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Nomenclature

_γ shear-strain rate

τ shear stress

T temperature

ξ free-volume concentration

D diffusion coefficient of ξ
g function is the net creation rate of ξ
k wave number

l free-volume diffusion length

h subscript, the homogeneous solutions

Gξ @g/@ξ
A a constant related to the Taylor�Quinney coefficient

Gθ free-volume creation rate due to temperature rise

F free-volume softening

κ thermal diffusivity

Q strain hardening

R strain-rate hardening

P thermal softening

Γ, Γc energy dissipation in shear band and its critical value

w shear-band thickness

Ω thermal-effect coefficient

Ks shear-band toughness

G shear modulus

d STZ size

γc average shear yield strain

ν Poisson’s ratio

‘ dilatation factor

m pressure-sensitivity coefficient

S, Scr shear-band instability index and its critical value

κM stiffness of the testing machine

E Young’s modulus
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ds sample diameter

ls sample length

Lext an extrinsic length scale

Lint the internal resistance of a BMG to unstable shear banding

ι a dimensionless parameter accounting for the effect of machine stiffness

8.1 Introduction

Bulk metallic glasses (BMGs), due to the lack of long-range order (LRO) and the

absence of traditional defects such as dislocations and grain boundaries [1�5],

have a series of intriguing mechanical, physical and chemical properties [6�11].

They have shown widespread potential applications in many fields as structural

and functional materials [12�16]. However, plastic flow of BMGs at room tem-

perature (RT) is prone to be highly localized into nanoscale shear bands [17�21].

The initiation and rapid propagation of a shear band can induce catastrophic

fracture with very limited ductility [22,23], impeding the further applications of

BMGs. Essentially, the shear banding in BMGs is a multiple temporal�spatial

and trans-scale process controlled by different physical mechanisms, during which

rate-dependent processes such as viscosity/momentum diffusion, thermal/energy

diffusion, free volume/mass diffusion, instability nucleation and development should

be involved [19,20,24�30]. The key question is how these non-linear and coupled

processes with respective characteristic time and length scales govern the shear-

band formation and evolution in BMGs.

In this chapter, we present an overview of the inhomogeneous deformation

behaviour of BMGs, focusing specifically on the origin (nucleation) and evolution

(propagation) of shear banding. The development of BMGs as well as their atomic

structure is briefly summarized, followed by an introduction to the general features

of plastic flow and the underlying flow mechanisms. Then we proceed to review

the results of recent research about shear banding, including experiments, contin-

uum, atomistic modelling and theoretical developments. This chapter concludes

with a summary and a view of important unresolved questions.

8.2 Development and Structure of BMGs

The existence of natural glassy materials can be traced back to around 5000 BC.

However, metallic glasses or amorphous metallic alloys represent newcomers to

glassy materials, having been first reported by Duwez at Caltech in 1960 [31].

Duwez’s group made this discovery by rapidly quenching an Au�Si alloy at very

high rates: 105�106 K/s. The work confirmed Turnbull’s prediction [32,33] that

glass formation in liquid metals is possible if cooling is sufficiently fast and crys-

tallization does not occur. Since then, greater efforts have been made to explore

metallic glass systems, which exhibit a high glass-forming ability (GFA) [34�38].
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As for early alloys, the timescale for crystallization was usually in the hundreds of

microseconds to millisecond range. Metallic glasses were therefore formed only

under very rapid solidification conditions (103�106 K/s), and they were confined

to very thin sheets, ribbons or even wires with a characteristic size of less than

50 μm [39]. From the Pd-based glasses studied by Chen [40] and the Turnbull

group [35] to a series of new glasses developed by the Inoue group [36,38,41], their

crystallization timescales decrease significantly to the range of 1�10 s. In particular,

the Vitreloy family developed by Peker and Johnson [37] exhibits a very low critical

cooling rate for glass formation of about 1 K/s. Now, a very wide range of multi-

component alloys can form BMGs [7�9,14,42,43], including Pa-, Zr-, Cu-, rate

earth-, Mg-, Fe-, Ti-, Ni-, Pt-based, etc. The advent of more and larger BMGs

arouses a revival of interest in the basic science of glass forming, glass structure and

their absorbing and potentially valuable properties [7,9�11,42,44,45].

Examination of BMGs by X-ray or electron diffraction shows the diffuse dif-

fraction halos that may be taken as characteristic of amorphicity [46]. However,

this characteristic alone is not sufficient to describe the atomic arrangements within

the solid. Historically, a popular structural model for metallic glasses is that of

Bernal’s dense random packing of hard spheres [2,47]. The hard-sphere mode

successfully describes the monatomic systems. As is well known, all BMGs are

now multi-compositional, and hence their elements tend to form characteristic local

atomic clusters [48]. Following the principle of the efficient filling of space,

Miracle [1] proposed face-centred cubic (fcc) packing of solute-centred clusters or

short-range order (SRO) as the building scheme for metallic glass structures. Such

a packing mode within a medium-range order (MRO) has been confirmed by Ma

and co-workers [3] using atomic simulations and directly observed by Hirata et al. [5].

Recent studies [49] suggest that over the MRO, the clusters are connected via

a fractal network with the dimension of 2.31, although there are some puzzles

regarding this [50]. Regions between clusters are loosely packed clusters with large

free volumes [51].

Although the precise description of atomic structures for metallic glasses is

still open even now, their mechanical, physical and chemical properties due to such

unique structures have attracted a lasting attention. For example, they have high

RT strengths much closer to the theoretical limit than their crystalline counterparts,

also showing high hardness, large elastic deflection, relatively high RT fracture

toughness, good wear resistance and corrosion resistance and so on [7,12]. Some

Fe-based systems have excellent soft magnetic properties [52,53], and others have

the capability of superconductivity [54] or hydrogen storage [55]. These strong

points make them attractive candidates for potential applications ranging from

defence and aerospace projects, biomedical devices and Micro Electro Mechanical

systems apparatus, to communication equipment and sporting goods [7,12,13,

45,56�59]. However, BMGs have an intrinsic defect, i.e. macroscopic brittleness

with very negligible RT ductility. For instance, a Zr-based BMG with substantial

fracture toughness KIICB75 MPa/m1/2 still exhibits near-zero ductility in uni-axial

tension at RT [22], as shown in Figure 8.1. Such low ductility results from the for-

mation and rapid propagation of shear bands within samples, severely impeding
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further exploitation of this class of advanced materials. Therefore, clarifying the

mechanism of initiation and propagation of shear bands is of central importance in

practice. The questions of why and how a shear band with a characteristic thickness

(B10 nm) forms in an atomic-disordered medium are also interesting to scientists.

