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Abstract
Computer simulations have provided a powerful technique in understanding the
fundamental physics and mechanics of adhesion. In this chapter, various
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simulation methods pertaining to adhesion technology are introduced, such as the
molecular dynamics simulations, the quantum mechanics calculations, the molec-
ular orbital method, the density functional theory, and the molecular mechanics
simulations. Besides, some combined methods such as the hybrid quantum
mechanics/molecular mechanics simulations, ab initio molecular dynamics, and
the density-functional-based tight-binding method are reviewed. General features
and routines of these methods as well as the basic theory are described. The
advantages and disadvantages of these methods are compared and discussed.
Each method has the distinctive advantage and is suitable for specific condition.
Some examples are proposed to give the direct perception when investigating
adhesion issues using various simulation methods. All these instances are
expected to be helpful to readers when performing the corresponding simulations
and analyzing of the results.

53.1 Introduction

As hierarchical, multiscale, and complex properties in nature, as shown in Fig. 1,
adhesion is an interdisciplinary subject, which undergoes vast experimental, numer-
ical, and theoretical investigations from microscopic to macroscopic levels. As an
example, adhesion in micro- and nano-electromechanical systems (MEMS/NEMS)
is one of the outstanding issues in this field including the micromechanical process
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Fig. 1 Hierarchical and multiscale nature of adhesion
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of making and breaking of adhesion contact; the coupling of physical interactions;
the trans-scale (nano–micro–macro) mechanisms of adhesion contact, adhesion
hysteresis; and the new effective ways of adhesion control (Zhao et al. 2003).

Computer simulations including quantum mechanics (QM) calculations and
molecular dynamics (MD) simulations have provided a powerful technique in
understanding the fundamental physics of micro- and nanoscale adhesion
(Shi et al. 2005; Yin et al. 2005; Chi and Zhao 2009; Yuan et al. 2009). QM method
has been proven accurate and provided fundamental understanding for a wide
variety of phenomena, including the energy levels of atoms, the band structure of
lattice, and the chemical reaction of the materials. The key rule of the QM is to
establish the Hamiltonians of the system and to solve the many-body Schrödinger
equation (Leach 2001). QM method has the advantage over MD simulations that it
includes the effects of charge transfer, polarization, and bond breaking and forming
from the beginning. However, the QM computation is always expensive. So QM
simulation is employed for the investigation of the chemical reaction in which a few
number of atoms are needed, while MD simulation is well suited for the investiga-
tion of the dynamics process and time-dependent properties for relatively large
systems (Allen and Tildesley 1989). Besides, the molecular mechanics
(MM) simulation method is used to study the conformational transformation of the
system. Due to some drawbacks of classical MD, ab initio MD (AIMD) is proposed
to describe the molecular system dynamic behavior directly from the electronic
structure. The development of the hybrid quantum mechanics/molecular mechanics
(QM/MM) algorithm (Field et al. 1990) is guided by the general idea that an
electronically important region of the system is treated with QM and the remainder
admits a classical description, which combines both merits of QM and MM. The
QM/MM method is a powerful and effective tool to investigate the adhesion issues
such as the polymer interaction with metals. The density-functional-based tight-
binding (DFTB) method is also one of the combined simulation methods which
integrates the density functional theory (DFT) and the tight binding (TB) method. It
should be noted that any one of the aforementioned methods has both advantages
and disadvantages. One should pay extra attention when choosing a method before
performing simulations.

53.2 Molecular Dynamics Simulation

Molecular dynamics (MD) is a computer simulation technique with which one can
obtain the time evolution of a system of interacting particles (atoms, molecules,
coarse-grained particles, granular materials, etc.). It was first introduced to study the
interactions of hard spheres by Alder and Wainwright in the late 1950s (Alder and
Wainwright 1959). With the rapid developments of the computer technology, MD
simulations have become a powerful technique and are widely used in the study of
proteins and biomolecules, as well as in materials science. This method is now
routinely used to investigate the structure, dynamics, and thermodynamics of
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biological molecules and their complexes addressing a variety of issues including
tribology and adhesion (Bharat 2004).

53.2.1 Basic Theory

The basic idea of the MD simulations is to generate the atomic trajectories of a
system of N particles by numerical integration, of a set of Newton’s equations of
motion for all particles in the system

mi
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@t2
¼ F

!
i (1)

where Fi is the force exerted on particle i, mi is the mass of particle i, and ri is its
current position. The force can be derived from the gradient of the potential energy
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is the empirical interaction potential, depending on

the position of the N particles. Given certain boundary conditions, as well as an
initial set of positions and velocities, which are referenced as the initial condition, the
equations of motions for a specific interatomic potential can be solved and then the
information including atomic positions and velocities generated. One may have an
interest in the conversion of this microscopic information to macroscopic observ-
ables such as pressure, energy, temperature, etc., which requires statistical mechan-
ics. In contrast with the Monte Carlo method, MD is a deterministic technique: The
subsequent time evolution is in principle completely determined. Two basic assump-
tions of the MD simulations are: (i) The motions of all the particles obey the classical
Newton’s laws of motion, and (ii) the interactions between any pair of the particles
satisfy the superposition theorem.

To summarize, the highly simplified description of the MD simulation algorithm
is illustrated in Fig. 2.

53.2.2 Force Fields

In a MD simulation, a force field which includes the functional form and parameter
sets needs to be specified in order to describe the interaction between atoms and
molecules, which is also called the potential energy of a system of particles. Force
field functions and parameter sets are derived from both experimental work and
high-level quantum mechanical calculations. Most force fields are empirical and
consist of a summation of bonded forces associated with chemical bonds, bond
angles, bond dihedrals, out-of-plane bending, and nonbonded forces associated with
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van der Waals forces and the Coulomb forces. The most commonly used functional
forms are

U ¼ U nobond þ U bond þ U angle þ U dihedral þ U improper þ U elec (3)

Van der Waals interaction can be expressed as the best well-known
Lennard–Jones (LJ) 12–6 function (Jones 1924),

Unobond ¼ 4e
σ

r

� �12
� σ

r

� �6� �
(4)

where e is the depth of the potential well, σ is the distance at which the interatom
potential is zero, and r is the distance between atoms. In a MD simulation, the
truncation schemes are always adopted. Here, we introduce the simplest one in
which the potential is discontinuous at r = rc

U nobond rð Þ ¼ Unobond rð Þ � Unobond rcð Þ, r < r
0 r � r

�
(5)

Fig. 2 Simplified flowchart of a standard MD simulation
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The interaction between pairs of bonded atoms has the form of

Ubond ¼ kb r � r0ð Þ2 (6)

where kb is the stiffness of the bond with the usual 1/2 factor included and r0 is the
equilibrium bond distance. The interaction of valence angles in the molecule can be
written as

U angle ¼ ka θ � θ0ð Þ2 (7)

where ka is the stiffness of the bond angle with the usual 1/2 factor included and θ
and θ0 are the bond angle and its reference value, respectively.

The dihedral interaction, also referred to as torsional terms, can be written as

Udihedral ¼ kd 1þ cos nϕ� γð Þ½ � (8)

in which φ is the dihedral angle, γ acts as an equilibrium angle, kd is the force
constant, and n is the multiplicity which gives the number of minimum points in the
function as the bond is rotated through 360�. The improper torsion is used to
describe the out-of-plane bending term. It can be modeled using the form of

U improper ¼ ki ψ � ψ0ð Þ2 (9)

in which ki is the improper torsion force constant and ψ and ψ0 are the improper
torsion angle and its reference value, respectively.

