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Mathematics and mechanics are twins and were concurrently develop-
ing in history. In the times of classic mechanics, mathematicians always
were great masters of mechanics. The progresses of aerodynamics with
many great mathematicians and applied mathematicians involved fur-
ther demonstrated the close link between two disciplines in the 20th

century. The present article is primarily focused on the advances of
aerodynamics in the period of aeronautical engineering from low to hy-
personic speeds. Correspondingly, singular perturbation theories, hodo-
graph method, mixed type and hyperbolic PDE, shock capture scheme
in CFD etc. were developing. The persuasive facts became additional
paradigm of excellent combination of mathematics and mechanics. Fi-
nally, we foresee potential significant directions in future compressible
flow study and expect further collaboration of scientists in mathematics
and mechanics communities.

Keywords: Perturbation method, Hodograph, hyperbolic and mixed
type equation, Shock capture scheme.

The success of the first mankind’s powered flight by Brother Wright in 1903

was an epoch-making event, marking the start of aeronautics and aerospace

era. However, engineers were immediately confronting a challenging issue

of how to scientifically design an aircraft. Since the famous D’Alemberg

paradox implies that the drag of a vehicle based on ideal fluid assumption

vanishes and people also had little knowledge about the lift of a wing. The

difficulty then was that the Navier-Stokes equation for viscous fluids usually

lacks analytical solution even for a simple airfoil and was also unable to be

numerically solved prior to the advent of advanced computers (Li 1995).
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1. Boundary Layer and Wing Theories

Prandtl (1904) at the Department of Applied Mechanics, Gottingen Uni-

versity of Germany experimentally discovered in a water flume that the

effects of viscosity are merely restricted to a very thin layer adjacent to

the solid wall for large Re flows and then proposed in time the bound-

ary layer theory for drag estimation. Considering great contribution in

enhancing understanding of viscous flows and remarkably promoting the

progress of aeronautical engineering, mechanics community unanimously

regarded Prandtl’s BL theory as a milestone of modern mechanics. As for

lift, Rayleigh was the earliest to explain Magnus effect by additional circu-

lation around a body, which can be determined by Kutta (1902)–Joukowski

(1907) condition, in an incoming flow with L = ρU∞Γ. Although Lanch-

ester initiated the study of lift for a wing of finite span, Prandtl (1918) was

the first to present its mathematical theory. The vortex system consist-

ing of bound vortex at the wing surface and free vortex trailing from wing

tip and extending downstream was assumed responsible for downwash and

lift generation. Prandtl furthermore found that the wing of elliptic eddy

distribution has the minimal induced drag.

As a matter of fact, both BL and wing theories belong to the category

of singular perturbation (Van Dyke 1964, Li & Zhou 1998). The boundary

layer approach dealing with a DE with a small parameter in the high-

est derivative term was broadly applied and extended known as Matched

Asymptotic Expansion Method, which enormously enriched the contents of

applied mathematics.

Since then people witnessed the rising of aviation industry manufactur-

ing varieties of commercial and military aircrafts at the flight speed of a few

hundred km/h. Under these circumstances, the research of compressible

flows was put on agenda.

We may usually divide compressible flows into the following regimes:

(1) subsonic flows mean that the density variation can no longer be ne-

glected; (2) transonic and supersonic flow regime is characteristic of the

appearance of shock waves and aerothermodynamic effects in the flow field;

(3) hypersonic flow regime should consider aerothermochemistry effects due

to internal freedom excitation (Von Karman 1963).

2. Subsonic and Transonic Flows

As you know, the relative variation of density in an isentropic flow is

proportional to M2, where M denotes Mach number. People considered
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compressibility effects firstly with the help of perturbation theory when a

thin or slender vehicle flying at low Mach number is concerned with. Then,

the drag and lift of a wing and slender body at small angle of attack can

be estimated theoretically.

