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Abstract: The space-based gravitational wave detection programs, like the Laser Interferometer
Space Antenna (LISA) or the Taiji program, aim to detect gravitational waves in space with a
triangular constellation of three spacecraft. The unavoidable jitters of the spacecraft and the
pointing will couple with the misalignment of the interfering beams into the longitudinal path
length readout. This effect is called tilt-to-length (TTL) coupling, which is one of the keys
to achieving the required measuring accuracy of 1pm/

√
Hz. In terms of two phase definitions

(the LISA Pathfinder (LPF) signal and the Average Phase (AP) signal), we implement the
comprehensive theoretical analysis concerning the effect of aberrations on TTL coupling noise.
In addition, we analytically derive that the proper lateral shift of the interfering beams relative to
the detector can partly cancel out the TTL noise coupled with aberrations, especially coma and
trefoil aberrations for the AP signal. Based on the above results, the meaningful guidance can be
provided for the design and construction of the optical system in LISA or Taiji.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

In the spaceborne and long-baseline laser interferometers such as the Laser Interferometer Space
Antenna (LISA) and the Taiji program, there are three spacecraft forming an equilateral triangle
with arm lengths of millions of kilometres [1–3]. In order to successfully detect the gravitational
waves, the measurement noise of the detectors needs to meet 1pm/

√
Hz within the frequency

band from 0.1mHz to 1Hz [4,5]. This ultra-low noise level demands tightly on all aspects of these
gravitational wave detectors. The science interferometer shown in Fig. 1, one of the subsystems
of the interferometric system, is responsible for measuring the optical path change between the
local optical bench and the optical bench on a remote spacecraft [6].

As shown in Fig. 1, the local telescope is a 4-mirror Schiefspiegler systemwith 80magnification
and a diameter of the primary mirror of 400 mm, and the imaging system is a Kepler system
with 2.5 magnification [7]. As a result, the received flat-top beam has a diameter of 2mm on
the detector. Furthermore, due to the spacecraft jitter and the breathing of the constellation, the
received beam jitters on the detector and interferes with the static local beam at varying angles.
In principle, the pupil imaging conjugate system can make the received beam imaged on the
detector without beam walk and eliminate the effect of beam tilt on the change of optical path.
However, it can not eliminate the TTL noise coupled with the wavefront error of the interfering
beams, which are currently induced by the imperfections of the optical systems because of the
manufacture and adjustment errors. The coupling coefficient is currently required to be below
25pm/µrad within ±300µrad of the wavefront misalignment between the interfering beams [8].
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Fig. 1. The simplified diagram of the science interferometer shows the process that the
far-field wavefront is clipped and narrowed through a telescope to the optical platform (lenses
used to fold the optical path are omitted), and then hitting the detector through an imaging
system. A pupil imaging conjugate system consists of the telescope and the imaging system.
It overlaps the exit pupil (EXP) of the telescope with the entrance pupil (ENP) of the imaging
system, and placing the detector at the EXP of the imaging system. The green beam of
an off-axis field of view is worked by the pupil imaging conjugate system to hit the same
position of the detector with the same optical path (Fermat principle) compared to the red
beam of the on-axis field of view.

C P Sasso et al. analytically investigated the TTL coupling between the wavefront misalignment
and the low-order aberrations of the interfering beams by extracting the phase information from
the complex amplitude of a single element photodiode (SEPD) [9]. However, the quadrant
photodiode (QPD) consisting of four active segments, is mostly used as the detector of the
interferometric systems to obtain the DWS (differential wavefront sensing) signal for measuring
small angular changes [10–12]. The phases of the four quadrants can be combined in different
ways to get the overall phase of the entire QPD, and the phases obtained may be different [13].

In this paper, we analytically calculate the TTL noise coupled by aberrations including the
third to the seventh order, by applying the two most common QPD path length definitions (the
AP signal and the LPF signal). For the AP signal, we also analyze the effect of the lateral shift
between the interfering beams and the detector on TTL coupling and derive an expression which
theoretically explains a compensating relationship between the lateral shifts of the detector and
optical lens in the experiments [14]. Meanwhile, the expressions for calculating the minimum
sensitivity tilt for the TTL noise are given. Finally, we carry out Monte Carlo simulations for the
LPF signal and the three kinds of AP signals with three different settings of the lateral shift by
trying arbitrary wavefront errors. The results intuitively show that the AP signal can more greatly
reduce the TTL noise coupled with aberrations compared to the LPF signal, and introducing
the appropriate lateral shift of the interfering beams on the detector can further reduce the TTL
coupling. The AP signal with λ/10 wavefront error of the interfering beams is better than the
LPF signal with λ/20 wavefront error when other states are the same. Therefore, the analyses C
P Sasso et al. performed in [9,15] may exaggerate the influence of aberrations on the TTL noise
to put forward too high demand for wavefront quality.