Considerable efforts [10,11,19,44] have been made to examine this aspect during the

past decades.

8.3 General Features of Deformation

Based on systematic examination of the deformation and fracture in metallic

glasses, Spaepen [17] in his seminal paper constructed a deformation map, which

draws the shear-strain rate _γ contours with axes of shear stress τ and temperature T.

The map distinguishes the plastic deformation behaviour into two basic modes:

homogeneous, where each volume element of the sample contributes to the macro-

scopic strain, and inhomogeneous flow, where the strain is highly localized into a

few very thin shear bands. The former, due to its potential application in fabrication

of micro-devices and nano-devices, has been widely studied [45,60�62]. In this

chapter, the latter is our interest. The inhomogeneous flow occurs at high stresses

and low temperatures. Thin shear bands are the inhomogeneous flow mode for

BMGs. Figure 8.2 shows the shear-band type flow in BMGs under different loads,

such as compression, shear, bending and indentation. It can be seen from this

picture that in unconstrained loading geometries, e.g. tension and shear, only a few

shear bands form and dominate the final failure. However, multiple shear bands can

form in constrained loading modes, contributing to global plasticity of materials.

Deformation maps have recently been developed by some other researchers.

Based on instrumented nano-indentation experiments, Schuh et al. [63] found that
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Figure 8.1 (A) Side view of the fractured sample, a Zr-based BMG, in quasi-static uni-axial

tension. (B) Corresponding engineering stress�strain curve for the material.
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there exists a second homogeneous region at high-deformation rates even well

below the glass transition (lying in the top-right corner of the Spaepen map). They

explained that ‘Homogeneous II’ with no flow serrations occurs when deformation

rates exceed the characteristic rate for shear-band nucleation. In fact, the disappear-

ance of macroscopic flow serrations is mainly due to the synchronous and contin-

ued formation of many fine shear bands [64�68]. With increasing strain rates, the

plastic deformation inhomogeneity tends to diminish only in time but not in space.

In addition, Lee et al. [69] and Park et al. [70] recently found that BMGs can

undergo homogenous deformation when they are subjected to a stress below yield

at RT, held at the stress for 12 h. Such a deformation region is essentially creep

flow. In particular, they observed that BMGs exhibiting more plastic strain during

such homogeneous creep deformation tend to show lower global plasticity during

inhomogeneous deformation. Such paradoxical phenomenon could be understood

by the atomic packing density. Very recently, Furukawa and Tanaka [71] devel-

oped a novel rheological model of fracture to describe the fracture of both liquids

and glasses in a unified manner. They constructed a dynamic phase diagram on

the TB _γ plane for a sheared, compressible viscoelastic liquid or glassy material

that further divides the inhomogeneous deformation into three regions: solid-type

instability, viscoelastic-type instability and liquid-type instability. This is actually

consistent with the previous classification by Spaepen [17].

Figure 8.2 Shear bands in BMGs under different loads, including compression, shear,

bending and indentation.
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In general, the elastic deformation behaviour of materials is determined by the

interaction of atoms inside. The plastic flow, however, should take into account the

details of microstructure, more specifically defects. The flow in crystalline alloys

can be described by the classical theory of plasticity underpinned by defects such

as dislocations, twins or grain boundaries. These crystal defects do not exist in

metallic glasses without LRO, and therefore the flow mechanism in metallic

glasses must be different from that in crystalline alloys. Although the precise

picture of how local atoms respond in deforming metallic glasses is not fully

resolved, there is general consensus in the metallic glass community that the funda-

mental unit of the process underlying plastic flow must be a local structural-

rearrangement type ‘flow event’ that can accommodate shear strain [17,18,72,73].

Whereas crystal dislocations allow changes in the atomic neighbourhood at low

energies in crystals, the local flow event in metallic glasses requires relative high

energy or high stress. Thus, how to describe such a local flow event and build a

bridge between it and macroscopic deformation becomes the key to the flow

mechanism.

A breakthrough has been made by Spaepen. For the first time, he applied the

classical free-volume model developed by Turnbull and co-workers [74�76] to the

deformation of metallic glasses [17]. Spaepen’s model essentially views the flow

event as an individual atomic jump. At a sufficiently high stress, an atom with a

hard-sphere volume can be squeezed into a neighbouring hole with a smaller vol-

ume. This makes the neighbours of the new position move outwards and creates a

certain amount of free volume. A series of discrete atomic jumps finally results in

macroscopic plastic flow. The free-volume model presents a relatively systematic

theoretical framework that introduces a simple state variable to the problem of

glass flow. It opens a window into the understanding of the glass-flow mechanism

through atomistic defects. Inspired by the shearing deformation of 2D bubble

glasses [77], Argon proposed that the number of atoms involved in the flow event

should be between a few to approximately 100. The flow event can be described

by a local plastic or inelastic rearrangement of atoms, commonly termed the shear

transformation zone (STZ). The first quantitative model of STZ behaviour was

developed by Argon himself [18], who treated the problem in the context of an

Eshelby-type inclusion [78,79]. He argued that an isolated STZ is not free but con-

fined to the surrounding elastic matrix. The STZ is essentially a local cluster of

atoms that undergoes an inelastic shear distortion from one relatively low energy

configuration to a second such configuration, crossing an activated configuration of

higher energy and volume. In a manner, an STZ in metallic glasses has an analogy

with dislocation motion in crystals but at SRO length scales. Although an STZ is a

flow event, not a defect, it is strongly affected by local atomic structures such as

free volume, short-range chemical or topological order. For example, availability

of free volume is important for the STZs to operate in a given volume of BMGs. In

fact, STZ operations occur preferentially in those regions of higher free volume

because relatively less dilatation is required. Spaepen [80] has envisioned that only

a high free volume would contribute to deformation. He [73,80] introduced a

concept of flow defect that is analogous to an STZ in terms of free volume, and he
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succeeded in extending an individual atomic jump to atomic cluster rearrangement.

Since Argon proposed the STZ model, scientists have made great efforts to capture

such flow events via experiment or simulation [72,81,82].

