑘) are in the form of

𝐴(𝑘) = −4𝛼𝑣2𝑘2
𝛾

, 𝑣2 = 𝑐2

1 − 4𝛼𝑘2
. (39)

It is worth pointing out that the modified Benney–Luke equation
lays its foundation on the assumption of weak nonlinearity, thus much
care should be given when it is used to delineate large-amplitude
4

waves, albeit its formal range of validity still needs to be further deter-
mined. Compared with the widely used unidirectional two-dimensional
KdV-type theory, usually called the KP equation (Kadomtsev and Petvi-
ashvili, 1970; Grimshaw and Melville, 1989; Yuan et al., 2018a), the
present model is bidirectional and isotropic. Indeed, the KP equation
is a limiting case of the modified Benney–Luke equation in quasi-
two-dimensional situations. We can make further simplification by
assuming that waves are unidirectionally propagating and the varia-
tions in the transverse direction 𝑦 are much weaker than those in the
wave propagation direction 𝑥. Let

𝑋 = 𝑥 − 𝑐 𝑡 , 𝑇 = 𝜖𝑡 , 𝑌 = 𝜇𝑦 , 𝑐 =
[

𝜏∕(𝜏 + 𝜎)
]1∕2 , (40)

thus

𝜕𝑡 = −𝑐 𝜕𝑋 + 𝜖𝜕𝑇 , 𝜕𝑥 = 𝜕𝑋 , 𝜕𝑦 = 𝜇𝜕𝑌 . (41)

Recalling that the relation 𝜖 = (𝜇2), Eq. (31) reduces to

2𝜉𝑋𝑇+
𝜇2

𝜖
𝜏𝑐(1 + 𝜏𝜎)
3 (𝜏 + 𝜎)

𝜉𝑋𝑋𝑋𝑋+
3(𝜏2 − 𝜎)
(𝜏 + 𝜎)2

𝜉𝑋𝜉𝑋𝑋+𝑐2 𝑏𝑋+
𝜇2𝑐
𝜖
𝜉𝑌 𝑌 = 0 , (42)

which is asymptotically valid up to (𝜖, 𝜇2). Taking derivative with
respect to 𝑋 and defining 𝛶 = 𝜉𝑋 yield
[

2𝛶𝑇 +
𝜇2

𝜖
𝜏𝑐(1 + 𝜏𝜎)
3 (𝜏 + 𝜎)

𝛶𝑋𝑋𝑋+
3(𝜏2 − 𝜎)
(𝜏 + 𝜎)2

𝛶𝛶𝑋+𝑐2𝑏𝑋

]

𝑋
+
𝜇2𝑐
𝜖
𝛶𝑌 𝑌 = 0 , (43)

which is the KP equation. This degeneration from the modified Benney–
Luke equation to the KP equation implies the former has a wider scope
of applicability than the latter one, especially when the variations in
the transverse direction are comparable with those in the direction of
wave propagation.

2.3. Numerical method

To obtain accurate numerical results of the modified Benney–Luke
equation, the numerical techniques proposed by Milewski and Tabak
(1999) are implemented. Here we just briefly described the procedure.
Note that Eq. (35) can be rewritten as
[

𝜕2

𝜕𝑡2
+𝑀2

]

𝜉 = 𝐺(𝜉, 𝜉𝑡,∇𝜉) , (44)

where the operators 𝑀 and 𝐺 are, respectively,

𝑀2 = − 𝑐2𝛥
𝐼 − 𝛼𝛥

, 𝐺 = − 1
𝐼 − 𝛼𝛥

{

𝛽𝑏𝑡 + 𝛾
[

|∇𝜉|2𝑡 + 𝜉𝑡𝛥𝜉
]}

. (45)

Next, introducing an intermediate variable 𝜃,

𝜃 =
( 𝜕
𝜕𝑡

+ 𝑖𝑀
)

𝜉 , (46)

as a result, Eq. (44) reduces to a first-order one,
( 𝜕
𝜕𝑡

− 𝑖𝑀
)

𝜃 = 𝐺(𝜉, 𝜉𝑡,∇𝜉) . (47)

Taking the two-dimensional Fourier transform of (47) with respect to
the spatial variables yields
( 𝜕
𝜕𝑡

− 𝑖𝑀
)

𝜃 = F
[

𝐺(𝜉, 𝜉𝑡,∇𝜉)
]

, (48)

where F represents the Fourier transform. Then multiplying (48) by an
ntegrating factor 𝑒−𝑖𝑀𝑡, one obtains

𝑑𝛩
𝑑𝑡

= 𝑒−𝑖𝑀𝑡F
[

𝐺(𝜉, 𝜉𝑡,∇𝜉)
]