The columbic pairwise interaction is given by

U elec ¼
Cqiqj
r

(10)

where C is an energy conversion constant and qi and qj are the charges on the two
atoms.

The abovementioned potentials can be classified into the empirical ones, which may
not be sufficiently accurate to reproduce the dynamics of molecular systems in some
cases. There are also a wide variety of semiempirical potentials, known as TB poten-
tials, which use QM matrix representation whose elements are obtained through
empirical formulae. For more accurate cases, ab initio QMmethods are used to calculate
the potential energy of the system on the fly, which is the combination of first principles
electronic structure methods with MD based on Newton’s equations of motion.

53.2.3 Boundary Conditions

There are two major types of boundary conditions: isolated boundary condition and
periodic boundary condition (PBC). PBC enables a simulation to be performed using
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a relatively small number of particles in such a way that the particles behave as if it
was infinite in size and there were no edge effects. All the particles are expected to
experience forces as though they were in a bulk solution. When using PBC, particles
are enclosed in a box, and one can imagine that this box is replicated to infinity by
rigid translation in all the Cartesian directions, completely filling the space. In a
two-dimensional (2D) example, each simulation box is surrounded by 8 mirror
images, while in 3D the mirror image number would be 26. The concept of 2D
PBC is illustrated in Fig. 3 . The shaded box (marked as “E”) represents the system
being simulated, while the surrounding boxes are the copies in every detail. Even the
velocities (indicated by the arrows) and the forces are exactly the same. When a
particle leaves the simulation cell, it is replaced by another with exactly the same
velocity, entering from the opposite cell face. So the number of particles in the cell is
conserved. Furthermore, no particle feels any surface force, as these are now
completely removed.

Forces on the primary particles are calculated from particles within the same box
as well as in the image box. In Fig. 3, Rcut is the cutoff radius that is normally applied
when calculating the force between two particles. As one can see, a particle may

A B C

D E Rcut F

G H I

Fig. 3 Illustration of 2D periodic boundary conditions. The shaded box E represents the system
being simulated and the other ones are the images of E
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interact with one in the neighboring cell (which is an image of one of the particles in
the simulation cell) because it is within the cutoff radius. It ignores the equivalent
particle in the simulation cell because it is too far away. In other cases the interaction
comes from a particle in the simulation cell itself. Thus the interaction that is calculated
is always with the closest image. This is known as the minimum image convention.
These operating conditions greatly simplify the set up of a MD program and are
commonly used. Of course, the size of the simulation box must also be large enough. If
the simulation box is too small, a particle may interact with its own image in a
neighboring box, which produces highly unphysical dynamics. The cutoff should be
chosen such that a particle in the primary box does not see its image in the surrounding
boxes. A practical suggestion is that one must always make sure that the box size is at
least two times Rcut along all the directions where PBCs are effective.

There are boundaries existing inherently in some cases, where PBC cannot be
used in computer simulations. Simulations which require no periodic boundaries are
best suited to in vacuo simulations, such as the conformational study of an isolated
polymer molecule. When simulating surfaces, it is particularly useful to apply the
slab boundary conditions in which boundaries are periodic only in X and Y. The
periodic cell in the XY plane can be any parallelogram. The origin of the X and Y
atomic coordinates lies on an axis perpendicular to the center of the parallelogram.
The origin of the Z coordinate is where the user specifies it, but it is recommended at
or near the surface. The correct treatment of boundary conditions and boundary
effects is crucial in MD simulations since it enables macroscopic properties to be
calculated from MD simulations, which use relatively small numbers of particles
(Leach 2001).

53.2.4 Energy Minimization

In MM simulations, energy minimization (also called energy optimization or geom-
etry optimization) methods are used to compute the equilibrium configuration of
biomolecules, liquids, and solids. Moreover, MD simulations focusing on adhesion
always deal with complex molecules or systems, in which the added hydrogens and
broken hydrogen bond network in water would lead to quite large forces and
structure distortion if the MD simulations were started immediately. To remove
these forces, it is often preferable to carry out a short energy minimization on the
conformation before MD simulations. Energy minimization is usually performed by
gradient optimization; atoms are moved so as to reduce the net forces on them. The
minimized structure has small forces on each atom and therefore serves as an
excellent starting point for MD simulations. At that point, the configuration will
hopefully be in local potential energy minimum. This can be done with two
representative methods which involve the steepest descent algorithm and the conju-
gate gradient algorithm. In a steepest descent algorithm, at each iteration, the search
direction is set to the downhill direction corresponding to the force vector (negative
gradient of energy), while in a conjugate gradient algorithm, the force gradient is
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combined at each iteration with the previous iteration information to compute a new
search direction perpendicular (conjugate) to the previous search direction. Typi-
cally, steepest descent method will not converge as quickly as the conjugate gradient
method, but may be more robust in some situations.

53.2.5 Integrators

MD simulation implement involves solving a system of three N second-order
differential equations. Due to the complicated nature of this function, there is no
analytical solution to the equations of motion, and they must be solved numerically.
A standard method for solution of ordinary differential equations such as Eq. 1 is the
finite difference approach. Given the initial conditions and the boundary conditions,
one can solve the equations step by step. The time interval δt is always chosen to be
one or several femtoseconds, which should be significantly smaller than the typical
time taken for a molecule to travel its own length. Many different algorithms fall into
the general finite difference pattern, such as Verlet, leapfrog, velocity Verlet,
Beeman, and predictor–corrector algorithms. When choosing an algorithm to use,
the following criteria should be considered: The algorithm should conserve energy
and momentum. It should be computationally efficient and it should permit a long
time step for integration. To illustrate the principles of the method, the velocity
Verlet algorithm is selected, and its technical details which affect the choice in
practice are discussed.

The velocity Verlet algorithm starts with the position r(t) and the velocity v(t) at
time t and is carried out by repeating these instructions:

1. Calculate a(t),

a tð Þ ¼ @2r tð Þ
@t2

(11)

2. Calculate the position of the particle for the following time step,

r t þ δtð Þ ¼ r tð Þ þ δt � v tð Þ þ 1

2
δt2 � a tð Þ (12)

3. Calculate velocities at mid-step using

v t þ 1

2
δt

� �
¼ v tð Þ þ 1

2
δt � a tð Þ (13)

4. Calculate a(t+δt)

a t þ δtð Þ ¼ @2r t þ δtð Þ
@t2

(14)

53 Molecular Dynamics Simulation and Molecular Orbital Method 1567



5. Complete the velocity move using

v t þ δtð Þ ¼ v t þ 1

2
δt

� �
þ 1

2
δt � a t þ δtð Þ (15)

The velocity Verlet algorithm provides both the atomic positions and velocities at
the same instant of time and for this reason may be regarded as the most complete
form of Verlet algorithm. The advantage of this algorithm is that it requires less
computer memory, because only one set of positions, forces, and velocities need to
be carried at any one time. This convenience is not apparent in the original equations.
Besides, this algorithm conserves energy well even with relatively long time steps
and is numerically stable as well as simple to program.

53.2.6 Analysis of the MD Results

MD simulations provide the means to solve the equations of motion of the particles
and output the desired physical quantities in the term of some microscopic informa-
tion. In a MD simulation, one often wishes to explore the macroscopic properties of a
system through the microscopic information. These conversions are performed on
the basis of the statistical mechanics, which provide the rigorous mathematical
expressions that relate macroscopic properties to the distribution and motion of the
atoms and molecules of the N-body system. With MD simulations, one can study
both thermodynamic properties and the time-dependent properties. Some quantities
that are routinely calculated from a MD simulation include temperature, pressure,
energy, the radial distribution function, the mean square displacement, the time
correlation function, and so on (Allen and Tildesley 1989; Rapaport 2004).