Either the free-volume or the STZ model is a mean-field theory. Nevertheless,

the two models provide a basis for further analysis of the strain localization process

in BMGs. Following the STZ model, Johnson and Samwer [83] made the first

attempt to deal with such an aspect. They proposed a cooperative shear model

(CSM) to understand the yield strength when inhomogeneous deformation occurs,

although the spatial features of inhomogeneous deformation were still precluded in

their analysis. As mentioned earlier, an isolated STZ is always confined by the sur-

rounding elastic medium. Such elastic confinement would lead to reversible elastic

energy storage in the STZ-matrix system, implying that transformed STZs have a

memory of their original untransformed state. A question naturally arises: How do

these STZs with memory induce memoryless plastic flow? Johnson and Samwer [83],

Mayr [84] and Harmon et al. [85] argued that this process is analogous to a relaxation

mechanism of glasses, which can be explained from a potential energy landscape

(PEL) perspective [86�88]. The individual STZ operations can be viewed as fast

β-relaxation processes that are sub-IS hopping events. The avalanche percolation of

these STZs is associated with the slower α relaxation process, an intra-IS hopping

event. The plastic irreversible α hopping event will contribute to macroscopically

perceptive plasticity. The CSM model thus suggested that inhomogeneous yielding

occurs when a critical fraction of ‘minimum’ barrier STZs becomes unstable and

results in global instability. Merging this picture with the Frenkel model [89] of shear

strengths in dislocation free solids, Johnson and Samwer [83] derived a universal

power law of two-thirds of temperature for the yield strength of metallic glasses.

Based on the CSM, the activation energy and size of STZs have been determined

by simulations [84] or experiments [81]. Very recently, Yu et al. [90] provided pos-

sible evidence that the activation of STZs and β-relaxations are directly related by

examining their activation energies.

8.4 Physical Origin of Shear-Banding Instability

The flow theories reviewed in the preceding material successfully explain how a

metallic glass deforms plastically; however, these theories do not give a clear

answer to inhomogeneous deformation or shear banding. Why does the flow in a

metallic glass localize into such extremely thin shear-band regions? What initiates

this localization process? What is the onset condition of shear-banding instability?

These questions continue to plague and challenge scientists. Historically, there are

two hypotheses as to why shear bands occur in metallic glasses. The first suggests

that shear-induced dilatation inherent in the flow event causes the generation and

coalescence of free volume, leading to a precipitous drop in viscosity within the

shear band. This idea originated from the work of Spaepen [17]. Subsequent works

from Argon [18], Steif et al. [91], Vakes [92], Falk and Langer [72], Huang et al. [24]

and Wright et al. [93] have also shown the importance of free-volume dynamics
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to shear instability. Here, the free-volume formation is indeed a stress-drive structural

change; hence, this hypothesis contends that shear banding in metallic glasses has a

structural origin. Alternatively, Leamy et al. [94] proposed that shear-banding events

are thermally initiated, similar to adiabatic shear bands (ASBs) in crystalline alloys.

Local adiabatic heating occurs, decreasing the viscosity by several orders of magnitude

within the shear band. Although the two concepts seem contradictory, in both cases,

a change in viscosity localizes the deformation and incurs shear banding. Actually,

based on systematic experimental and theoretical investigations [25,26,28,30,95�97],

Dai and co-workers [19,20,27] proposed that the free-volume creation joining with the

temperature rise induces the shear-band initiation in metallic glasses. In this coupled

softening process, however, the free-volume softening plays the dominant role, while

the thermal softening is the assistant effect. To clarify the third hypothesis, it is neces-

sary to reinspect the shear bands in metallic glasses, especially focusing on variables

that affect their origin.

8.4.1 Variables Relevant to Shear Banding

The most noticeable feature of shear bands in metallic glasses is that they can form at

low (usually quasi-static) strain rates, whereas ASBs in crystalline alloys usually occur

in dynamic cases. In addition, shear bands in metallic glasses also exhibit strain-rate

dependence. To investigate whether the strain rate exerts a role in the shear-band

formation in BMGs, Dai and co-workers [25,28,96] performed different strain-rate

levels of plate shear, shear-punch and compressive testing on BMG specimens.

Figure 8.3 shows the shear-band patterns (arrow point) at the notch tip during plate

shear. The number of shear bands is smaller at quasi-static strain rates (Figure 8.3A)

than that at dynamic strain rates (Figure 8.3B). The spatially positive strain-rate depen-

dence of shear-banding formation is also clearly observed in the shear-punch tests, as

shown in Figure 8.4. This figure shows that the number density of shear bands (arrow

point) around the circular deformation region at dynamic strain rates (Figure 8.4B) is

far larger than that at quasi-static cases (Figure 8.4A). This trend seems to be consistent

with a series of otherwise experimental observations, such as tensile testing by Mukaia

(A)

20 μm 20 μm

(B)

Figure 8.3 Shear-band patterns at the notch tip in Vit 1 BMG under (A) quasi-static and (B)

dynamic plate shear.
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et al. [98], compressive testing by Jiang et al. [22] and indentation by Dai et al. [95]

and Subhash and Zhang [65]. Recently, Jiang et al. [68] performed compression tests

on Zr-based BMGs at various strain rates. They indeed observed that, with increasing

strain rate, shear bands tend to form continuously in time. In other words, a higher

strain rate promotes shear-band formation. However, the resultant spatial patterns can

be of positive or negative effects, depending on material components and stress states.

The strain-rate dependence on spatio-temporal features of shear banding implies that

momentum dissipation plays an important role on the shear-banding process.

The characteristic thickness of mature shear bands (MSBs) in metallic glasses

also attracts much attention by providing an important clue to their origin.

Masumoto and Maddin [99], perhaps for the first time, reported deformation lines

(shear bands) with a thickness of 20 nm on the tension side of the sample, during

bending of a filament of Pd80Si20 metallic glass. Later, precise measurements

showed a narrow range of thicknesses, listed in Table 8.1, identifying 10 nm as the

characteristic thickness of shear bands in metallic glasses. It is impossible for such

extremely localized flow to be thermal induced (discussed shortly) because atomic/

cluster-scale structural changes should be responsible for it. For example, Pampillo

[107] found that the shear bands were preferentially etched. Similar preferential

attack phenomenon was also noticed by Donovan and Stobbs [100] in the deforma-

tion of an Fe-based metallic glass ribbon, and recently by Dai and co-workers [26]

in the pre-etching sample surfaces, as shown in Figure 8.5. The preferential etching

susceptibility of these shear bands clearly means that the chemical potential within

the bands has been changed with respect to the rest of the materials. These

researchers believed that it is the structural change that leads to this effect by

destroying the SRO structure existent in metallic glasses to a more disordered

structure. In fact, such disordered structures correspond to the free-volume defect,

which was confirmed by work carried out by Li and Li [108,109], Gu et al.[104],

Chen et al. [105], Cao et al. [110] and Flores et al. [111]. In particular, Donovan

and Stobbs observed enhanced small-angle scattering in the shear bands formed in

tension, which they attributed to the presence of sub-nanometre-scale voids. They

speculated that excess free volume, stabilized by shear stress during deformation,

20 μm

(A) (B)

20 μm

Figure 8.4 Shear-band patterns around the circular deformation region in Vit 1 BMG during

shear punch under (A) quasi-static strain and (B) dynamic rates.
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coalesced into voids after the deformation stopped. Dai and co-workers [26] did

observe some nanovoids (Figure 8.6) formed at the intersection sites of the shear

bands in a post-deformed Vit 1 BMG. These experimental phenomena � including

the preferential etching of shear bands, excess free volume within shear bands and

nanovoids at the intersection sites of shear bands after deformation � provide use-

ful information that local structural changes occupy a unique niche during the initi-

ation of shear bands in metallic glasses.