, 𝛩 = 𝑒−𝑖𝑀𝑡𝜃 . (49)

It remains to relate 𝛩 or 𝜃 with 𝜉 and 𝜉𝑡. Taking the Fourier transform
of (46) in the spatial domain and after a simple manipulation, we get

𝜉(𝑘, 𝑡) =
𝜃(𝑘, 𝑡) − 𝜃∗(−𝑘, 𝑡)

𝑖
[

𝑀(𝑘) +𝑀(−𝑘)
] , 𝜉𝑡(𝑘, 𝑡) =

𝜃(𝑘, 𝑡) + 𝜃∗(−𝑘, 𝑡)
2

, (50)

where the superscript asterisk indicates the complex conjugate. In the
temporal domain, a classical fourth-order Runge–Kutta method is used.



C. Yuan, Z. Wang and X. Chen Ocean Modelling 153 (2020) 101663

s

a

3

g
i
a
𝑥
a
i
d
G
w
5
F
r
a
d
t
t
t
i
t
o

Fig. 2. The interface fluctuation 𝜂 in the subcritical case at 𝑡 = 105 s (about 27.8 h) when the background current 𝑈 = 2.0 m∕s is smaller than the intrinsic linear wave phase
peed 𝑐 = 2.7 m∕s, and the insets are close-ups. Note that in the left upper inset (shown along 𝑦 = 0 km), in addition to the waves near the topography centred at 𝑥 = 𝑦 = 0, a tiny

counterpart in the negative 𝑥-axis is illustrated in different scales (labelled in the colour of red).
Fig. 3. The interface fluctuation 𝜂 in the critical case at 𝑡 = 105 s (about 27.8 h) when the background current 𝑈 = 2.7 m∕s equals the intrinsic linear wave phase speed 𝑐 = 2.7 m∕s,
nd the insets are close-ups. The layout is the same as in Fig. 2.
s

. Generation of internal waves

In this section, using the modified Benney–Luke equation, waves
enerated by a background current passing over topography are numer-
cally simulated. To better illustrate the results, the scales of simulations
re chosen as in realistic ocean conditions. Here the spatial ranges are
× 𝑦 = [−500 ∶ 500] × [−500 ∶ 500] km2, discretized by 5000 (or 3000)

nd 3000 grids respectively, and the time step is set to be 10 s. The strat-
fication is simplified to two layers, with thicknesses of 100 and 300m,
ensities of 1020 and 1030.2 𝑘𝑔∕𝑚3 for the upper and lower layers. A
aussian topography, delineated by 𝑏 = 𝑏0 exp

[

−(𝑥∕𝑥𝑤)2 − (𝑦∕𝑦𝑤)2
]

,
here the height 𝑏0 = 50m and the characteristic width 𝑥𝑤 = 𝑦𝑤 =
000m, is taken into consideration (see the schematic diagram in
ig. 1). One pending problem is how to incorporate background cur-
ents into the system, since no terms representing background currents
rise explicitly in the derivation (see Section 2). To circumvent this
ifficulty, note that the topography 𝑏(𝑥, 𝑦, 𝑡) is dependent on time 𝑡,
herefore a background current flowing over the topography amounts
o the case in which the bottom topography 𝑏moves with the velocity of
he background current, but in the opposite direction, a technique sim-
lar to Gerkema and Zimmerman (1995). Nevertheless, to understand
he underlying physics clearly, the moving topography is shifted to the
rigin 𝑥 = 𝑦 = 0 for the results exhibited in Figs. 2–8.
5

3.1. Constant background current

In this model set-up, the intrinsic linear wave phase speed 𝑐 =
2.7 m∕s as given in Eq. (36). We consider three cases with constant
background current 𝑈 = 2, 2.7 and 3.2 m∕s, corresponding to the
ubcritical 𝑈 < 𝑐, critical 𝑈 ≈ 𝑐 and supercritical 𝑈 > 𝑐 scenarios.

Since the modified Benney–Luke equation is isotropic, the constant
background current 𝑈 is aligned along the negative 𝑥-axis.