The temperature of the system in MD simulations is calculated by

T ¼ Ek

	 d

2
NkB

� �
(16)

where Ek is the total kinetic energy of all the N particles, kB is the Boltzmann
constant, and d = 2 or 3 is the dimensionality of the simulation. The kinetic energy
of the system is obtained simply by the summation over all the particles,

Ek ¼
XN
i¼1

1

2
miv

2
i , (17)

where mi and vi are the mass and velocity of the ith particle, respectively.The radial
distribution function describes how the atomic density varies as a function of the
distance from one particular atom. It provides a particularly effective way of
describing the average structure of disordered molecular systems such as liquids.
The mathematical formula of the radial distribution function, g(r), is
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g rð Þ ¼ n rð Þ
4πρr2Δr

, (18)

in which n(r) is the mean number of atoms in a shell of widthΔr at distance r and ρ is
the mean atom density. The method needs not be restricted to one atom. All the
atoms in the system can be treated in this way, leading to an improved determination
of the radial distribution function as an average over many atoms.

The mean square displacement is a measure of the average distance a molecule
travels. It is defined as

msd tð Þ ¼ ri tð Þ � ri 0ð Þ½ �2
D E

, (19)

where <. . .> denotes here averaging over all the atoms and ri(t)� ri(0) is the
distance traveled by atom i over some time interval of length t. The slope of
the mean squared displacement versus time is proportional to the diffusion
coefficient D of the diffusing atoms, which is given by the following Einstein
relation,

D ¼ lim
t!1

1

2dt
ri tð Þ � ri 0ð Þ½ �2

D E
, (20)

where d has the same meaning as in Eq. 16.From a MD simulation, time-dependent
properties such as correlation functions can also be calculated. A time correlation
function is defined as

C tð Þ ¼ A 0ð ÞA tð Þh i, (21)

where <. . .> represents an ensemble average and A is the dynamic variable of
interest. Many other properties can be calculated based on the integral of this
correlation function, such as diffusion coefficient D, the shear viscosity η, and the
thermal conductivity λ. The corresponding computing formulas are listed as follows
(Rapaport 2004):

D ¼ 1

dN

ð1
0

XN
i¼1

vi 0ð Þvi tð Þ
* +

dt, (22)

in which d has the same meaning as in Eq. 16.

η ¼ V

3kBT

ð1
0

X
x<y

pxy 0ð Þpxy tð Þ
* +

dt, (23)

where pxy is the component of the pressure tensor (the negative of which is known as
the stress tensor), V is the volume of the simulation box, and T is the temperature of
the system.
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λ ¼ V

3T 2

ð1
0

S 0ð ÞS tð Þh idt, (24)

where

S ¼ 1

V

X
i

eivi þ 1

2

X
i6¼j

rij f ij � vi
� �#

,

"
(25)

and the instantaneous excess energy of the ith atom is

ei ¼ 1

2
miv

2
i þ

1

2

X
i 6¼j

u rij

 �� eh i: (26)

In order to get the surface energy, for example, the surface energy of nanofilm, one
should calculate the energy of nanofilm with PBC and the slab boundary conditions,
respectively.

Then the surface energy can be expressed as

γ ¼ Epbc � Eslab

2A
, (27)

in which Epbc is the total energy of the nanofilm with PBC, while Eslab is that with
slab boundary conditions.

When carrying out a MD simulation, coordinates of the system can be obtained,
which is called the trajectory of the system. It can be displayed graphically and also
used for the analysis. To visualize (and analyze) the snapshots fromMD simulations,
one can use a variety of visualization programs including VMD (Humphrey et al.
1996) and AtomEye (Li 2003). At present there are several high-quality MD codes,
which have been widely used by researchers. Some of them are open-source codes,
such as LAMMPS (Plimpton 1995), GROMACS (Berendsen et al. 1995; Lindahl
et al. 2001), and NAMD (Nelson et al. 1996; Kale et al. 1999). The last two show
extra attention on the simulations of biomolecules. Besides, CHARMM (Brooks
et al. 1983) and AMBER (Pearlman et al. 1995) are not free but are standard and
extremely powerful codes in biology.

For more details of the MD simulations, there are numerous excellent
books available on this subject (Allen and Tildesley 1989; Leach 2001; Rapaport
2004).

53.2.7 Water Models Used in MD Simulations

When dealing with adhesion issues of biomolecules surrounded by water, the solvent
environment always has a significant influence on the properties of the biomolecules.
Different types of the water models are illustrated in Fig. 4.
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The parameters of five representative and commonly used water models in MD
simulations are listed in Table 1. SPC is the short term for “simple point charge,” and
SPC/E denotes the extended simple point charge model with charges on the oxygen
and hydrogen modified to improve the classical SPC water model; the SPC/E model
results in a better density and diffusion constant than the SPC model. “TIP” in
“TIPnP” stands for transferable intermolecular potential, while “nP”means there are
n points used in the corresponding water model.

53.2.8 Examples of MD Implements

Barnacle cement is an underwater adhesive that is used for permanent settlement. Its
main components are insoluble protein complexes. In the following simulations,
36-KD protein which has 38 amino acids and Mrcp-100K protein with 28 amino
acids were chosen to study the adhesion properties of the barnacle cement (Yin et al.
2005). Energy minimization was performed first at the temperature of absolute zero
in order to avoid improper structure of proteins. Then, the temperature of the system
was increased to 300 K by giving every atom a prime velocity according to
Boltzmann distribution, and the system was then thermally equilibrated for a short
period of time. All the MD simulations were performed using GROMACS version

s s sq q q

j
q2

q2

q2

q1 q1 q1
I1 I1

I1
I2

I2

a b c

Fig. 4 Illustration of three types of water model. The red, blue, and green balls represent O and H
atoms and the massless charge, respectively

Table 1 Parameters for water molecular models

Model Type σ (Å) ε kJ mol �1 l1 (Å) l2 (Å) q1 (e) q2 (e) θ� ϕ�

SPC A 3.166 0.650 1.0000 – +0.410 �0.8200 109.47 –

SPC/E A 3.166 0.650 1.0000 – +0.4238 �0.8476 109.47 –

TIP3P A 3.15061 0.6364 0.9572 – +0.4170 �0.8340 104.52 –

TIP4P B 3.15365 0.6480 0.9572 0.15 +0.5200 �1.0400 104.52 52.26

TIP5P C 3.12000 0.6694 0.9572 0.70 +0.2410 �0.2410 104.52 109.47
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3.1. For the proteins, the standard GROMACS amino acid residue topology and
parameters based on the GROMOS-96 force field (Lindahl et al. 2001) were used.
The SHAKE algorithm (Ryckaert et al. 1977) was used to fix hydrogen bonds during
the simulation. Leapfrog algorithm was employed to integrate the Newton’s equa-
tions of motion for all the atoms, with a time step of 1 fs. The temperatures of the
system were always controlled at 300 K, where the week coupling Berendsen
scheme was used to control the temperature.

In this simulation, the proteins were stretched in a water solvent modeled by
TIP3P water molecules (Jorgensen et al. 1983). The dimension of the simulation box
was 40 � 40 � 200 Å with the PBC applied in all the three directions. The proteins
were stretched at a velocity of 0.01 Å/ps.