Shear bands, as a form of localized plastic flow, are not completely free from

the thermal effect or local heating. Shear bands in metallic glasses are no exception

either. Indirect evidence for local heating comes from melted droplets on the frac-

ture surface (Figure 8.7) or a sparking phenomenon at the moment of fracture.

However, it is incorrect to deduce that shear bands in metallic glasses have a ther-

mal origin or are essentially an adiabatic phenomenon, especially at their initiation

stage. One way to approach this question is to attempt to calculate the temperature

Table 8.1 Summary of Measurements of Shear-Band Thickness in Metallic Glasses

Metallic Glass (in at%) Method Thickness (nm) Observers

Pd80Si20 TEM of

replica

20 Masumoto and

Maddin [99]

Fe40Ni40B20 TEM 10�20 Donovan and Stobbs [100]

Zr56.3Ti13.8Cu6.9Ni5.6Nb5.0Be12.5 TEM #10 Pekarskaya et al. [101]

Zr57Ti5Cu20Ni8Al10 HRTEM #20 Li et al. [102]

Al90Fe5Gd5; Al86.8Ni3.7Y9.5 HRTEM 10�15 Jiang and Atzmon [103]

Zr52.5Ti17.9Cu20Ni8Al10 HRTEM B15 Gu et al. [104]

Zr65Al7.5Ni10Cu7.5Ag10 HRTEM B5 Chen et al. [105]

Cu47.5Zr47.5Al5 HRTEM B10 Kim et al. [106]

Zr41.2Ti13.8Cu10Ni12.5Be22.5 AFM B20 Jiang and Dai [30]

TEM, transmission electron microscopy; HRTEM, high-resolution TEM; AFM, atomic force microscopy.

200 nm

Figure 8.5 Preferential etching at shear

bands in a Vit 1 BMG.
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rise within a shear band. The reasonable calculation requires a precondition that we

must know the mode of shear-band propagation or, more specifically, the shear-

band velocity. It can be deduced that as the shear-band velocity increases, the pre-

dicted maximum temperature increases because less time is available for thermal

dissipation away from the shear band. The shear-band velocity in metallic glasses

has values ranging from 1025 m/s to a few km/s. The calculated maximum temper-

ature in shear band therefore varies from tens of kelvin to several thousand degrees

kelvin [25,39,112�116], leading to confusions. It is well known that the most

powerful evidence of whether the local heating occurs during shear banding or

not is gained by directly measuring temperature rise in shear bands, which is hin-

dered by the extremely thin thickness and short duration of shear bands, however

[117�121]. Recently, Lewandowski and Greer [115] invented a clever, simple way

to improve the resolution of measurements. They coated a Vit 1 BMG with a thin

layer of tin and observed it after double-notched, four-point bending. This method

has remarkable resolution: 30 ps (the thermal diffusion time through the coating)

and 100 nm (the scale of the melting bead of the coating), respectively. Based on

the observations of many melted hemispherical beads of a thin deposit at the notch

that underwent shear banding, and further treating shear bands as planar sources of

(A)

50 μm

Loading
direction

Nanovoids

1 μm

(B)

Figure 8.6 (A) Multiple shear bands formed during quasi-static compression of a Vit 1

BMG and (B) nanovoids exist at the intersection site of shear bands indicated in (A).

Figure 8.7 Melted droplet on

tension fracture surfaces of a

Zr-based BMG.
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heat, they reported that the temperature rise in the shear band may be several thou-

sand degrees. However, it is noted that their estimation strongly depends on the

duration of shear banding (they adopted 90% of the shear-wave speed). In addition,

shear bands were observed by Zhang et al. [122], which did not incur melting of

the tin. Recently, by revising the shear time and stress for an operating shear band,

Miracle et al. [116] recalculated the thermal profiles around the band and con-

cluded that the temperature rises were insignificant. In fact, according to the ex situ

observation, we do not exclude such a possibility that the melting of the tin occurs

during the final fracture event. Notwithstanding a lot of controversy, the local

heating, maybe as an accompanying effect, remains important to shear banding in

metallic glasses [123].

As we know, shear banding is a dissipation system. ASBs in crystalline solids

are determined by the competition between the momentum dissipation and the

energy (heating) dissipation. The preceding review of experimental observations

demonstrates that strain rate, free volume and local heating are all possible factors

affecting the shear-banding instability in metallic glasses.

8.4.2 Continuum Modelling and Analysis

Argon [18] modelled the flow localization (shear band) as a consequence of strain

softening from the free-volume clustering. He considered a shear band located in

the centre of a 1D planar layer initially shearing at a constant strain rate. Then, he

introduced the free-volume dynamics into the constitutive equations that are

described within the STZ formulism; he further derived a bifurcation equation

describing the divergence of strain rate in and out of the band. His numerical solu-

tions show the strain acceleration in the band with increasing applied shear strain

and the concomitant decrease of shear-strain rate in the surrounding matrix. A simi-

lar analysis was performed by Steif et al. [91], via developing Spaepen’s free-vol-

ume model [17]. He derived the constitutive and free-volume evolution equations

for the band and the matrix, respectively. In this case, the free-volume perturbation

in the band was introduced directly. Calculations showed that such perturbations

can indeed cause the shear-strain localization in the perturbation zone.

Later, Spaepen’s free-volume mode was generalized by Steif et al. [124], and

Huang et al. [24] added multi-axial stress states through the use of the Mises stress

τe or the effective stress. In particular, Huang et al. [24] introduced the free-volume

diffusion into the free-volume evolution process. The diffusion of the free volume

is analogous to the diffusion of vacancies in crystalline materials. Thus, the free-

volume evolution equation becomes

@ξ
@t

5D
@2ξ
@y2

1 gðξ; τeÞ ð8:1Þ

where the g function is the net creation rate of free-volume concentration ξ, including
the free-volume generation and annihilation [17], and D is the diffusion coefficient of

322 Adiabatic Shear Localization



the free-volume concentration. By linear stability analysis for homogeneous flow,

Huang et al. revealed that the homogeneous flow will become inhomogeneous if the

net generation rate of free volume is greater than its diffusion rate, i.e.