2. Optical model

The far-field wavefront is narrowed by the off-axis telescope as a flat-top beam, which then
superimposing with the local Gaussian beam pass the imaging system together to interfere on
the QPD [16]. By proper adjustment, the relative position between the two interfering beams
can go below microns level. For the sake of simplicity, we assume that the centers of the two
beams coincide and set the center as the coordinate origin shown in Fig. 2. Consequently, the
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local Gaussian beam on the detector can be written as (in polar coordinates):

E1(r, θ, z, t) = e
−r2
ω(z)2 e−ik

[
r2

2R(z)+w1(r,θ)
]
+iω1t, (1)

where k = 2π/λ is the wavenumber, λ is the wavelength. (r, θ) is the polar coordinate on the
detector plane, ω(z) = ω0

√
1 + ( z

z0 )
2 is the spot size on the detector, where ω0 is the waist

size, z is the distance away from the waist position, z0 = πω2
0/λ is the Rayleigh distance.

R(z) = z
[
1 + (z0/z)2

]
is the radius of the wavefront curvature. The phase term −r2

2R(z) is similar
to defocus, and whether it is equal to 0 depends on whether z is equal to 0. w1(r, θ) represents
the wavefront error of the local beam created by defective optical elements. ω1 is the angular
frequency.

Fig. 2. The interfering beams hit centrally (left) and eccentrically (right) on the QPD. In
the pictures, D1, D2, D3 and D4 represent the valid integral regions in the four Cartesian
coordinate quadrants. Blue numbers 1,2,3,4 indicate the four segments in the QPD,
respectively. εx and εy are the eccentricities in the x-direction and y-direction between the
interfering beam and the QPD. S1, S2, S3, S4 and S5 stand for the changed effective integral
regions of the four segments induced by the eccentricity.

The flat-top beam on the detector can be derived as (in polar coordinates):

E2(r, θ, t) =


e−ik[rα cos(θ−θα )+w2(r,θ)]+iω2t r ≤ r0

0 else
, (2)

where α is the small tilt angle of the beam about an axis that is orthogonal to a line making
an angle of θα with the x axis on the detector plane, r0 is the radial dimension of the flat-top
beam. w2(r, θ) also represents the wavefront error of the flat-top beam caused by defective optical
elements including the off-axis telescope. ω2 is the angular frequency.
Provide that the interfering beams can be detected without clipping, it is easy to extract the

phase from an integration of the complex overlap term over the detection area. Since the phase is
time-independent, we set t = 0 and the integrand becomes:

Oovi(r, θ) =
∫

S
E1E∗2dr2 =

∫
S

e
−r2
ω(z)2 eikW(r,θ)dr2, (3)

where W(r, θ) = rα cos(θ − θα)+∆w(r, θ), represents the total wavefront error including tilt, and
∆w(r, θ) = w2(r, θ) − w1(r, θ) − r2

2R(z) , denotes the static wavefront error of the interfering beams.
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Then the phase information is extracted from the argument of (3). In this paper, the range of the
static wavefront error ∆w(r, θ) discussed is less than 0.1064µm, and the range of the tilt angle
α discussed is within ±300µrad. So based on computational accuracy, the exponential term
eikW(r,θ) is approximate to:

eikW(r,θ)≈1 + ikW(r, θ) −
1
2

k2W(r, θ)2 −
i
6

k3W(r, θ)3. (4)

As shown in Fig. 2, the complex amplitude for every segment of such a QPD can be calculated.
And there are the two most common ways to combine the complex amplitudes of the four
segments in the current projects. The first phase definition selected by LISA Pathfinder is the
LPF signal, which first sums the complex amplitudes of each segment of the QPD and then
calculates the argument from the sum [13]:

φLPF = arg

( 4∑
n=1

On
ovi

)
. (5a)

Here, the slit of the QPD is not considered in the following calculations because the effect of the
ten microns scale slit gap of the universal QPD on the total complex amplitude is negligible. As
a result, we can directly integrate the entire circle to calculate φLPF (And arg x is approximated
as Im(x)/Re(x) in the calculation):

φLPF = arg
[∫ 1

0
ρe−ρ

2/ω2
r

( ∫ 2π

0
eikW(ρ,θ)dθ

)
dρ

]
≈ arg(a0 + ia1 − a2 − ia3)

≈
(a1 − a3)(a0 + a2)

a20
,

(5b)

where ωr = ω(z)/r0, ρ = r/r0 and

an =
1
n!