It was found that there are mainly two regimes of protein deformation: fluctuation
regime and extension regime. In the fluctuation regime, resistance to stretching is
mostly due to the hydrogen bonds, while in the extension regime, the main resistance
force is due to bonded interaction. Moreover, the hydrogen bonds in proteins play an
important role in the adhesive ability of the protein. In Fig. 5, the stretching force
becomes bigger when more hydrogen bonds are breaking and almost every peak of
the force curve corresponds to a trough of the hydrogen bond number curve
(indicated by the arrows). For proteins, the average energy needed to break or
form a hydrogen bond is about 15–30 kJ/mol. It can also be found that the total
energy of the Mrcp-100K protein decreases with the increasing hydrogen bond
number. All of this information shows that in fluctuation regime, hydrogen bonds
are more significant than many other interactions, such as entropic force, van der
Waals force, and so on. With this background knowledge, the efforts directed toward
more detailed understanding of the properties of this adhesive and molecular biology
studies would significantly contribute to progress in the basic field and potential
applications such as biofouling prevention (Khandeparker and Anil 2007).

Since the barnacle is a saltwater organism, 36-KD protein stretching in seawater
was also simulated. Na+ and Cl� ions were also added to the water box with a
concentration of about 17% to simulate the neutral seawater system. Figure 6 shows
that the stretching force of 36-KD protein in seawater is larger than that in water. The
more structural stability of 36-KD protein in seawater is due to two reasons. First, the
electrostatic interaction between proteins and ions in seawater makes the structure
more stable. Second, 36-KD protein forms more hydrogen bonds in seawater in
fluctuation regime (there are 27 hydrogen bonds in seawater while only 19 hydrogen
bonds in water).

Another example of MD simulations was performed to study adhesion and
peeling of a short fragment of single-stranded DNA (ssDNA) molecule from a
graphene surface (Shi et al. 2005). A short homogeneous ssDNA oligonucleotide
containing 8 adenine bases in the B-helix form was placed on top of 3 graphene
layers each containing 928 carbon atoms, with an average separation of about 7 Å.
After energy minimization, the system was equilibrated at 300 K for 400 ps. In order
to simulate the process of peeling ssDNA from graphene, a dummy atom was linked
to one end of the ssDNAwith a constraint force constant of 8 kcal/mol/Å2. Then the
dummy atom was pulled at different peeling angles under a constant pulling velocity,
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with the graphene fixed. All these simulations were performed using the code
CHARMM (Brooks et al. 1983). Figure 7 depicts several snapshots of ssDNA
peeled away from graphene under a constant velocity of 0.1 Å/ps and at a peeling
angle of 90�.
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(Reprinted from Materials Science and Engineering A, 409, Yin J and Zhao YP, Molecular
Dynamics Simulation of Barnacle Cement, 160–166, Copyright (2005), with permission from
Elsevier)
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During the simulation, the pulling force was calculated and was represented in
Fig. 8, which indicated that the pulling force reaches a local maximum value when a
tightly attached DNA base is pulled off the surface and is relaxed before the next
tightly attached base is to be pulled off. The peel-off force can be calculated from the
global maximum of the force profile. Simulations of the peeling process under
various pulling rates (from 0.01 to 0.4 Å/ps) and peeling angles (75�, 90�, 120�,
and 135�) were also performed, with the calculated peel-off forces summarized in
Fig. 9.

The black line in Fig. 9 shows the prediction of the critical peel-off forces using
the homogeneous peeling model (Kendall 1975),

F 1� cos θð Þ þ Fe�
ðe
0
g eð Þde ¼ Δγ (28)
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Fig. 7 Steered MD simulation snapshots of peeling ssDNA from graphene at a peeling angle of 90�

(With kind permission from Springer Science+Business Media: Shi et al. (2005), Fig. 3)
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where F is the peeling force at a peeling angle θ from a substrate, g(e) is used to
describe the elasticity of the polymer, e is the elastic strain along the length of the
chain, and Δγ denotes the work of adhesion between the chain and the substrate.
Considering the work of adhesion between ssDNA and substrate is not constant, the
homogeneous peeling model can be modified as
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adsorbed ssDNA as a function
of simulating time. To
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line) (With kind permission
from Springer Science
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F 1� cos θð Þ þ Fe�
ðe
0
g eð Þde ¼ Δγ0 1� sin

π

l
x

��� ���� �
(29)

where the constant work of adhesion is replaced by a sinusoidal function with l being
the period of modulation of adhesion energy and x denoting the position along the
chain. Equation 29 is the generalized elastic band model, and the corresponding results
are illustrated as the red line in Fig. 9, which are in good agreement with the MD
results. The simulations and models demonstrated that, for the same adhesion energy,
the critical peel-off forces also depend on the peeling angle.

53.3 Molecular Orbital Method

53.3.1 Introduction

Molecular orbital (MO) theory is a method for determining molecular structure in which
electrons are not assigned to individual bonds between atoms, but are treated as moving
under the influence of the nuclei in the whole molecule (Daintith 2004). In this theory,
each molecule has a set of MOs, in which it is assumed that each MO wave function ψ i

can be written as a summation of the following form (Pople and Beveridge 1970):

ψ i ¼
XK
μ¼1

cμiφμ, (30)

where ψ i is a (spatial) MO, ϕμ is one of K atomic orbitals, and cμi is the coefficient.
This method is called the linear combination of atomic orbitals (LCAO) approxi-
mation and is widely used in computational chemistry.

MOs are often divided into bonding, antibonding, and nonbonding orbitals. In a
bonding orbital, the electrons have a higher probability of being between nuclei than
elsewhere. Electrons in the antibonding orbital tend to spend more time elsewhere
than between the nuclei, while electrons in nonbonding orbital prefer to be in deep
orbitals (nearly atomic orbitals) associated almost entirely with one nucleus.

In the MO theory, three necessary conditions must be satisfied when atomic
orbitals combine together to form MOs:

1. The combining atomic orbitals must have the same symmetry about the
molecular axis.

2. The combining atomic orbitals must be able to overlap to the maximum extent to
form MOs, since the greater is the extent of overlap between the combining atomic
orbitals, the greater will be the electron density in the region between the nuclei of the
combining atoms and hence the stronger the bond between them.

3. The combining atomic orbitals must have the same or almost the same energy.
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The first one is the most important, which decides whether these atomic orbitals
can form MOs or not. The other two just affect the combination efficiency.

For diamagnetic species, MO method starts by assigning electrons in pairs to
spatial functions ψ1, ψ2, . . . ψn, which are then used in the construction of a many-
electron wave function as a single determinant (Roothaan 1951; Pople and Bever-
idge 1970; Hehre 1976)

Ψ 1, 2, . . . , 2nð Þ ¼ 1

2n
�

ψ1 1ð Þα 1ð Þ ψ1 1ð Þβ 1ð Þ� � � ψn 1ð Þβ 1ð Þ
ψ1 2ð Þα 2ð Þ � � �

� � �
ψ1 2nð Þα 2nð Þ ψ1 2nð Þβ 2nð Þ� � � ψn 2nð Þβ 2nð Þ

��������

��������
, (31)

where α and β are spin functions. The MOs ψ i are chosen so as to minimize the
total energy of the system, that is, the expectation value of the many-electron
Hamiltonian H,

E ¼
ð
. . .