@g

@ξ
. k2l2 ð8:2Þ

where k is the wave number of the perturbations and l is the free-volume diffusion

length scale. Further calculation indicated that, with the applied shear strain under

simple shear, there is a peak in @g/@ξ that corresponds to a stability point due to

the free-volume coalescence. Such a physical picture was recently re-examined by

Gao [125] who developed an implicit finite-element method (FEM).

All the results just mentioned lend insight into the free-volume origin of shear

bands in metallic glasses. However, these analyses exclude the thermal effect. In

other words, the shear-band formation is considered as an isothermal process.

Recently, Gao et al. [29] performed a thermo-mechanical instability analysis of a

shear band in metallic glasses, through the introduction of the thermal transport

equation into the free-volume-based constitutive law. In contrast to the result of

Huang et al. [24], they revealed that an increase in temperature perturbation brings

about the bifurcation from homogeneous to inhomogeneous deformation modes. In

fact, the thermal instability only plays a secondary role in the shear-band instabil-

ity, which will be discussed shortly.

Since we proposed in 2005 for the first time [27] the coupled effect of free-

volume softening and thermal softening on shear-banding instability, it has been

identified by more and more work [126�130]. However, some critical questions have

not been answered well. During such a coupled process, is either free-volume

softening or thermal softening responsible for the onset of shear instability? How

do the free volume and temperature interplay with each other, and how do they

act? Recently, Dai and co-workers [19,20,27] presented a theoretical description of

coupled thermo-mechanical deformation of BMG undergoing a 1D simple shear,

focusing on the physical origin of shear-band instability. Considering that the strain

rates, the free volume and the temperature rise are possible factors in initiating

a shear band, their model takes into account the momentum balance, the energy

balance and the dynamics of the free volume, during which the constitutive law

can be the same as Steif et al. [91] and Huang et al. [24]. Firstly, they examined

the homogeneous deformation case. By defining the thermal instability index and

the free-volume instability index, they revealed that the free-volume production

facilitates the sudden increase in the temperature before instability and vice versa.

Through a rigorous linear perturbation analysis, they obtain the onset condition for

a shear-band instability (subscript ‘h’ denotes the homogeneous solutions) [20],

G
ξ
h 1

AτhGθ
hFh 2κQhk

2

κRhk2 1Qh 2AτhPh

.Dk2 ð8:3Þ
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where the left side denotes the net generation rate of free volume that is tempera-

ture dependent and the right side is its diffusion rate. Obviously, this criterion,

Eq. (8.3), is physically analogous to the condition in Eq. (8.2), but the difference

is that the former involves the temperature effect. Actually, if the free-volume

softening dominates, the criterion in Eq. (8.3) can totally reduce to the condition

in Eq. (8.2) proposed by Huang et al. [24]. If the shear instability is dominated

only by the thermal softening under the adiabatic limit, the criterion in Eq. (8.3)

is identical to the onset condition for the conventional thermoplastic shear insta-

bility revealed by Bai [131]. According to the instability condition in Eq. (8.3),

the dynamic balance between the stabilizing and destabilizing effects determines

a critical wavelength. By examining the dominant instability mode, we can obtain

the internal timescale in the present coupling-softening instability. According

to the relative importance of the free-volume softening and thermal softening, the

internal scales can be converted into the internal free volume or thermal scales,

respectively.

The internal length scale measures whether the instability occurs easily or not,

while the internal timescale characterizes how fast the instability initiates. The

internal length and timescales are plotted against the applied strain rates in

Figure 8.8. Clearly, the internal scales of instability for the three cases decrease

with increasing strain rate. This might be the main reason that the shear instability

due to either thermal softening or free-volume creation is more probable at higher

strain rates. This numerical result agrees well with the available experimental

observations [25,28,95]. The internal free-volume length and timescales are

remarkably smaller than those in the thermal-softening case, indicating that shear

instability resulting from free-volume creation occurs easier and faster than thermal

instability. At low strain rates, the thermal internal length and timescales are very

large. This implies that thermal softening occurs with great difficulty at low strain

rates. However, at this strain rate, the free-volume softening still appears. It is well

known that shear banding instability in BMGs occurs not only at high strain rates

but also at quasi-static loading, as described in Section 8.4.1. So, it is probable that

shear banding or strain localization is started by free-volume softening. This weak

influence of thermal softening on shear instability at low strain rates results in, the

coupling shear-instability behaviour are more like that due to free-volume creation.

In such cases, shear instability in BMGs approaches an isothermal process, during

which the internal length scale is approximately tens of nanometres, and the inter-

nal timescale is roughly the inverse of strain rate. As the strain rate increases to the

dynamic range, such as 103 s21, the internal length scales due to both free-volume

softening and couple softening decrease to nanometres or sub-nanometres, while

the thermal length scale is of the order of 10�100 μm. Also, the coupling of soften-

ing with the internal timescale (Bμs) occurs much faster than the sole thermal-

softening timescale (Bms). Therefore, under a dynamic strain rate, the thermal

softening favours the shear instability originating from free-volume softening, lead-

ing to lower values of internal length and timescales in the coupled softening case.

Furthermore, a shear-band analysis similar to those by Argon [18] and Steif

et al. [91] was performed with inclusion of temperature. After numerical calculations,
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they found that the catastrophic character of shear banding or strain localization

is evident. Figure 8.9A illustrates the remarkable acceleration of strain development

in the shear band after a peak stress has been reached and the corresponding drop

of strain rate in the matrix. In addition, the great increase of strain rate in the band

results in the rapid rise of the inner shear strain (Figure 8.9B), giving rise to a

shear band. During such a process, the viscosity in the band drastically decreases

to a value of approximately 1025 poise, much smaller than that (B1011 poise) out-

side the band [20].

It is well known that the initiation of shear banding hinges strongly on the

catastrophic drop of local viscosity. To ferret out the main reason for this material

weakening, they calculated both the free-volume concentration and the temperature

increase in the shear band during the shear deformation, as presented in Figure 8.10.