It is clear that the generation falls into the regime of lee wave
mechanism in all three cases (see Figs. 2–5). In the subcritical regime
(see Fig. 2), a steady lee wave emanates from the topography and
propagates in the positive 𝑥 direction with a velocity of 𝑐−𝑈 = 0.7 m∕s,
detaching from a forced stationary solitary wave arising over the topog-
raphy. In addition, a free and small-amplitude ((10−1) ) counterpart
emerges in the negative direction (𝑥 < 0) and propagates with its
own intrinsic velocity 𝑐 = −2.7 m∕s superimposed on the background
current 𝑈 = −2 m∕s, as a result, 𝑐 + 𝑈 = −4.7 m∕s. Meanwhile, waves
also disperse in the transverse direction, which leads to the occurrence
of the ‘‘arc’’. In contrast, when the scenario is in the critical regime,
apart from a similar free wave in the negative 𝑥 direction, waves are
confined near the topography, both downstream and upstream, and
the superimposed velocity tends to zero (Fig. 3). The waveforms are
characterized by a modulated cnoidal-like wavetrain downstream, akin
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p

Fig. 4. The model set-up is the same as in Fig. 3, except that the width of the topography is 𝑥𝑤 = 𝑦𝑤 = 30 km. The left panel shows the interface fluctuation 𝜂, while the right
anel along 𝑦 = 0 .
Fig. 5. The interface fluctuation 𝜂 in the supercritical case at 𝑡 = 105 s (about 27.8 h) when the background current 𝑈 = 3.2 m∕s is larger than the intrinsic linear wave phase
speed 𝑐 = 2.7 m∕s, and the insets are close-ups along 𝑦 = 0 (upper left) and 𝑦 = 60 km (upper middle), respectively. Note that only waves near the topography are shown, while a
small-amplitude counterpart propagating in the negative 𝑥-axis is not illustrated.
e
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to the one-dimensional case (see, for instance, Grimshaw and Smyth
(1986) and Grimshaw and Helfrich (2018). In the one-dimensional
model, waves upstream are a train of solitary waves of nearly uniform
amplitude, however, in the result shown in Fig. 3, the upstream waves
are instead in the form of an undular bore riding on the elevation
level. The reason for this can be ascribed to the dispersive effects in
the 𝑦 direction, and indeed, the dispersive effects lead to a peculiar
wave pattern, whose appearance is quite similar to the well-known
Kelvin wake excited by a ship moving over the water surface, albeit
here the half-angle is 40◦ approximately, which is much larger than
the well-known 19.47◦ for surface waves in deep water (Dias, 2014).
The results illustrated in Fig. 4 show that this angle increases with
the width of the topography (cf. Fig. 3). In the supercritical case
(Fig. 5), the most pronounced feature is the solitary waves over the
topography. In the one-dimensional model, such a solitary wave is
stationary, while in the present model, the dispersive effects in the
transverse direction destroy the steady waveform, and it disintegrates
into a train of nonlinear waves. On the other hand, two additional
wavetrains propagate away from the topography both in the negative
𝑥 direction, with the respective velocities of 𝑈 + 𝑐 = −5.9 m∕s and
−0.5 m∕s. We remark that all of these findings are applicable only to
narrow topographies, whereas the scenarios are quite different for wide
topographies (see, for example, Fig. 4).
6

3.2. Barotropic tides

In the ocean, the interaction between barotropic tides and topo-
graphic features is considered as the primary generation mechanism of
internal waves. Here we consider two categories of tidal currents with
a period of 12h: one is only aligned with the 𝑥-axis, but with two types
of maximum strength, 𝑈𝑚 = 1 < 𝑐 = 2.7m/s and 𝑈𝑚 = 3.6 > 𝑐 = 2.7m/s,
while for the other case, velocity components exist in both 𝑥 and 𝑦
directions, with the maximum strength 𝑈 = 𝑉 = 3.6 m∕s, and 𝑈 lags
behind 𝑉 by a phase of 𝜋∕2 in the 𝑦 direction.

When the maximum strength of the tidal current is 1m/s, the flow
is always subcritical. In addition to successive waves appearing over
the topography, there exist waves propagating away from the bump in
the upstream and downstream directions as the tidal current reverses
direction. As shown in Fig. 6, the combined effects of nonlinearity
and dispersion in both the 𝑥 and 𝑦 directions also affect the wave
volution and modulate the sinusoidal-like waveform to embody the
raits which are not accommodated in the linear theory. This feature is
ore prominent when the forcing is larger. Fig. 7 illustrates the case
hen the tidal current passes through the critical regime four times in
ne period. Starting from zero at 𝑡 = 0, the barotropic tide increases its