∫ 1

0
ρe−ρ

2/ω2
r

( ∫ 2π

0
[kW(ρ, θ)]ndθ

)
dρ. (5c)

The second phase definition is the AP signal, which first takes the resulting phase of each
segment of the QPD and then averages it. By assuming

√
ε2x + ε

2
y � r0, the shape of Si areas

can be regarded as a rectangle, as shown in Fig. 2. Therefore, it is more suitable to calculate
the complex amplitudes of the Si areas with Cartesian coordinates. And the exponential term
eikW(x,y) is approximated up to the first order because the Si areas are very small:

eikW(x,y)≈1 + ikW(x, y). (6)

The effective integral regions of the four segments in the QPD are shown in the Fig. 2.
Accordingly, the calculations of the complex amplitudes of the four segments are given in
(7a∼7d):

O1
ovi =

∫
D1

Oovi(r, θ) +
∫

S1+S4+S5
Oovi(x, y), (7a)

O2
ovi =

∫
D2

Oovi(r, θ) −
∫

S1
Oovi(x, y) +

∫
S2

Oovi(x, y), (7b)

O3
ovi =

∫
D3

Oovi(r, θ) −
∫

S2+S3+S5
Oovi(x, y), (7c)
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O4
ovi =

∫
D4

Oovi(r, θ) −
∫

S4
Oovi(x, y) +

∫
S3

Oovi(x, y). (7d)

Here we take (7a) as an example to show the phase calculation process of the first segment of the
QPD. The calculation of the complex amplitudes of the D1 area is shown in (8a) and (8b).

OD1
ovi≈d0 + id1 − d2 − id3, (8a)

dn =
1
n!

∫ 1

0
ρe−ρ

2/ω2
r

( ∫ π/2

0
[kW(ρ, θ)]ndθ

)
dρ, (8b)

When calculating the complex amplitudes of the Si area, εx and εy are expressed via the polar
vector ε , θε (εx = ε ∗ cos θε , εy = ε ∗ sin θε , θε ∈ [0, 2π]):

OS1+S4+S5
ovi ≈s0 + is1, (8c)

sn =

∫ 1

0

∫ 0

εr cos θε
e−(x

2
r+y2r )/ω2

r [kW(xr, yr)]
ndxrdyr

+

∫ 0

εr sin θε

∫ 1

0
e−(x

2
r+y2r )/ω2

r [kW(xr, yr)]
ndxrdyr

+

∫ 0

εr sin θε

∫ 0

εr cos θε
e−(x

2
r+y2r )/ω2

r [kW(xr, yr)]
ndxrdyr,

(8d)

where xr = x/r0, yr = y/r0, εr = ε/r0 are the normalized parameters. Combining (8a) and (8c),
we can get the complex amplitudes of the first segment of the QPD:

O1
ovi≈d0 + s0 − d2 + i(d1 + s1 − d3)). (8e)

For the complex amplitudes of the other three segments, we just change the integral regions of
(8a∼8d) according to (7b∼7d) to calculate the expressions similar to (8e). Eventually, the AP
signal can be expressed as:

φAP≈
1
4

Im(
∏4

n=1 On
ovi)

Re(
∏4

n=1 On
ovi)

. (8f)

It is easy to notice that the LPF signal is insensitive to the static lateral displacement ε . In
contrast, the lateral position offset of the interfering beams on the QPD will change the complex
amplitude of each segment on the QPD and consequently alter the AP signal. However, it does
not mean that the AP signal is a bad phase definition. On the contrary, this character can provide
the AP signal a certain degree of freedom to offset the phase noises induced by aberrations, which
will be verified theoretically in the next section.

3. The coupling of TTL noise with aberrations

3.1. Simple analysis with the spherical aberration and the coma of Seidel aberrations

First, simple analytical expressions are derived to visually show the coupling relationship
between the phase noises and the aberrations for the LPF signal and the AP signal. Here we set
R(z) = ∞, and choose the radial symmetric spherical aberration and the asymmetric coma in
Seidel aberrations to form ∆w(r, θ). As a result, W(r, θ) and W(x, y) become:

W(r, θ) = rα cos(θ − θα) + Acr3 cos(θ − θc) + Asr4, (9a)

W(x, y) = α(x cos θα + y sin θα) + Ac(x2 + y2)(x cos θc + y sin θc) + As(x2 + y2)2, (9b)

where Ac and As represent the coefficients of the coma and the spherical aberration, respectively,
and the coma is symmetric about a line making angle of θc with the x axis. Next, we carry out the
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symbolic calculations of the integration (5c) and (5b) by utilizing Mathematica (the Mathematica
code is available in the supplementary material as we shown in Code 1 [17]). Because we
focus on the coupling between the small rotation angle α and the phase, the terms unrelated and
higher than second order of α are omitted during the simplification. Therefore, the longitudinal
pathlength signal (LPS) LPSLPF of the LPF signal is (φLPF/k):

LPSLPF≈b1 ∗ AcAsα + b2 ∗ Asα
2, (10a)

b1 = −
k2

(
20e

2
ω2

r ω8
r + 4

(
5ω8

r + 4ω6
r + ω

4
r

)
− e

1
ω2

r
(
40ω8

r + 16ω6
r + 8ω4

r + 4ω2
r + 1

))
cos (θc − θα)