However, as the speed of an aircraft is growing to 700 ∼ 800 km/h

when the disturbance is no longer negligibly small, the air flow will obey a

nonlinear potential equation like:

(
1− φ2x

a2

)
φxx − 2

φxφy
a2

φxy +
(
1− φ2y

a2

)
φyy = 0,

which turns out sufficiently difficult to solve. The most effective approach

in two dimension cases is the hodograph method by virtue of exchanging

the positions of dependent and independent variables. For gas jet problem,

Chaplygin (1904) derived a hodograph equation in term of stream func-

tion ψ with the module q and argument θ of velocity vector taken as new

independent variables:

q2ψqq + q(1 +M2)ψq + (1 −M2)ψθθ = 0,

which is evidently linear and then the superposition principle can be applied

again. Of course, the difficulty now is how to find a counterpart in the

physical plan corresponding to the solution in the velocity plan. Anyway,

we can list some of solved problems by this approach (Kuo 1954):

1) Ringleb solution representing a compressible flow turning 180◦ around
a flat plate;

2) Subsonic plane jets;

3) Subsonic flows around an elliptic airfoil with or without rotation;

4) Karman-Tsien formula relating pressure coefficients for compressible

and incompressible flows around an airfoil as an effective design tool in

aeronautical engineering at that time (Von Karman 1941).

When looking at the solutions above, people found that the continuous

mixed subsonic and supersonic flow can coexist with local maximum Mach

number Mmax = 2.5 for Ringleb solution and Mmax = 1.25 and 1.22 for

subsonic flows M∞ = 0.6 and 0.7 around an elliptic airfoil of thickness

0.6 (Kuo 1953). Such kind of mixed subsonic and supersonic flows can be

maintained until shock waves appear. Therefore, the study of typical mixed

type PDE, namely, the Tricomi equation

φηη − ηφξξ = 0,

was used to solve transonic flows around a wedge or in the nozzle.
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In reality, some kind of discontinuity may appear in unsteady compress-

ible flows as well as in the mixed supersonic and subsonic flow field. The

physical mechanism for a shock wave to emerge is attributed to the accumu-

lation of compressible disturbance. On the other hand, the mathematical

cause of discontinuity is the occurrence of limiting lines when the Jacobi

determinate of hodograph transformation vanishes. As a result, Tsien and

Guo defined the Mach number for sonic region first to appear as the lower

critical Mach number, whereas they called the Mach number for shock wave

to occur as the upper critical Mach number. Actual shock waves tend to

occur at the Mach number between lower and upper critical Mach num-

bers due to flow instability when a flow transit from supersonic to subsonic

speed.

When there is a shock wave in the flow field, potential assumption

wouldn’t be justified any longer because isentropic and irrotational condi-

tions break down. People turned to examine quasi-linear hyperbolic equa-

tion and its solution. Actually, Riemann problem describing the evolution

of an initial step discontinuity in one dimensional air can be regarded as

the earliest study on compressible flows. Courant & Friedrichs (1948) made

a comprehensive summary on the research of two categories of flows with

discontinuity, namely one dimensional unsteady flow and two dimensional

transonic or supersonic flows. Their classic book dealt with propagation

of rarefied and compressible waves, the formation of shock waves, and re-

flection of gas dynamic waves from a free surface or solid wall (including

regular and Mach reflection), wave-wave interaction etc.

Gu et al. (1961, 1962, and 1963) mathematically examined initial or

boundary value problems for hyperbolic equation system of 1+1 or 2 di-

mensions with 3 dependent functions. By reducing to an integral equa-

tion, their uniformly convergence and thus the existence of local solution

were proved. The results were applied to one dimensional, cylindrically or

spherically symmetric gas motions driven by a piston, flood evolution in a

river and two dimensional supersonic flows. The proposed successive ap-

proximate method may as well serve as an effective tool to find solutions.

Friedrich’s positive symmetric theory (1958) for mixed type DE was further

extended to DE of higher dimension by Gu.