strength in the positive 𝑥 direction, and as in the subcritical case, waves
first appear over the topography, together with freely propagating
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Fig. 6. The interface fluctuation 𝜂 along 𝑦 = 0 km obtained via forcing the system by a tidal current in the 𝑥 direction, with maximum strength 1m/s. The two insets are plotted
at time 𝑡 = 50h, and the left one is the close-up of 𝜂 at the central line 𝑦 = 0 .
Fig. 7. The set-ups are the same as in Fig. 6, except that the maximum strength of the tidal current in the 𝑥 direction is 3.6m/s. On the left panel, the region when the tidal
urrent is larger than the intrinsic linear wave phase speed is accentuated in shadow.
mall-amplitude counterparts (the dark ellipse in Fig. 7). At 𝑡 = 1.6h,
he scenario passes through the critical speed and turns into the su-
ercritical regime. As the tidal current increases, the nascent nonlinear
avetrains grow and deform until they detach from the topography
hen the tidal current changes direction at 𝑡 = 6h. In the next half
eriod 𝑡 = 6 − 12h, the emitting waves feature a waveform composed
f leading solitary wavetrains and the subsequent undular bores and
ropagate with the velocity of 𝑈 (𝑡) + 𝑐, which is always negative.
t the same time, on the opposite side of the topography, a similar
eneration process repeats, and again these waves are released when
he tidal current changes its direction at 𝑡 = 12h. In the second period,
he tidal current becomes positive again and waves propagating in the
egative 𝑥 direction experience decelerations. When the tidal current
nters the supercritical regime, these waves even propagate backward
owards the topography slightly. This process cycles at every period and
7

results in the intermittent generation of nonlinear wavetrains. When it
is forced by a two-dimensional tidal current which are 3.6 m∕s in both
directions, but out of phase by 𝜋∕2, the remarkable feature is a spiral
wave pattern emanating from the bump in the horizontal plane (Fig. 8),
which verifies that the model is isotropic.

4. Discussion and conclusion

While oceanic nonlinear internal waves are essentially three-
dimensional, most of the theories currently used are horizontally one-
dimensional, which, to some extent, hinders the understanding of these
waves. Compared with much effort has been devoted to the study in
three dimensions via numerical simulations (Vlasenko and Stashchuk,
2007; Buijsman et al., 2014 amongst many others) and laboratory
experiments (Mercier et al., 2013; Wang et al., 2017 for instance),
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Fig. 8. The interface fluctuation 𝜂 along 𝑦 = 0 obtained via the forcing of a two-dimensional tidal current, with the maximum strength 3.6m/s in both the 𝑥 and 𝑦 directions.
There is a phase lag of 𝜋∕2 in the 𝑦 direction. The layout of two insets is the same as in Fig. 6.
theoretical explorations are reported rarely. The few studies we are
aware of, for example Lee and Grimshaw (1990), Cai and Xie (2010),
Chen et al. (2011), Yuan et al. (2018a) and Yuan et al. (2018b),
are all based on the KP equation, which plausibly inherits the wide
range of validity held by its parent, the well-known and widely used
KdV equation. Especially, Yuan et al. (2018a) illustrated satisfactory
comparisons between the KP equation and the primitive Navier–Stokes
equations. Notwithstanding all these advantages and the accumulation
of relevant mathematical analyses, the KP equation has two limitations,
one is its unidirectional nature, which makes it unable to investigate
wave reflection or deflection, and the other one is anisotropy: it is not
adequate for phenomena with large angles, and indeed, Ablowitz and
Curtis (2013) exhibited a discrepancy between the KP equation and the
Benney–Luke equation for free-surface waves.

To theoretically investigate three-dimensional internal waves and
overcome the shortcomings of the KP equation, we derive an isotropic
bidirectional model, the modified Benney–Luke equation. Adopting the
common assumptions of incompressibility, non-rotation, non-
dissipation and long waves, we start from two Laplace’s equations
in a two-layer fluid system, and then carry out asymptotic analyses
balancing nonlinearity and dispersion via choosing 𝜖 = (𝜇2). The
resulting modified Benney–Luke equation can be easily reduced to the
classic Benney–Luke equation for surface waves, and moreover, it can
also be simplified to the KP equation under the correct assumptions.
Nonetheless, the trade-off is that the structure of the resulting equation
is not as succinct as the KdV-type equations, and it is difficult to find
analytical solutions to the proposed equation, thus a specific numerical
scheme is suggested in Section 2.3. Based on this model, the generation
processes of nonlinear internal waves excited by constant background
currents and barotropic tides flowing over topography are examined,
demonstrating the reliability and effectiveness of the model.

Finally, it is necessary to adumbrate potential shortcomings. In
some cases the small terms at the order of 𝑜(𝜖, 𝜇2) that have been
ignored in the present derivation may be important necessitating the
inclusion of higher-order terms. To determine conditions under which
they should be included, we need to conduct comparisons with in-situ
observations, laboratory experiments or three-dimensional numerical
simulations based on the primitive Navier–Stokes equations. These
comparisons are really worthwhile, as they can help to identify the
range of validity of the modified Benney–Luke equation. In addition,
8

the present equation stems from the assumption of two fluid layers,
which is a good approximation for some oceanic environment, but
not applicable for investigating mode-2 and even higher mode in-
ternal waves, therefore extensions to multiple layers and continuous
stratification are still waiting to be developed in further studies.
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