ð
Ψ 1, 2, :::2nð ÞHΨ 1, 2, :::2nð Þdτ1dτ2 . . . dτ2n, (32)

is in practice written in terms of a linear combination of nuclear centered atomic
functions, as shown in Eq. 30. The coefficients, cμi, in Eq. 30 are obtained at by
solution of the Roothaan equations

X
v

Fμv � eiSμv

 �

cμi ¼ 0, (33)

where Sμν is an overlap integral

Sμv ¼
ð
φμ 1ð Þφv 1ð Þdτ1, (34)

ei is the one-electron energy associated with ψ i, and Fμν is an element of the Fock
matrix

Fμv ¼ Hμv þ
X
λ

X
σ

Pλσ μv λσjð Þ μλ vσjð Þ½ �: (35)

Here Hμν is the element

Hμv ¼
ð
φμ 1ð Þ �1=2∇2

 �
φv 1ð Þdτ1 þ

Xnuclei
A

ð
φμ 1ð Þ 1

r1A

� �
φv 1ð Þdτ1: (36)

which describes the motion of a single electron in a field of bare nuclei, and (μv|λσ) is
a two-electron integral
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μv λσjð Þ ¼
ð ð

φμ 1ð Þφv 1ð Þ 1

r12

� �
φλ 2ð Þφσ 2ð Þdτ1dτ2: (37)

The one-electron density matrix, P, is given by

Pλσ ¼ 2
X
i

cλicσi, (38)

where the summation is over the manifold of occupied MOs. Note that the
Roothaan equations are not readily amenable to solution in closed form. This is
simply because the quantity sought (the cμi) appears, disguised as Pλσ, in their
formulation.

53.3.2 Density Functional Theory

The two basic methods in QM calculations are MO theory and density functional
theory (DFT). These two methods, often contrasting, but mostly cooperating, are
different approaches to tackling the electronic problems. MO method is always
adopted by the chemists who think that the MO is expressed as LCAO. The DFT
method is always used to treat infinite periodic systems by the physicists.

DFT is founded on the Hohenberg–Kohn (H–K) theorems (Hohenberg and Kohn
1964), which comes in two parts. The first one states that the ground state properties
of a many-electron system are uniquely functional of the ground state electron
density which depends on only three spatial coordinates. This implies that all
properties of the system are completely determined given only the ground state
density.

The Hohenberg–Kohn Theorem
The second part of the H–K theorem states that the total energy of the ground state of

a many-electron system in an external potentialV ext r
!� �

is a unique functional of the

electron density

E n½ � ¼ F n½ � þ
ð
n r

!� �
V ext r

!� �
d r

!
: (39)

This functional has its minimum (i.e., the ground state energy E0) for the ground

state electron density n0 r
!� �

E0 ¼ E n0 r
!� �h i

¼ minn r
!ð ÞE n½ �: (40)

The functional F[n] is a universal function, independent of the external potential

V ext r
!� �

and the same for all systems.
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Levy gave a particularly simple proof of the Hohenberg–Kohn theorem (Levy
1979): A functional O is defined as

O n r
!� �h i

¼ min
Ψ>!n r

!ð Þj
Ψ Ô
�� ��Ψ� �

, (41)

where the expectation value is found by searching over all wavefunctions, ψ, giving
the density n r

!� �
and selecting the wave function which minimizes the expectation

value of Ô.

F n r
!� �h i

is defined by

F n r
!� �h i

¼ min
Ψ>!n r

!ð Þj
Ψ F̂
�� ��Ψ� �

, (42)

so

F̂ ¼
X
i

� 1

2
∇2
i þ

1

2

X
i6¼j

1

r
!
i � r

!
j

�� �� : (43)

Considering an N-electron ground state wavefunction Ψ0 which yields a density

n r
!� �

and minimizes Ψ F̂
�� ��Ψ� �

, then from the definition of the functional E

E n r
!� �h i

¼ F n r
!� �h i

þ
ð
n r

!� �
V ext r

!� �
d r

!¼ Ψ F̂ þ V ext

�� ��Ψ� �
: (44)

The Hamiltonian is given by F̂ þ V ext, and so E n r
!� �h i

must obey the variational

principle,

E n r
!� �h i

� Eo: (45)

This completes the first part of the proof, which places a lower bound on E n r
!� �h i

.

From the definition of F n r
!� �h i

in Eq. 42, the following is obtained

F n0 r
!� �h i

� Ψ0 F̂
�� ��Ψ0

� �
, (46)

since Ψ0 is a trial wave function yielding n0 r
!� �

. Combining
Ð
n r

!� �
V ext r

!� �
d r

!

with the above equation gives

E n0 r
!� �h i

� Eo, (47)
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which in combination with Eq. 46 yields the key result

E n0 r
!� �h i

¼ Eo: (48)

The Kohn–Sham (KS) Equations
Kohn and Sham derived a coupled set of differential equations enabling the ground

state density n0 r
!� �

to be found. The variational problems of minimizing the energy

functional E n r
!� �h i

can be solved by applying the Lagrangian method of

undetermined multipliers (Hohenberg and Kohn 1964). First, one considers an
energy functional that does not explicitly have an electron–electron interaction
energy term,

Es n r
!� �h i

¼ Ψs n r
!� �h i

T̂ s þ V̂ s

�� ��Ψs n r
!� �h iD E

, (49)

where T̂ s is defined as the kinetic energy of a non-interacting electron gas and V̂ s is
an external effective potential in which the non-interacting electrons are moving.

Obviously, ns r
!� �

¼def n r
!� �

if V̂ s is chosen to be

V̂ s ¼ V̂ þ Û þ T̂ � T̂ s


 �
: (50)

Thus, to find the ground state energy, E0, and the ground state density, n0, the
one-electron Schrödinger equation,

� ℏ2

2m
∇2 þ Vs r

!� �� �
ϕi r

!� �
¼ eiϕi r

!� �
, (51)

should be solved self-consistently with

n rð Þ ¼def ns r
!� �

¼
XN
i

ϕi r
!� ���� ���2: (52)

The effective single-particle potential can be written in more detail as

Vs r
!� �

¼ V r
!� �

þ
ð e2ns r

!0
� �

r
! � r

!0�� �� d3r0 þ V xc ns r
!� �h i

, (53)

where the second term is the so-called Hartree term describing the electron–electron
Coulomb repulsion, while the final term Vxc is an implicit definition of the
exchange–correlation potential. Here, Vxc includes all the many-particle interactions,

which is given formally by the functional derivative VXC r
!� �

¼ δExc n r
!ð Þ½ �

δn r
!ð Þ .
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Since the Hartree term and Vxc depend upon the density n r
!� �

, which depends on

the ϕi, which in turn depends on Vs, the problem of solving the KS equation has to be
done in a self-consistent (i.e., iterative) way. Usually, one starts with an initial guess

for n r
!� �

, then calculates the corresponding Vs, and solves the KS equations for ϕi.

Then, one calculates a new density and starts again. This procedure is then repeated
until the input and output densities satisfy the accuracy.