3. Compressible Viscous Flows

As far as skin friction and heat transfer are concerned, we have to give

up the assumption of ideal gas and employ compressible boundary layer
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theory for viscous gases, the complexities of which came from apparent in-

crement in internal energy accompanied by density and viscosity variations

in thickened BL (Tsien 1938).

In order to simultaneously solve both momentum and energy equations

effectively based on the transformation method, people at first handled

compressible flows around a flat plate under the assumption:

μ∞T, and ρμ = C

for perfect gas throughout the boundary layer. If the Dorodnitsyn–Howarth

transformation is applied, we are able to derive an ODE system correspond-

ing to them with similarity solutions as below:

f ′′′ + ff ′′ = 0

g′′ +Prfg′ +
(γ − 1)M2∞

4
Prf ′2 = 0.

Obviously, f satisfies the Blasius equation and g as the solution of an

inhomogeneous linear equation can be explicitly expressed in terms of f . In

this way, the skin friction and wall temperature of compressible boundary

layer over an insulated flat plate can be given as:

Cf =
0.664√
Rex

√
C,C = (1 + 0.36(γ − 1)M2

∞
√
Pr)−(1−ω), ω = 0.7 ∼ 0.9

Tw = T∞(1 +
γ − 1

2
M2

∞
√
Pr).

That is, the friction coefficient is a bit smaller than the value of incompress-

ible one and the recovery temperature at the wall is smaller than stagnation

one at moderate Mach number for air, where Pr number represents the ra-

tio of viscous and heat diffusions. In the same way, we are able to solve the

problem at an isothermal plate. It is easy to understand that the recovery

temperature for insulated plate or peak temperature for isothermal plate

is higher for media with larger Pr number. Since the momentum equation

and the energy equation take the similar form, analogy theory may help us

to deduce some very useful arguments such as the Reynolds analogy relat-

ing expressions of velocity and temperature profiles and coefficients of heat

transfer and skin friction: St = 0.5CfPr
2/3 (Schlichting 1950)

In the days of breaking through “sonic barrier”, wind tunnel tests re-

vealed that the chief criminal of transonic flight failure was attributed to

the occurrence of shock at the surface of an airfoil. And then, scientists

paid attention to the critical influences of a shock on its aerodynamic per-

formances to answer how aerodynamic stall took place. Although there
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were solutions about regular and Mach reflections of an incident shock,

they weren’t consistent with experiments. Consequently, the interaction

between shock wave and boundary layer became the frontier in aerody-

namics at that time.

Further including viscous and heat transfer effects based on previous

studies, Kuo (1953) assumed a potential outflow with pressure disturbance

and a viscous inner layer with proper velocity profile. The momentum

integration method gave overall tendency in pressure variation and sepa-

ration, while the approach of differential equation provided the details of

flow pattern in the boundary layer. An approximate solution in theory

for shock-laminar boundary layer interaction was qualitatively satisfactory

with following conclusions:

1) The interaction may induce apparent variation in flow pattern: A

series of oblique shock appear prior to the main shock; there will be a

bump nearby the incident point;

2) Pressure disturbance decays exponentially upstream in the distance

of tens of momentum thicknesses. However, overpressure takes place right

behind the shock and then gradually drops to the value of regular reflection

for inviscid fluids;

3) When shock strength is strong enough, there will be separation ahead

of incident point with backward flow adjacent to the wall. How the flow

separates also depends on M and Re to a certain extent. Sometimes, reat-

tachment can occur.