Interestingly, it is noted that the sharp bend up in the curve of free-volume concentra-

tion is prior to that in the temperature rise. The result provides much clearer evidence

that the local material softening or instability due to free-volume creation is earlier

and faster than that due to temperature rise. This is consistent with that given by the
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linear perturbation analysis. In addition, the temperature rise is the consequence of

free-volume-induced shear localization, not its cause; this agrees well with the deduc-

tion of many researchers based on experimental observations. In the next section,

atomistic simulations also show that local heating occurs after the onset of localized
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flow in amorphous alloys. In particular, these results provide a powerful theoretical

expatiation on the puzzle about temperature rise at shear bands and thickness of shear

bands in metallic glasses. The local free-volume creation, as the origin of shear local-

ization, controls shear-band thickness (see Section 8.5 for more details), while local

temperature rise, as a secondary effect, depends strongly on the development of this

shear localization [128,129].

Both experiments and modelling show that large shear strain can be achieved in

the shear band. Considering such large deformation, some finite-deformation cou-

pled thermal�mechanical constitutive models of BMGs have been recently devel-

oped [126,127,132,133]. For example, the finite-deformation model proposed by

Yang et al. [126] can well capture the quasi-static compression behaviour of Vit 1

BMG at RT. Further, they calculated the stress�strain curves with adiabatic heat-

ing at strain rates of 1.03 1024, 1 and 1.03 104 s21. In contrast to the isothermal

case, a significant decrease of the stress, or strong strain softening, can be pre-

dicted. Thus they conclude that although the free-volume increase initiates the

shear band, the subsequent temperature rise accelerates the localization of deforma-

tion. This result is satisfactorily consistent with the previous conclusion [20]. Very

recently, Jiang et al. [134] performed a series of three-point bending experiments

on as-cast and annealed samples of Vit 105 BMGs over a wide range of tempera-

tures varying from RT to liquid nitrogen temperature (77 K). They found that the

significant decrease of free volume within samples, corresponding to the decease of

STZ volume, can result in the disappearance of shear banding. However, the shear

banding can still occur even at 77 K. This confirms the dominated role of free vol-

ume on the shear-banding instability in BMGs.

8.4.3 Atomistic Modelling

The formation mechanism of a shear band presented previously captures many

experimental observations in metallic glasses. However, current experimental

techniques, including positron annihilation, ultrafast infrared imaging, TEM and

SEM and AFM, have difficulties to study such shear localization processes that

have extremely short timescales and very small length scales. Moreover, most

tests have to be performed post-mortem after sample deformation or fracture. The

conclusions drawn from these tests are, therefore, often partial and sometimes

contradict each other. The molecular dynamics (MD) simulation is generally

believed to be an effective way, providing an in situ and real-time observation of

the shear localization at the atomic level. In particular, the characteristic sizes

of shear bands in metallic glasses just fall into the reach of direct MD simula-

tions. In the following, we present some recent works pertinent to the initiation of

shear banding by using the MD method.

Physically, a shear band is a narrow region with the plastic shear strain larger than

that in the rest of the sample. During MD simulations, we can record the position

of each atom at each run-step and then identify the localized region undergoing larger

shear deformation using the atomic positions recorded. Currently, there are three

popular methods: ‘stripe-painting’, proposed by Bailey et al. [135]; D2
min; developed
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by Falk and Langer [72] and the atomic local shear strain ηMises
i ; proposed by Shimizu

et al. [136].

In the framework of an MD simulation, the Voronoi method is usually used to

characterize the glass structure. If a shear band is developing in a sample, this

method still has a capability of capturing the structural change. There are two ways

to indicate the structural change during deformation. The first is to directly look at

a specific type of coordinate polyhedron and its volume fraction in a sample [110].

The second way is to estimate the free volume based on the Voronoi volume vvoro
of different types of polyhedral [109].

Very recently, Ma and co-workers [110] combined the two methods to monitor

the local structural evolution in the early stage of shear banding. They performed

the uni-axial compression on a Cu�Zr metallic glass, during which the shear band

is indicated by ηMises
i : Furthermore, they used the fraction of the Cu-centred full

icosahedra (FI) as the key indicator of the glass structure. They observed that a

band is developing, in which the FI motifs are lost preferentially relative to other

regions in the sample. This decrease in the fraction of stable and shear-resistant FI

causes structural softening. Such local structural softening corresponds to the gen-

eration of a Voronoi or free volume in the shear band. Similar results were obtained

recently by Li and Li [108,109]; in addition, they analysed the distribution of the

NN atomic bond lengths (ABLs) at various strains [108]. It was found that the ABLs

increase with increasing strains in the shear-band region, while the ABLs outside

remain small and uniform. These results indicate that the structural disordering or

free volume in the shear band is much more significant than that outside. In other

words, the initiation of the shear band is always accompanied by the local structural

softening, which is consistent with the experimental observation [26,39,100] and the

previous continuum mechanical analyses.

To check whether a shear band originates from the thermal softening or not,

we must determine the temperature rise within the shear band. Ma and co-workers

[110] investigated the evolution of the temperature rise in the sample during

deformation. Note that in this initial stage of localization, the temperature rise in

the band is less than 150 K; the band remains cold. Their results also show that

the temperature rise lags behind the structural softening in the shear band. By

investigating the D2
ave and temperature rise during localization, Bailey et al. [135]

have obtained a similar result. The D2
ave localization occurs over the interval

5�10% strain, whereas the temperature rise is somewhat delayed; it does not

start until just before 10% strain. The simulation results agree well with our

shear-band analysis (see Figure 8.10); i.e. the temperature rise is not a cause of

shear banding but a consequence. Based on small-scale MD simulations and

thermo-mechanical analysis, Shimizu et al. [136,137] have proposed an aged-

rejuvenation-glue-liquid (ARGL) model for an MSB, during which a critical

length scale of the order for STZs to develop into an MSB is predicted. It is found

that, at the later stage of shearing, the local temperature at the centre of the shear

band has reached the glass transition temperature, which is consistent with the

result of Yang et al. [119].
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8.5 The Shear-Band Evolution Process

After it nucleates, a shear band would propagate forward driven by far-field load-

ing. This post-instability process is inextricably linked to final fracture, which has

attracted growing attention. In this section, we review recent advances in this area,

notwithstanding that there is a great deal unknown about the phenomenon.

8.5.1 Shear-Band Propagation Dynamics

The first attempt to clarify the detailed process of shear banding in metallic glasses

was performed by Masumoto and Murata in 1976 [138]. Using a very hard tensile

machine, they indirectly inferred that shear-band propagation is rapid and intermit-

tent. Shortly afterwards, Neuhäuser [139] made observations by high-speed cinema-

tography on the development of shear bands during tension of Pd80Si20 ribbon and

during bending of an Fe-based ribbon, and observed that the bands propagated

across the sample in several rapid bursts with time intervals of several seconds

between the bursts. However, due to the insufficient temporal resolution (up to

1.7 ms), the single burst of the shear band was not captured. Interestingly, he noted

that a pre-existing shear band can slow down the growth of a neighbouring band.