2
(
e

1
ω2

r − 1
)
2

,

(10b)

b2 = −
k2

(
4e

2
ω2

r ω6
r + 2

(
2ω6

r + ω
4
r

)
− e

1
ω2

r
(
8ω6

r + 2ω4
r + 2ω2

r + 1
))

4
(
e

1
ω2

r − 1
)
2

. (10c)

Meanwhile, the LPSAP of the AP signal is:

LPSAP≈
[
p1 ∗ AsAc + (pε11 + pε21 ∗ A2

s ) ∗ εr
]
α + p2 ∗ Asα

2, (11a)

where the expressions of p1 and p2 are too long, thus being denoted by the power series of ωr
with the coefficients p1n and p2n, as shown in (11b) and (11c), respectively. (the full expressions
can be shown by the supplementary material as we shown in Code 1 (Ref. [17])).

p1 = k2 cos(θα − θc)

8∑
n=0

p1nω
n
r , (11b)

p2 =
6∑

n=0
p2nk2ωn

r , (11c)

The coefficient of α2 contains one term concerning the lateral shift εr, and this term is so
negligible that can be omitted when εr is within ±0.02. pε11 (11d) is independent of aberrations.
pε21 (11e) is also denoted by the power series ofωr with the coefficients p1ε2n (the full expressions
are provided in the supplementary material as we shown in Code 1 (Ref. [17])).

pε11 =
2 cos(θα − θε )e

1
ω2

r erf
(

1
ωr

) (√
πe

1
ωr ωrerf

(
1
ωr

)
− 2

)
π3/2

(
e

1
ω2

r − 1
)
2ωr

, (11d)

pε21 = k2 cos(θα − θε )
8∑

n=−1
p1ε2nω

n
r . (11e)

The Eqs. (10b) and (11b) indicate that the coupling degree of the coma Ac with TTL noise
depends on the cosine of the included angle between θα and θc whatever for LPSLPF or LPSAP.
When we set As = Ac = 0 to eliminate the wavefront mismatch of the interfering beams, LPSLPF
is free for tilting, but LPSAP has a linear coupling relation with the angle α because of the lateral
shift εr. Similarly, the coupling degree of the lateral shift εr with TTL noise for LPSAP depends
on the cosine of the included angle between θα and θε .

https://doi.org/10.6084/m9.figshare.12278228
https://doi.org/10.6084/m9.figshare.12278228
https://doi.org/10.6084/m9.figshare.12278228
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The coupling coefficients δLPF
LPS and δAP

LPS, calculated by taking the derivatives of (10a) and (11a)
with respect to α, characterize the sensitivity of LPS to the tilting angle.

δLPF
LPS =

d(LPSLPF)

d(α)
= b1 ∗ AcAs + 2b2 ∗ Asα, (12a)

δAP
LPS =

d(LPSAP)

d(α)
= p1 ∗ AsAc + (pε11 + pε21 ∗ A2

s ) ∗ εr + 2p2 ∗ Asα. (12b)

It is worth noting that the constant term of δAP
LPS can be eliminated if εr satisfies:

ε
opt
r = −

p1 ∗ AsAc

(pε11 + pε21 A2
s )
, (13)

where εopt
r = εopt/r0 is the normalized optimal lateral shift. Equation (13) indicates that the

component of the lateral shift in the direction which is orthogonal to the jittering axis of the
beam, works for reducing the TTL noise coupled with the aberrations. Meanwhile, we can obtain
the two optimal angles α0

LPF and α0
AP, which can minimize δLPF

LPS and δAP
LPS to 0, respectively:

α0
LPF = −

b1 ∗ AcAs

2b2 ∗ As
, (14a)

α0
AP = −

p1 ∗ AsAc + (pε11 + pε21 A2
s ) ∗ ε

2p2 ∗ As
. (14b)

Assuming that θα = θε = θc = 0 and ω(z) = r0 = 1mm to consider one-dimensional situation,
the above results are intuitively shown on Fig. 3. By adjusting ε to εopt, the TTL noise coupled
with the coma can be surely eliminated for the AP signal, and α0

AP simultaneously becomes 0.
And if ε is not too large, it is obvious that the AP signal is less sensitive than the LPF signal for
the TTL noise coupled with aberrations.