Exchange–Correlation Functionals
To solve Kohn–Sham equations, the exchange–correlation energy Exc[n] must be
known. However, because of the many-body effects, Exc[n] cannot be derived
exactly. Therefore, certain approximations are required for Exc[n]. In physics, the
most widely used approximation has been the local-density approximation (LDA),
where the functional depends only on the density at the coordinate where the
functional is evaluated,

Exc n½ � ¼
ð
exc nð Þn r

!� �
d3r, (54)

where exc(n) is the exchange–correlation energy per particle of a uniform electron
gas of density n. LDA has yielded valuable quantitative or at least semiquantitative
results, especially for equilibrium structures of molecules and solids.The local spin-
density approximation (LSDA) is a straightforward generalization of the LDA to
include electron spin

Exc n", n#
 � ¼ ð exc n", n#


 �
n r

!� �
d3r: (55)

Highly accurate formulae for the exchange–correlation energy density exc(n", n#)
have been constructed from quantum Monte Carlo simulations of a free electron
model (Perdew et al. 2005).Generalized gradient approximations (GGA) have
yielded substantial improvements over the LDA for binding energies of molecules
and solids as well as for barrier heights of chemical reactions. GGA are still local but
also take into account the gradient of the density at the same coordinate

Exc n", n#
 � ¼ ð exc n", n#, ∇

!
n", ∇

!
n#

� �
n r

!� �
d3r: (56)

Potentially more accurate than the GGA functionals are the so-called hybrid func-
tionals, which have the generic form

Exc n", n#
 � ¼ γEexact

x n r
!� �h i

þ
ð
e0xc n", n#, ∇

!
n", ∇

!
n#

� �
n r

!� �
d3r, (57)

where Eexact
x is the exact exchange energy evaluated with KS orbitals and γ is a

constant between 0 and 1.
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53.3.3 Examples of DFT Calculations

Gas sensors based on metal oxide–semiconductor materials as well as metal-doped
graphene have attracted considerable attention during the past decade. Zinc oxide
(ZnO), tin dioxide (SnO 2), and Al-doped graphene have been chosen as sensing
materials because of their excellent characteristics such as low cost, high sensitivity,
rapid response, and fast recovery. Here two examples are given to show the general
routine of DFT calculations and the analysis of the results.

DFT calculations were employed to explore the gas-sensing mechanisms of zinc
oxide (ZnO) with surface reconstruction taken into consideration (Yuan et al. 2009).
Mix-terminated 10�10ð Þ ZnO surfaces were examined. Simulations of the adsorption
process of various gases, that is, H2, NH3, CO, and ethanol (C2H5OH) gases, on the
ZnO 10�10ð Þ surface, were carried out. All the ab initio calculations were performed
using DFT implemented in the DMol3 program (Delley 2000, 2002). The widely
used GGA with the exchange–correlation functional parameterized by Perdew
and Wang (PW91) was adopted, calculating with restricted spin. Compared with
LDA, GGA will not lead to a strong bonding of molecules. So if the calculated
molecules are adsorbed on the ZnO surface, they will definitely bind in a real system.
However, GGA overestimates binding distance and underestimates binding energy
consequently.

A plane-wave basis set with an orbital cutoff distance of 3.9 Å was used.
All-electron calculations and a double numerical basis set with polarization func-
tions (DNP) were employed. Wave function integration in reciprocal space was
performed via fine grid sampling of k points with a separation of 0.02 Å �1. For
the calculation of the density of states (DOS), a 5� 8� 3 Monkhorst–Pack grid was
used. Charge transfer was calculated based on the Mulliken population analysis
(MPA) (Mulliken 1955).

The ethanol (C2H5OH) molecule adsorption on the ZnO surface is shown in
Fig. 10 . When an ethanol molecule approaches the ZnO surface, electronic

Fig. 10 Optimized
configuration of the ethanol
molecule on the ZnO surface.
Blue line represents hydrogen
bond between H and O atoms
(Reprinted with permission
from Yuan et al. (2009).
Copyright 2009 American
Chemical Society)
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interactions among nuclei and electrons disturb the initial configuration, inducing
adsorption of the gas molecule on the ZnO surface. After the surface reconstruction
induced by adsorption, energy-level splitting is found (Fig. 11a). Band structure is
deflexed because of charge transfer (Fig. 11b).
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Fig. 11 Band structure and PDOS of the (a) reconstructed and (b) ethanol–molecule-adsorbed
ZnO surface (Reprinted with permission from Yuan et al. (2009). Copyright 2009 American
Chemical Society)
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Based on these calculations, two gas-sensing mechanisms were proposed and
revealed that both surface reconstruction and charge transfer result in a change of
electronic conductance of ZnO. When the gas molecule is adsorbed upon the surface,
the electronic conductance of the gas sensor changes because of the joint effect of
these two mechanisms. These results show good accordance with existing experi-
ments and could help in understanding the sensing mechanism of ZnO-based gas
sensors.

To search for a high sensitivity sensor for formaldehyde (H2CO), the adsorp-
tions of H2CO on the intrinsic and Al-doped graphene were investigated using
DFT calculations (Chi and Zhao 2009). Structure optimizations as well as the
corresponding total energy calculations were performed based on the GGA func-
tion with the Perdew–Burke–Ernzerhof (PBE) correction (Perdew et al. 1996). The
DFT semicore pseudopotential (DSPP) core treatment (Delley 2002) was
implemented for relativistic effects, which replaces core electrons by a single
effective potential. To ensure that the results of the calculations are comparable,
identical conditions were employed for the isolated H2CO molecule, the graphene
substrate, and also the adsorbed graphene system. The k-point was set to 6� 6 � 1
for all slabs, which brought out the convergence criterion of 10–5 a.u. on energy
and electron density and that of maximum force of 0.002 Ha/Å. Self-consistent
field procedure was carried out with a convergence criterion of 10–6 a.u. on energy
and electron density. All DFT calculations were performed using DMol3 code
(Delley 1990, 2000).

In these calculations, the PBCs were applied to the supercells. Avacuum width of
16 Å above was constructed, which ensured that the Z-axis of the periodic supercell
(perpendicular to the graphene layer) was large enough so that there was no
interaction between graphene sheets of adjacent supercells. Optimized configura-
tions of intrinsic graphene and Al-doped graphene are illustrated in Fig. 12.The
binding energy of the adsorbed systems is defined as

Eb ¼ Etotal � Esheet þ EH2COð Þ, (58)

where the Etotal, Esheet, and EH2CO denote the total energy of intrinsic or Al-doped
graphene adsorbed system, isolated graphene or Al-doped graphene, and a
H2CO molecule, respectively. A negative Eb corresponds to a stable adsorption
structure.

To investigate the changes of electronic structures in graphene caused by the
adsorption of H2CO molecule, electron density difference Δρ is calculated, which
illustrates how the charge density changes during this adsorption process. Δρ is
defined as

Δρ ¼ ρtotal � ρsheet þ ρH2CO


 �
, (59)

in which ρtotal, ρsheet, and ρH2CO denote electron density of the intrinsic or Al-doped
graphene adsorbed system, graphene or Al-doped graphene, and a H2CO molecule
for the adsorbed system, respectively. The electronic density differences of energy
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favorable intrinsic and Al-doped graphene with H2CO adsorptions are shown in
Fig. 13. The net electron transfer from the Al-doped graphene to H2CO is four times
more than that in the intrinsic grapheme, which indicates that the Al-doped graphene
can be used as a novel sensor for the detection of H2CO molecules.

53.4 Hybrid Quantum Mechanics/Molecular Mechanics
(QM/MM) Methods

As stated above, MD simulations and QM calculations show enormous capacity in
handling problems in adhesion. However, in many cases, current force fields used in
MD as well as MM simulations are not sufficiently accurate to reproduce the
dynamics of molecular systems. At the same time, QM methods cannot deal with
large systems because the simulations will be time-consuming or even become
impossible. The simulation techniques have been expanded to combine the strength

Fig. 12 Optimized most stable configurations of (a) intrinsic graphene and (b) Al-doped graphene
(Reprinted from Chi and Zhao (2009), Copyright (2009), with permission from Elsevier)
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of both MM simulations and QM calculations, which is called the hybrid quantum
mechanics/molecular mechanics (QM/MM) approach.