In addition, some bands have been observed to disappear totally or partially, similar

to crack healing. By recording acoustic emission (AE) signals in tension-strained

Zr-based BMGs, Vinogradov and Khonik [140] revealed that the microscopic fea-

tures of the shear banding in BMGs are very nearly the same as those found for rib-

bon metallic glasses. The shear band propagates in a jump-like mode as reflected

by numerous AE bursts. Based on the AE signal, the initiation of shear bands was

probed by Klaumünzer et al. [141]. Recently, the infrared camera with 1000 Hz

frames was used to observe in situ the dynamic shear-banding process in compres-

sion of Zr-based BMGs by Jiang et al. [68], considering that shear banding causes

an increase in temperature. Such spatial resolution is still not able to seize a full

shear-banding process. However, based on the successive video frames, they dem-

onstrated the spatio-temporality of shear bands in metallic glasses, as illustrated

schematically in Figure 8.11. With decreasing strain rates, the plastic flow tends to

be inhomogeneous with time and homogeneous in space; while with increasing

rates, the plastic flow tends to be homogeneous with time and inhomogeneous in

space. The temporal feature of shear bands has been confirmed by Dai and co-

workers [66,67]. They conducted MD nano-indentation of Cu�Zr metallic glasses

at different loading rates. The simulation result showed that at higher strain rates,

the shear-banding events operate successively, whereas at lower rates, the shear

events occur intermittently, exhibiting inhomogeneity in time, as shown in

Figure 8.12. In addition to the strain rate, the shear-band temperature can also

affect its propagation behaviour. Cheng et al. [142] pointed out that if it can remain

cold, a shear band can slide in a stick-slip manner. However, a hot shear band will

directly develop into a runaway catastrophic failure.
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Serrated plastic flow phenomena have been widely observed in BMGs under

deformation-constrained loading modes such as compression [26,68,143�145] and

indentation [63,95,146,147]. There is a general consensus that the shear banding in

a sample should be responsible for the macroscopic flow serrations. Therefore,

such serrations allow you to investigate shear-band dynamics. The flow serrations

can appear as displacement bursts in the corresponding displacement�time curve.

If you consider that such serrations or bursts are a result of intermittent operations

of a main shear band, the velocity of the shear band can be calculated. However,
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Figure 8.11 Schematic illustrations of temporal and spatial distributions of shear-banding
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it must be pointed out that the velocity calculations should first be based on the

assumption regarding the mode of shear-band propagation, i.e. simultaneous or pro-

gressive in fashion. For the first mode, the shear-band velocity has been calculated

to be 101�103 μm/s [143,145,148�150], which depends on the composition, ambi-

ent temperature, applied strain rate and sample size. Furthermore, the shear strain

and viscosity within shear bands have been predicted [143,151]. For the second

mode, the calculated velocity is about several metres per second at RT [149,152].

These velocities are many orders of magnitude smaller than one would expect,

i. e. a shear-wave speed of approximately 102�103 m/s. If we take approximately

100 m/s as the shear-band velocity and consider that such a shear band propagates

across a millimetre-sized sample, the timescale of its propagation is the order of ms.

However, the experimental techniques with a temporal resolution of approximately

ms have not captured the propagation process of shear bands. The underestimation

of shear-band velocity maybe from the premise of a single shear band. In fact,

Vinogradov and Khonik [140] found that an individual serration corresponds to a

bundle of AE signals; a signal corresponds to a shear band operating. It is therefore

reasonable to believe that the serrations are due to the operation and interaction

of multiple shear bands, rather than one main shear band, especially for the ductile

BMGs. Very recently, Wang and co-workers [144] have revealed that the plastic

flow serrations of ductile BMGs can evolve into a self-organized critical state

characterized by the power-law distribution of shear avalanches. This implies that

the intermittent motion of shear bands is scale free; i.e. there is not a dominant

shear band. MD simulations show that the shear-band velocity can be close to

the speed of sound at the early stage of shear banding when one shear band is

propagating across the sample [110]. After it penetrates across the entire sample,

the shear band slips simultaneously across the entire shear plane. The first simulta-

neous mode was captured by Song et al. [148] using a high-speed camera (up to

5000 Hz frame).

Very recently, by developing a dynamic ‘forced’ shear technique of hat-shaped

specimens, the shear-band propagation mode was clearly determined by Jiang and

Dai [30]. They observed the longitudinal section of a deformed Vit 1 hat-shaped

specimen using high resolution scanning electron microscope and found that there

is a crack stopper in the forced shear zone, as shown in Figure 8.13A. It can be

seen from this picture that the crack with the well-defined tip does not penetrate

through the shear zone. Further AFM observation exhibits that the crack is led by a

shear band (see Figure 8.13B). Obviously, the shear band has a tip that nucleates at

an inhomogeneous site. This provides solid evidence for the progressive propaga-

tion of shear bands in metallic glasses. In fact, similar phenomena have been

widely observed in the literature [10,11,25,44,68,106,118,139]. If the crack could

be arrested, the propagating shear band would finally penetrate the entire sample to

reach the opposite surface. At that time, the shear band would operate in a simulta-

neous fashion; this is expected to occur in some ductile systems. Ma and co-work-

ers [110] recently captured the transition of the shear-banding mode from

progressive at small strains to a simultaneous fashion at very larger strains, using

MD simulations. In reality, most BMGs display very limited ductility, especially in
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tension or shearing. Therefore, the simultaneous propagation mode of a shear band

occurs rarely in most cases.

8.5.2 Shear-Band Toughness

For an advancing shear band, a very basic question is how much energy the shear

band can consume prior to catastrophic cracking. In other words, after the energy

release Γ overcomes the critical plastic energy Γc, the shear band will mature to

become a runaway shear crack. In this regard, the larger the Γc, the more signifi-

cant is the toughness or ductility of BMGs. Γc therefore determines shear-band

susceptibility that measures the intrinsic resistance of materials to the propagation

of shear bands. Recent studies [153,154] have focused on the energy release Γ and

further experimentally determined the Γc. Very recently, the shear-band toughness,

initially proposed by Grady [155] for crystalline alloys, was extended to BMGs by

Jiang and Dai [30]. They aim at theoretically describing the inherent susceptibility

Γc to shear-band propagation in BMGs.