Fig. 3. Left: εopt(13) changing with As and Ac. Right: LPSLPF , LPSAP and their coupling
coefficients δLPF

LPS , δ
AP
LPS with different values of As and Ac, versus the wavefront tilt α.
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3.2. The comprehensive theoretical analysis with Zernike polynomials

An excellent choice as basis functions for representing functions such as wavefronts is Zernike
circle polynomials, which are orthogonal over a unit circle in the form [18]:

Zi(ρ, θ) =


√
2(n + 1)Rm

n (ρ) cos(mθ) i is even and m , 0√
2(n + 1)Rm

n (ρ) sin(mθ) i is odd and m , 0
√

n + 1R0
n(ρ) m = 0

, (15)

where Rm
n (ρ) (16) is the radial polynomial, n and m are positive integers, and n−m ≥ 0. ρ = r/r0

is the normalized radial coordinate. The index i is a polynomial-ordering number and a function
of n and m.

Rm
n (ρ) =

(n−m)/2∑
s=0

(−1)s(n − s)!
s!( n+m

2 − s)!( n+m
2 − s)!

ρn−2s. (16)

There are several ways of representing the Zernike polynomials, with one difference being the
ordering of terms. Here, the Fringe Zernike polynomials, currently used by several vendors of
interferometers and interferometric data analysis software, are chosen in the analysis. In order to
fully characterise the manufacturing and adjustment errors of the optical systems, the first 25
terms of the Fringe Zernike polynomials are used to fit the wavefront error of the interfering
beams (the piston term being omitted). Furthermore, except the defocus term and three spherical
aberration terms, the cosine and sine terms of other Zernike aberrations are combined to represent
the magnitudes and orientations of these aberrations. For example, when both x and y Zernike
tilts are used to present the wavefront tilt, the aberration may be written as the form:

a2Z2(ρ, θ) + a3Z3(ρ, θ) = ATi
1 ρ cos(θ − θTi), (17)

showing a wavefront tilt of magnitude ATi
1 = r0α = 2

√
a22 + a23 about an axis that is orthogonal to

a line making an angle of θTi = θα = tan−1(a3/a2) with the x axis. Where ai is the expansion
coefficient before combination and Aaber

j is the magnitude of the aberration after combination
(its subscript is the serial number j and superscript is the abbreviation of the corresponding
aberration). The complete orthonormal Zernike polynomials Zj(ρ, θ) in polar coordinates and
Zj(x, y) in Cartesian coordinates are given in Table 1, where θaber presents an orientation angle of
the corresponding aberration inclined with the x axis and its subscript is the abbreviation of the
corresponding aberration. The effect of the phase term −r2

2R(z) can be represented by the defocus
Zernike term. As a result, the wavefront error can be presented as:

W(ρ, θ) =
14∑
j

Aaber
j Zj(ρ, θ), (18a)

W(x, y) =
14∑
j

Aaber
j Zj(x, y). (18b)

The expansion coefficients Aaber
j are given by:

Aaber
j =

1
π

∫ 1

0

∫ 2π

0
W(ρ, θ)Zj(ρ, θ)ρdρdθ (19)

The aberration variance is given by:

δ2W =
∑

j
(Aaber

j )2, (20)
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where δW can be regarded as the root-mean-square (RMS) value of the wavefront error because
the piston term a0 is not included here.
After (9a) and (9b) are replaced by (18a) and (18b), δLPF

LPS and the corresponding optimal tilt
angle α0

LPF can be expressed as:
δLPF

LPS = B1 + 2B2α, (21a)

α0
LPF = −

B1
2B2

, (21b)

B1 =

29∑
n=1

B1n ∗ A1LPF
n , (21c)

B2 =

7∑
n=1

B2n ∗ A2LPF
n , (21d)

where B1 (21c) is the sum of 29 factors A1LPF
n (21g) with the coefficients B1n, the 21 factors of

which are the pairwise combinations between the three coma terms and the group AALPF
1 (21e)

including the four spherical terms (including defocus) and the three astigmatism terms, and the
other 8 factors are the pairwise combinations between the two trefoil terms and the group AALPF

2
(21f) including the three astigmatism terms and the primary tetrafoil term. B2 (21d) is the sum of
7 factors A2LPF

n (21h) including the 7 terms in the group AALPF
1 with the coefficients B2n (21h).

AALPF
1 =⇒

{
ADE
2 ,APS

5 ,ASS
9 ,ATS

14 ,A
PA
3 ,ASA

7 ,ATA
12

}
, (21e)

AALPF
2 =⇒

{
APA
3 ,ASA

7 ,ATA

12 ,A
PTE
10

}
, (21f)

A1LPF
n =⇒

{
{APC

4 ,ASC
8 ,ATC

13 } ∗ AALPF
1 , {APTR

6 ,ASTR
11 } ∗ AALPF

2
}
, (21g)

A2LPF
n =⇒ AALPF

1 . (21h)

Because of too many factors in (18a) and (18b), it is very hard to directly calculate δAP
LPS by

using the Eq. (8a). Therefore, we expand
∏4

n=1 On
ovi and neglect some factors to reduce the

amount of calculation through only considering the terms that are not higher than the second
order of α and the first order of εr (the Mathematica codes of the specific simplification process
are shown in the supplementary material as we shown in Code 1 (Ref. [17])). As a result, δAP