53.4.1 Basic Theory

The basic strategy for the QM/MM method lies in the hybrid potential in which a
classical MM potential is combined with a QM one (Field et al. 1990). The energy of
the system, E, is calculated by solving the Schrödinger equation with an effective
Hamiltonian, Heff, for the mixed quantum mechanical and classical mechanical
system

Heffψ r,RQM,RMM


 � ¼ E RQM,RMM


 �
ψ r,RQM,RMM


 �
, (60)

where ψ is the electronic wave function of the quantum system, r is for the
coordinates of the electrons, RQM is the position of the quantum mechanical nuclei,
and RMM is for the molecular mechanical nuclei. The wave function, ψ, depends
directly on r, RQM, and RMM. The effective Hamiltonian for the mixed quantum and
classical system is divided into three terms (Lyne et al. 1999)

H eff ¼ HQM þ HMM þ HQM=MM, (61)

where HQM is the contribution from complete QM section (see QM in Fig. 14), HMM

is from the pure MM section (see MM in Fig. 14), and HQM/MM is the interaction
between the QM and MM portions of the system. Similarly, the total energy of the
system calculated by solving the Schrödinger equation can likewise be divided into
three component parts

Fig. 13 The electronic density difference isosurfaces for (a) H2CO–graphene system and (b)
H2CO–Al-doped adsorbed systems with energy preferred configuration (graphene systems). The
blue region shows the electron accumulation, while the yellow region shows the electron loss
(Reprinted from Chi and Zhao (2009), Copyright (2009), with permission from Elsevier)
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Eeff ¼ EQM þ EMM þ EQM=MM: (62)

However, the pure MM term can be removed from the integral because it is
independent of the electronic positions. So another way to express the total energy
of the system is as the expectation value of Heff

Eeff ¼ ψ jHQM þ HQM=MM

��ψ� �þ EMM, (63)

where HQM is the Hamiltonian that can be obtained by either semiempirical,
Hartree–Fock, or DFT. EMM is an energy calculated based on a classical force
field. HQM/MM is the key term which involves combinations of the interaction
of the MM atom “cores” with the electron cloud of the QM atoms, the
repulsion between the MM and QM atomic cores, as well as the LJ term. The
form of HQM/MM is

HQM=MM ¼ �
X
iM

qM
riMj j þ

X
A

qMZA

RAMj j þ
X
AM

4eAM
R12
min, AM
R12
AM

� 2
R6
min,AM
R6
AM

 !
(64)

where qM is the atomic point charge on the MM atom, riM is the QM electron to
MM atom distance, ZA is the core charge of QM atom A, RAM is the QM atom A to
MM atom M distance, and εAM and Rmin,AM are the LJ parameters for QM atoms
A interacting with MM atom M. The critical term that allows the QM region to
“see” the MM environment is the first term in the right side of Eq. 64 where the
summation is over all interactions between MM atoms and QM electrons. The
second term in Eq. 64 represents the core electron interaction between MM and
QM atoms and is incorporated into the QM Hamiltonian explicitly. The van der
Waals interaction between QM part and MM part is described by the third term in
Eq. 64. As the integrated molecular orbital/molecular mechanics (IMOMM)
method (Maseras and Morokuma 1995) is taken, the introduction of new param-
eters is avoided and the number of geometry variables is reduced as much as
possible.

Link-atom

QM part

MM part

Fig. 14 An example of how
to partition a molecule into
QM and MM regions. The
figure shows a histidine, in
which all the atoms in the
imidazole ring are taken as
QM atoms, while the
remaining atoms are treated as
MM atoms (Reprinted from
Yang and Zhao (2006),
Copyright (2006), with
permission from Elsevier)
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53.4.2 QM/MM Boundary Treatments

An important aspect of the formation of a hybrid potential is how to handle the
covalent bonds between atoms that are described with different potentials, that is, the
bonds existing at the interface of the QM and MM regions. Several methods have
been proposed to deal with this problem, including the simple link-atom method
(Field et al. 1990), the sophisticated hybrid-orbital technique (Ferre et al. 2002), and
the pseudo-bond approach (Zhang et al. 1999).

In many situations, it is necessary to split a molecule between QM and MM
regions, which means that there are covalent bonds between QM and MM atoms.
These cleavage bonds must be treated in some way because the presence of broken
bonds and unpaired electrons at the boundary of the QM region dramatically changes
the electronic structure of the QM subsystem. As long as the QM and MM atoms are
in different molecules, no such problem arises.

Here, the classical link-atom method was introduced as a typical example. The
link atoms as shown in Fig. 14 are treated exactly like QM hydrogen atoms in the
QM/MM scheme, and they are invisible to the MM atoms because no interactions
between the link atoms and the MM atoms are calculated. Each bond that crosses the
boundary between the two regions must be defined. The link atom should be placed
along the bond between the QM and MM atoms. The exact distance does not matter
since the position of the link atoms is optimized in subsequent calculations. For the
IMOMM scheme, the introduction of link atom is modified to study organometallic
reactions by subtracting the classical MM interactions with the real QM system.

53.4.3 Examples of QM/MM Simulations

The hybrid QM/MM method is employed to simulate the His-tagged peptide
adsorption to ionized region of nickel surface. “His-tags” are used in nano-
mechanical systems and biosensors due to their functional side chains. Noji et al.
exploited the high affinity of polyhistidine-tagged β-subunits for Ni-nitrilotriacetate
(NTA) to immobilize an F1–ATPase α3β3γ subcomplex on a solid surface as shown
in Fig. 15 (Noji et al. 1997). His-tags were used by Montemagno et al. (Montemagno
and Bachand 1999) to attach a biomolecular motor, F1–ATPase, to metal substrates,
and they have tested the binding strength of a 6�His-tagged synthetic peptide
attached to Au-, Cu-, and Ni-coated coverslips.

The 6�His-tagged synthetic peptide attachment to the ionized region in Ni
substrate was studied with the peptide chelating with Ni ion considered (Yang and
Zhao 2006). GAMESS (Schmidt et al. 1993) and TINKER (Ponder and Richards
1987) were employed for the QM/MM calculation of the His-tagged peptide chelat-
ing with Ni ion. GAMESS/TINKER can perform the IMOMM scheme (Maseras and
Morokuma 1995), which spearheads the entry of hybrid QM/MM approaches in
computational transition metal chemistry. In the QM/MM calculation, the imidazoles
on the side chain of the peptide and the metal ion with several neighboring water
molecules are treated as a QM part calculated by “GAMESS,” and the remaining
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atoms are treated as a MM part calculated by “TINKER.” The IMOMM method is
used to deal with the QM part with the transitional metal.

All the geometry parameters and the binding energy are listed in Table 2. The
QM/MM simulation results show that the 6�His-tagged peptide can form the most
stable structure with high binding energy which is also confirmed experimentally.
And the optimized structure data are obtained satisfactorily. The results obtained for
the peptide–Ni chelate complexes also show that the present QM/MM approach is
reasonable and effective. Such delicate properties as conformational changes and
binding energy are modeled in the QM/MM calculations. It is shown that the
QM/MM method can be used to probe aspects of metal chelate complexes from
both fundamental and practical aspects.