4. Shock Wave Capturing Schemes in CFD

As you have seen in the previous paragraphs, the most salient feature of un-

steady, transonic and supersonic flows is the appearance of shock waves, the

capture of which obviously is a formidably hard task. Since the continuous

flow field is separated by an unknown shock, prior to and behind which the

Rankine-Hugoniot relations between physical quantities should be satisfied,

tedious and time-consuming fitting procedures to locate the shock by try

and error were commonly followed in 1950s. As a matter of fact, a realistic

shock wave has a thickness of length scale about molecular free path when

gas viscosity is taken into account. Based on this concept, Von Neumann

and Richtmyer (1957) proposed to introduce a term of artificial viscosity:

q =

{
ρb2�x2(∂u∂x )2, ∂u

∂x < 0

0, ∂u
∂x ≥ 0,
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where b is an adjustable constant when solving the inviscid Euler equation

so that the shock wave can be identified as the position of large gradient and

thus automatically captured. The target of this technique is (1) the width

of shock should be restricted in one grid scale; (2) shock wave relations

should be satisfied; (3) the computation in the continuous region will not

be affected.

Since 1960s, people found that this kind of artificial viscosity can be

introduced numerically by constructing some kinds of FD scheme with nu-

merical dissipation. As a result, the most challenging task for CFD during

recent decades was to work out high performance schemes with adequate

numerical dissipation to accurately capture shock without virtual oscilla-

tion. The major effective approaches were:

(1) Upwind scheme and its high order counterparts;

(2) Flux Vector Splitting Scheme(FVS) for multidimensional problems

accounting for disturbance propagation along characteristic directions;

(3) Godunov type scheme (1959) based on the exact solution of the

Riemann problem capable of accurately representing wave evolution;

(4) Total Variation Diminish Scheme (TVD) TV (vn+1) ≤ TV (vn) by

Harten (1983), a new concept to eliminate nonphysical oscillation;

(5) Essentially No-Oscillation (ENO) (Harten 1989) and Weighted Es-

sentially No-Oscillation Scheme (WENO) (Liu 1994, Jiang & Shu 1996),

TV (vn+1) ≤ TV (vn) + (hr), an idea for reconstruction of high order nu-

merical flux based on adaptive or weighted stencil selection to avoid loss of

accuracy.

Pirrozoli (2011) systematically reviewed foregoing advances so that

higher accuracy was achieved by upwind scheme along with filtering and

physical conservation in smooth region and virtual oscillation was dimin-

ished by hybrid scheme and nonlinear filter with the help of varieties of

shock sensors in the vicinity of discontinuities. Shock capture in unsteady

compressible laminar and turbulent flows with complicated geometry re-

mains to be most attractive topic in this regard.

5. Concluding Remark

In the 21th century, China has achieved great success in aerospace engi-

neering in manned flight, walking out of capsule and rendezvous/docking.

The future plans are the establishment of space station, deep space explo-

ration and new vehicles for transportation between space and continents.

New issues for compressible flows such as: unsteady complicated flows with
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separation, vortices, turbulence and their control; thermal environment and

protection of near space vehicles and combustion/chemical flows in the

scramjet engine etc. are most challenging. We believe that the collabo-

ration between mathematics and mechanics communities will continue to

play indispensable roles in the process ahead.
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Postscript: The review article on mathematical roles in the study of

aerodynamics is especially dedicated to the professor C.H. Gu for his re-

markable contribution in promoting mathematical research and applica-

tions in this area. Expecting China’s needs in aerospace engineering, he

had no hesitation to switchs his majority from differential geometry to

PDE when he was studying in Russia by the end of 1950s. A mechanics

class in the Department of Mathematics, Fudan University was formed in

1958 as soon as he came back in China. Except for systematically planning

fundamental curriculums and editing mechanics textbooks, he himself gave

two most important courses on “High Speed Aerodynamics” and “PDE of

Mixed Type” and supervised a few seminars on wing theory, etc., which

I as a student earnestly attended. Hundreds of professional students were

trained during the 50 years to meet the needs of different industrial sec-

tors for this new specialty. Therefore, Professor Gu no doubt was the

founder of Fudan’s mechanics. On the other hand, his research in hyper-

bolic and mixed type differential equations was pioneering and outstanding

and consists of a significant part of his scientific achievements in PDE and

mathematical physics.
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