LPS
and the corresponding optimal tilt angle α0

AP can be expressed as:

δAP
LPS =

[
P1 + (Pε11 + Pε21 ) ∗ εr

]
+ 2

(
P2 + Pε2 ∗ εr

)
α, (22a)

α0
AP = −

[
P1 + (Pε11 + Pε21 ) ∗ εr

](
P2 + Pε2 ∗ εr

) , (22b)

P1 =

40∑
n=1

P1n ∗ A1AP
n , (22c)

P2 =

8∑
n=1

P2n ∗ A2AP
n , (22d)

Pε11 = p1ε1, (22e)

Pε21 =
51∑

n=1
P1ε2n ∗ A1εn, (22f)

https://doi.org/10.6084/m9.figshare.12278228
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Pε2 =
5∑

n=1
P2εn ∗ A2εn, (22g)

where P1 (22c) is the sum of 40 factors A1AP
n (22j) with the coefficients P1n, which are the

pairwise combinations between the group AAAP
1 (22h) including the four spherical terms, the

three astigmatism terms and the primary tetrafoil term and the group AAAP
2 (22i) including the

three coma terms and the two trefoil terms. P2 (22d) is the sum of 8 factors A2AP
n (22k) including

the 8 terms in the group AAAP
1 with the coefficients P2n. Pε11 (22e) is equal to pε11 (11d), which is

independent of aberrations. Pε21 (22f) is the sum of 51 factors A1εn (22l) with the coefficients
P1ε2n, the 36 factors of which are the pairwise combinations (where any two different terms are
combined in pairs and every term can also be combined with itself in pairs to form the pairwise
combinations) of the group AAAP

1 , and the other 15 factors are formed in the same way of pairwise
combinations of the group AAAP

2 . Pε2 (22g) is the sum of 5 factors A2εn (22m) including the 5
terms in the group AAAP

2 with the coefficients P2εn.

AAAP
1 =⇒

{
ADE
2 ,APS

5 ,ASS
9 ,ATS

14 ,A
PA
3 ,ASA

7 ,ATA
12 ,A

PTE
10

}
, (22h)

AAAP
2 =⇒

{
APC
4 ,ASC

8 ,ATC
13 ,A

PTR
6 ,ASTR

11
}
, (22i)

A1AP
n =⇒

{
AAAP

1 ∗ AAAP
2

}
, (22j)

A2AP
n =⇒ AAAP

1 , (22k)

A1εn =⇒
{
AAAP

1 ∗ AAAP
1 ,AAAP

2 ∗ AAAP
2

}
, (22l)

A2εn =⇒ AAAP
2 . (22m)

Like the expression (10b) or (11b), the coefficients B1n, B2n, P1n and P2n are the functions of
the normalized radius ωr and the cosine of the add and subtract combination between θα and
θaber (corresponding to the aberration terms of A1n and A2n). Like the expression (11d) or (11e),
P1ε2n, P2εn are the functions of the normalized radius ωr, the cosine of the add and subtract
combination among θα, θε and θaber (corresponding to the aberration terms of A1εn and A2εn).
The texts of these coefficients are not shown here due to limited space. But providing that the
cosine terms are equal to 1 by setting θα, θε , and other θaber to be 0, and all the magnitudes Aaber

j
are equal to λ/10, Fig. 4 shows every sub-term of B1, P1 (left) and 2 ∗ B2 ∗ αmax, 2 ∗ P2 ∗ αmax
(middle) versus the normalized radiusωr. And the right of Fig. 4 shows Pε11 , Pε21 , and 2∗Pε2 ∗αmax
(right) versus the lateral shift εr (ωr = 1) (for consistency, B2, P2 and Pε2 multiplied by 2αmax,
where αmax = 300µrad).

In general, we can notice that the sub-term values of B1, 2 ∗ B2 ∗ αmax are larger than P1,
2 ∗ P2 ∗ αmax, respectively. And it is also worth noting that in the coefficients of εr, the three
largest sub-terms are Pε11 and the two terms about (ADE

2 )
2, ADE

2 ∗ APS
5 of Pε21 , whose cosine terms

are all cos(θα − θε ). Consequently, Pε2 can be ignored for its smaller values and we set θε = θα
when calculating the normalized optimal lateral shift εopt

r shown as:

ε
opt
r = −

P1

Pε11 + Pε21
. (23)
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Fig. 4. Left: every sub-term of B1, P1 versus ωr. Middle: every sub-term of B2 ∗ 2αmax,
P2 ∗ 2αmax versus ωr. Right: every sub-term of Pε11 , Pε21 and Pε2 versus εr.