Actin filament

Streptavidin

F1-ATPase

Histidine
tags

HRP

Ni-NTA

α
α

γ

β

β

Fig. 15 Immobilization of
F1–ATPase α3β3γ
subcomplex on solid surface
by polyhistidine interaction
with Ni-NTA (Noji et al.
1997) (Reprinted from Yang
and Zhao (2006), Copyright
(2006), with permission from
Elsevier)

Table 2 Binding energy and structural data for the optimized chelate structures

ΔE D (N–Ni) D (C1–L) D (C1–C2) D (Ni–O) ∠(N–Ni–N)

Two His-tags chelate with Ni2+

HF(6-31+G**)/MM �231.626 2.056 1.081 1.347 1.962 86.43

B3LYP(6-31+G**)/MM �247.913 2.065 1.083 1.350 1.969 89.62

Four His-tags chelate with Ni2+

HF(6-31+G**)/MM �314.077 2.083 1.072 1.341 1.973 93.38

B3LYP(6-31+G**)/MM �326.062 2.090 1.075 1.342 1.976 93.40

Six His-tags chelate with Ni2+

HF(6-31+G**)/MM �382.331 2.092 1.071 1.345 – 91.60

B3LYP(6-31+G**)/MM �399.462 2.095 1.076 1.348 – 92.02

Experiment – 2.112 – 1.355 2.065 93.50
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D is the distance, ∠ is the angle (donor atom-Ni2+-donor atom), and L represents
the link atom. All distances are in Angstrom, and energy in kJ/mol. Experimental
data comes from references (Arici et al. 2002; Petrenko et al. 2004). “Reprinted from
Materials Science and Engineering A, 423, Yang ZY and Zhao YP, QM/MM and
classical molecular dynamics simulation of His-tagged peptide immobilization on
nickel surface, 84–91, Copyright (2006), with permission from Elsevier”

In another example, the hybrid QM/MMmethod is applied to study the hydration
phenomena of dipalmitoylphosphatidylcholine (DPPC) headgroup (Yin and Zhao
2009). In geometry optimization, the headgroup and its bound water molecules are
treated at QM level of theory and the hydrocarbon chain with MM method (Fig. 16).
All the geometry optimizations were carried out using the hybrid QM/MM method
without any constraints, and hydrogen atoms were used as link atoms. First the
hybrid QM/MM method was demonstrated to be both accurate and efficient enough
to describe the conformations of DPPC headgroup. Then, both monohydration and
polyhydration phenomena were investigated. In monohydration, different water
association sites were studied. Both the hydration energy and the quantum properties
of DPPC and water molecules were calculated at the DFT level of theory after
geometry optimization. The binding force of monohydration was estimated by using
the scan method. In polyhydration, more extended conformations were found and
hydration energies in different polydration styles were estimated.

53.5 Ab Initio Molecular Dynamics (AIMD)

Classical MD is based on the established force fields or predefined interatomic potential.
It is a powerful tool to serve problems of adhesion. The heart of any molecular
dynamics scheme is the question of how to describe the interatomic interactions
which always adopt some suitable functional forms to approximate the two-body,
short-range or long-range interactions. The parameters used in the functions are always
fitted by the experimental data or the ab initio simulation in some given condition.

Water
molecule

MM region QM region
Fig. 16 The partition of
DPPC and hydrated water
molecules into QM and MM
regions (Reprinted from Yin
and Zhao (2009), Copyright
(2009), with permission from
Elsevier)
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Payne et al. listed some drawbacks of traditional MD in a review paper (Payne et al.
1992). Due to these reasons, AIMD has been established to describe the molecular
system behavior directly from the electronic structure. In this way, the electronic
system always keeps in the ground state and the dynamical behaviors of the system
are all in the Born–Oppenheimer (BO) surface which is always called BOMD. Car
and Parrinello introduced a new scheme (Car and Parrinello 1985) for AIMD that
can perform finite temperature simulations and also did not involve electronic self-
consistency at every MD step. Car–Parrinello molecular dynamics (CPMD) was
the first to show that AIMD was possible. Some work has been performed using
CPMD (Zang et al. 2009). The codes have been also utilized a lot in adsorption
research. Mischler et al. used the CPMD to simulate the water adsorption on
amorphous silica surfaces and the reaction of the water and the silicon (Mischler
et al. 2005). The simulation procedures reveal that CPMD can perform a reaction
dynamically.

CPMD has combined first principles electronic structure methods with MD based
on Newton’s equations of motion. Ground state electronic structures were described
according to DFT in plane-wave pseudopotential framework.

In CPMD, considering the parameters {ψ i}, {RI}, {αv} in energy function,

E ψ if g, RIf g, ανf g�½ ¼
X
i

ð
Ω
d3rψ	 rð Þ � ℏ2=2m


 �
∇2

 �
ψ i rð Þ

þ U n rð Þ, RIf g, ανf g�,½ (65)

are supposed to be time dependent, the dynamical Lagrangian,

L ¼
X
i

1

2
μ

ð
Ω
d3r _ψ ij j2 þ

X
I

1

2
MI _R

2
I þ

X
v

1

2
μv _α

2
v � E ψ if g, RIf g, ανf g�½ , (66)

was introduced, where the {ψ i} are subject to the holonomic constraints:

X
i

ð
Ω
d3rψ	

i r, tð Þψ j r, tð Þ ¼ δij: (67)

In Eqs. 65 and 66, {ψ i} are orbitals for electrons, {RI} indicate the nuclear coordi-
nates, {αv}are all the possible external constraints imposed on the system, ψ*(r) is
the complex conjugate of wave function ψ(r), ℏ is the reduced Planck constant, m is
the mass of electron, and n rð Þ ¼

X
i

ψ i rð Þj j2 is the electron density; the dot indicates
time derivative, MI are the physical ionic masses, and μ, μν are arbitrary parameters
of appropriate units. Then, the equations of motion can be written as:

μ €ψ i r, tð Þ ¼ � δE

δψ	
i r, tð Þ þ

X
k

Λikψ k r, tð Þ, (68)
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MI €RI ¼ �∇RI E, (69)

μv €αv ¼ � @E

@αv

� �
, (70)

where Λik are Lagrangian multipliers introduced in order to satisfy the constraints in
Eq. 67. Then the equation of kinetic energy

K ¼
X
i

1

2
μ

ð
Ω
d3r _ψ ij j2 þ

X
I

1

2
MI _R

2
I þ

X
v

1

2
μv _α

2
v , (71)

is obtained (Car and Parrinello 1985). In fact, μ, μν have the dimensions of the mass
which are called “fictitious mass.” In this scheme, the wave functions are treated as
“particles” in which “mass” are μ. When a suitable μ is selected, the thickness of the
BO surface can be controlled and the simulations are still close to the exact BO
surface. So, the ground state wave function obtained by the initial configuration of
the nuclei will stay close to its ground state during time evolution. Based on the
technique mentioned, CPMD extends MD beyond the usual pair-potential approx-
imation. In addition, it also extends the application of DFT to much larger systems.

Apart from the aforementioned combined simulation methods, the density-
functional-based tight-binding (DFTB) method has been developed. DFTB is an
accurate semiempirical method explicitly derived from Kohn–Sham DFT by making
an expansion of the total energy functional around a reference charge density, which
has been shown to be capable of producing reliable molecular structures and energy
at a significantly reduced computational cost.

53.6 Conclusion

In this chapter, various simulation methods involving the adhesion technology have
been reviewed, such as the MD simulations, the QM calculations, the MO method,
the DFT calculations, the hybrid QM/MM simulations, the AIMD simulations, and
the DFTB method. For each method, the basic theory and the general routine were
described. Several representative examples of applications in the investigations of
adhesion properties are given. Any one of the aforementioned methods has both
advantages and disadvantages. Brief comparisons are listed in Table 3. To make a
choice of the simulation method depends on the desired properties that one intends to
obtain, while the computational capabilities should also be taken into account
(as shown in Fig. 17).

Computer simulation forms a bridge between the molecules and the continuum
mechanics of adhesion due to its multiscale, hierarchical, and complex nature
(Kendall 2001). It is possible to speculate that the combined simulation methods
with more efficiency and flexibility are still required and will lead the future
directions of the simulation methodology in this fascinating field.
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