4. Results

Because the actual W(ρ, θ) spectrum (18a) is not available, it is necessary to predict the TTL
noise coupled with aberrations under the different constraints of δW (20) by adopting the Monte
Carlo simulation for the analytical results of the previous section.
To give an example, we set a situation that the beam wavelength λ = 1064nm, the radius

of the flat-top beam and the spot size of the Gaussian beam on the detector ω(z) = r0 = 1mm.
Meanwhile, the coefficients Aaber

j (except ATi
1 ) are randomly generated according to (20) in the

constraint of δW = λ/20 = 53.2nm and the orientation angles θaber (except θTi) are randomly
generated in the interval of [0, 2π]. Figure 5 (left) shows a randomly generated wavefront, and
the right of Fig. 5 indicates that the value of εopt depends on the orientation of the wavefront
tilt due to the random orientation angles θaber of some aberrations in this wavefront sample.
Figure 6 and 7 show the absolute values of two kinds of δAP

LPS and δLPF
LPS versus both the horizontal

tilt angle αx = α cos(θα) and the vertical tilt angle αy = α sin(θα), respectively. As expected,
the optimal lateral shift can slightly reduce δAP

LPS. Meanwhile, the red dotted lines in the three
pictures indicate that the distributions of the optimal wavefront tilts are one or two continuous
curves and are different for three kinds of situations.

It is noticed that the premises of the parabolic approximation used in the previous theoretical
analysis are that |kW(ρ, θ)| � 1 and εr � 1. In order to verify the validity of the approximations
for the large misaligment, the wavefront error and the lateral shift, we calculate the residual
error δapprox (24) between the approximate analytical solutions LPSapprox and the corresponding
numerical simulations LPSnum of the LPF signal and the AP signal with 104 arbitrary wavefront
samples (the analytical solutions of the LPS signals are the primitive functions of (21a) and (22a)
without the constant term). Figure 8 shows that, the mean values of δLPF

approx and δAP
approx are −5.7%

and 2.4%, with the standard deviations of 13% and 10%, respectively.

δapprox = (LPSapprox − LPSnum)/LPSnum. (24)

In the following analysis, we first carry out Monte Carlo algorithm to generate 104 groups of
Aaber

j (expect ATi
1 ) and θaber (including θα = θTi), respectively, in the cases of λ/40, λ/20 and

λ/10 of δW . Next, we use the wavefront tilt α = ATi
1 to maximize |δAP

LPS | and |δ
LPF
LPS | in the range



Research Article Vol. 28, No. 17 / 17 August 2020 / Optics Express 25557

Fig. 5. Left: a randomly generated wavefront. Right: the optimal lateral shift εopt versus
the orientation angle of the wavefront tilt θα.

Fig. 6. The coupling coefficient |δAP
LPS | of the AP signal. The red dotted lines indicate the

positions with the zero value according to the Eq. (22b). Left: using the Eq. (22a) only.
Right: introducing εopt calculated by (23) to (22a).

Fig. 7. The coupling coefficient |δLPF
LPS | of the LPF signal according to (21a). The red dotted

line indicates the position with the zero value according to (21b).
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Fig. 8. Histogram of 104 Monte Carlo calculation of the residual errors δLPF
approx and δAP

approx
when the radius of the flat-top beam and the spot size of the Gaussian beam on the detector
ω(z) = r0 = 1mm. And we set the RMS wavefront error δW = λ/10, the wavefront
misalignment α = 300µrad and the lateral shift ε = 60µm to consider the maximum error.

of ±300µrad for considering the worst situation. Meanwhile, the corresponding optimal lateral
shifts εopt are calculated according to (23). Specifically, as for the AP signal, we carry out three
cases for different lateral shift vector ®ε . Among them, case 1 is that ε = εopt and θε = θα to
consider the compensation mechanism of the lateral shift, case 2 is that ε = 0 to assume the
perfect centering, and case 3 is that ε and θε are randomly generated in the range of ±20µm and
0 ∼ 2π, respectively, to consider the position error. Meanwhile, we use case 4 to represent the
LPF signal.

Figure 9 illustrates the simulation results and Table 2 shows the mean values and the proportions
of |δLPS | less than the required 25pm/µrad in the samples of the four cases. Providing that
δW = λ/40, we can notice that most of all samples of all the cases meet the required 25pm/µrad.
When δW = λ/20, although the mean values of all the cases are less than the required 25pm/µrad
and the samples of the three cases of AP signal nearly fulfill the requirement, the proportion of
samples satisfying the requirement for the LPF signal is reduced to 55%. If δW rises to λ/10,
only the samples of the case 1 can nearly meet the requirement. And in general, we can also
notice that εopt increases with the deterioration of the wavefront quality.

Fig. 9. In the wavefront error δW of λ/40, λ/20 and λ/10. Left: the sample distributions
of the coupling coefficient |δLPS | of the four cases. Right: the sample distributions of the
optimal lateral shift εopt in the case 1.

Finally, in the range of 0 ∼ λ/10 and the step of λ/100 for δW , we repeat the above calculation
process. As shown in Fig. 10, the data points are linked into lines, respectively. The results
indicate that provided that δW is less than λ/50, the mean value of δLPS for the case 3 is slightly
larger than other cases because of the term Pε11 concerning the lateral shift εr. But with the
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Table 2. The specific mean values and the proportions of |δLPS | less than the required 25pm/µrad
in the samples of the four cases when δW is λ/40, λ/20 and λ/10, respectively.

Case

δLPS[pm/µrad] δW [λ] 1/40 1/20 1/10

Mean Proportion (<25) Mean Proportion (<25) Mean Proportion (<25)

Case 1 2.61 100% 5.26 100% 10.61 95.4%

Case 2 3.11 100% 7.42 100% 18.71 72.3%

Case 3 8.61 100% 11.65 98.7% 20.53 65.4%

Case 4 9.84 96.7% 22.64 55.4% 53.85 15.7%

increase of δW , the difference between the case 2 and the case 3 is getting smaller, which indicates
that the random deviation within ±20 microns for the lateral eccentricity of the interfering beams
at the detector has a limited effect on the AP signal. Meanwhile, the mean value of |δLPS | and the
number of samples that do not meet the requirement for the LPF signal, increase faster than the
other AP signals. Among them, case 1 performs best for reducing the TTL noise coupled with
aberrations. Correspondingly, the mean value and the maximum value of the optimal lateral shift,
increase from 0 to 12.8µm and from 0 to 59.5µm, respectively, while δw increases from 0 to 0.1λ.

Fig. 10. In the range of 0 ∼ λ/10 and the step of λ/100 for δW . Left: the specific mean
values and the proportions of |δLPS | less than the required 25pm/µrad in the samples of the
four cases versus δW . Right: the specific mean values and maximum values of the optimal
lateral shift εopt versus δW in the case 1.

5. Conclusion

Owing to the tilts and jitters of the spacecraft and angular amplification of the telescope, the
received beam is misaligned and jittered to interference with the local beam. As a result, the
wavefront aberrations of the interfering beams can couple with the jitter and generate the TTL
noise.
In this paper, we first construct the optical model of the phase noise under the two phase

definitions (the AP signal and the LPF signal), when the flat-top beam and the Gaussian beam
interfere in the case of the wavefront tilt, aberrations and eccentricity on the QPD. Then taking
into account the spherical aberration and the coma of Seidel aberrations, we carry out the
relevant analytical computations to obtain the slightly simpler expressions of the phase noises
for the AP signal and the LPF signal, respectively. Go further, we take advantage of the first 25
terms of the Fringe Zernike polynomials for constituting the wavefront aberrations to obtain the
expressions (21a) and (22a) of the coupling coefficients between the TTL noise and aberrations.
Meanwhile, we analytically derive the expression (23) of the optimal lateral shift which can
reduce the coupling degree between the TTL noise and aberrations for the AP signal.
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On the above bases, we implement Monte Carlo algorithm to generate arbitrary 104 samples for
different RMS wavefront aberrations in the range of 0 ∼ λ/10. Finally, we set ω(z) = r0 = 1mm
to estimate the coupling coefficients for the LPF signal, and the AP signals with three different
lateral shifts (zero, random in the range of ±20µm, and the optimal) of the interfering beams
on the detector. And considering Murphy’s law, we optimize the wavefront tilt in the range of
±300µrad to take the maximum values of the coupling coefficients.
The results show that only if the RMS wavefront error is less than λ/20, the mean coupling

coefficients of the LPF signal can be less than the required 25pm/µrad. However, even if the
RMS wavefront error equals λ/10, the mean coupling coefficients of the three kinds of AP signals
are all less than the required 25pm/µrad, and further for the AP signal introducing the optimal
lateral shift, the proportion of the samples fulfilling the requirement can reach 95.4%. Therefore,
we can conclude that the AP signal is a better method of the phase definition than the LPF signal
to suppress the influence of aberration on the TTL noise.
Correspondingly, the Eqs. (22a),(22c) and (22h ∼ 22j) suggest that the TTL noise coupled

with the coma and the trefoil aberrations can be mostly compensated through introducing the
optimal lateral shift. Normally, these aberrations are caused by the lateral alignment errors of the
lens or mirrors in the practical optical systems [19,20]. Definitely, it may be difficult to directly
adopt the above method for the practical space environment because of the random orientation of
pointing jitter, but easy for the ground experiments due to the available orientation of rotating
angle, e.g. the phenomena in the experiment [14].
If the fitted Fringe Zernike coefficients of the wavefront error between the interfering beams

are available, the analytical results in this paper can be used to predict the TTL coupling noise
and calculate the optimal lateral shift between the interfering beams and the QPD to reduce the
TTL noise coupled by wavefront aberrations.
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