To characterize ASB susceptibility in crystalline alloys, Grady [155] introduced

the concept of shear-band toughness, analogous to fracture toughness. As for BMGs,

however, the shear banding exhibits some distinct features. When subjected to an

external loading, some local regions, instead of the whole sample, preferentially yield

via the cascade of a number of individual atomic jumps around free-volume sites

[17] or STZs [18], forming local plastic regions (LPRs). The shear bands then nucle-

ated simultaneously or successively in these LPRs. Finally, one of the nucleated

shear bands dominates, propagates and causes a catastrophic fracture of the material.

Furthermore, in addition to conventional energy/thermal and momentum/viscous

dissipation, the free-volume dissipation should be involved in the shear-banding

process in BMGs.

Figure 8.13 The shear zone in a deformed hat-shaped Vit 1 BMG specimen under dynamic

forced shear, showing a stop crack that is led by a shear band with a well-defined tip.
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Based on the Grady�Kipp solution [155�157] and further considering shear-

band stress softening due to both free-volume creation and temperature rise, the

critical dissipation energy Γc can be analytically expressed (subscript ‘0’ denotes

the terms due to the sole free-volume softening) as [30]:

12ΩðΓc=Γc0Þ1=3ðw=w0Þ
h i

11
ðΓc=Γc0Þ2=3
ðw=w0Þ2

" #
5 2

ðΓc=Γc0Þ
ðw=w0Þ

ð8:4aÞ

with a dimensionless thermal-effect coefficient

Ω5
2

αR

� �
B

Le

� �
ð8:4bÞ

where B accounts for the degree of thermal softening, α is the free-volume soften-

ing coefficient, the parameter R describes the local dilatation ability [158] and the

Lewis number Le5χ/D measures the competition between thermal diffusivity and

free-volume diffusivity. Equation (8.4) actually provides the implicit expression

for Γc in a coupled free-volume softening and thermal-softening shear band. The

concept of shear-band toughness is naturally introduced as [30]:

Ks 5
ffiffiffiffiffiffiffiffiffiffiffi
2GΓc

p
ð8:5Þ

which measures the internal resistance of BMG materials to propagation of shear bands.

For the typical Vit 1 BMG, a shear-band toughness of KsBð2:662 26:58Þ MPa
ffiffiffiffi
m

p
is

calculated, if considering the critical displacement ψc varies from 100 nm to 10 μm
[118,121,128,153,159]. This calculated value range of Ks is expected to be smaller

than the mode II fracture toughness ðKIIC 5 75 MPa
ffiffiffiffi
m

p Þ of this material measured

by Flores and Dauskardt [160]. It is expected that the shear-band toughness should

contribute to the fracture toughness [161], and their relationship can be linked [30].

The functional dependence of the critical dissipation energy on the shear-band

width under different thermal-effect coefficients, determined by Eq. (8.4), is shown

in Figure 8.14. For comparison, the case without the thermal effect, i.e. Ω5 0, cor-

responding to the bold line, was also calculated. From this graph, it is readily seen

that all these curves have two branches � left and right � and each of them inter-

sects at a local minimum. The physical mechanism is reasonably clear. For thinner

bands (moving to the left branch), the enhanced free-volume diffusion restrains the

rate of free-volume softening and leads to excessive dissipation [20,162]. Wider

bands (moving to the right branch) are effectively free of free-volume diffusion.

However, the accelerated diffusion of momentum (inertia) into the shear-band

vicinity again limits the rate of free-volume softening and also incurs additional

dissipation. The shear-band thicknesses near the local minimum properly balance
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the free-volume and momentum diffusion, providing the minimum possible shear-

band dissipation. During the competition between the free-volume and momentum

diffusion, the thermal softening, including its diffusion, plays a secondary role. As

shown in Figure 8.14, with increasing the thermal-effect coefficient Ω from 1024

to 1021, the optimum shear-band thickness increases slightly from w0 to about

1.2w0; the corresponding optimum shear-band dissipation energy decreases some-

what from Γc0 to 0.75Γc0. This result clearly indicates that the thermal effect pro-

motes the shear-band propagation because it decreases the critical energy barrier

preventing the shear band from cracking. In particular, the insensitivity to thermal

softening of the shear-band thickness indicates that the shear-band propagation in

BMGs is governed by the free-volume softening.

8.5.3 Shear-Band Width

As we concluded earlier (Table 8.1), the characteristic width of shear bands is of the

order of approximately 10 nm. Recently, finite STZ sizes of about 1�2 nm (not

reaching 2 nm) have been identified by much research [1,3,81,84,163]. Interestingly,

the ‘10-times-rule’ in granular materials [164] seems to be roughly satisfied in metal-

lic glasses; i.e. the shear-band thicknesses are approximately 10 times the STZ sizes,

implying a similar shear-instability mechanism between the two materials. However,

the quantitative relationship between the thickness of the shear band and the STZ
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Figure 8.14 Plot of the critical energy dissipated in the shear band as a function of the
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effect coefficients and are non-dimensionalized by the optimum shear-band thickness w0 and

the corresponding dissipation energy Γc0 for the sole free-volume softening case.
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size is still pending, and the precise underlying physics that dominates the shear-

band width is not clear.

In crystalline alloys, the width of an ASB is supported by a balance of the plas-

tic work-heat diffusion; its theoretical prediction has been successfully established

by Dodd and Bai [165] and Walley [166]. In the same spirit, i.e. considering the

free-volume coalescence-diffusion balance, Dai and Bai [19] derived an estimation

of shear-band thickness in metallic glasses as:

w0B

ffiffiffiffiffiffiffiffiffiffiffi
D

ξ�

Gξ�

r
ð8:6Þ

where � denotes the values within the band. Note that Gξ� is the net rate of free-

volume increase and is highly dependent on the strain rate. You can reasonably

assume that the thickness of an MSB is the final dimension of the perturbation

with the initial wavelength, developed into the local steady-state flow in the post-

instability stage. In this stage, the diffusion coefficient of the free-volume concentration

is expected to obey the Stokes�Einstein equation [17,74]. Furthermore, based on

the analogy between dislocation motion and the STZ operation, Eq. (8.6) can then

yield [21]

w0 5
2π
3
d ξ�U

1

γc
U
11 ν
12ν

� �1=2
ð8:7Þ

where d is roughly the STZ size, ξ
�
is the activation free-volume concentration due

to STZ-induced shear instability and γc is the average shear yield strain whose

value is almost a universal constant of about 0.0267 for various systems [83]. This

equation indicates that the correlation between the shear-band thickness and the

STZ size does not follow a simple linear relation, and the influence of other para-

meters, such as ξ
�
, γc and ν, should be involved. The dependence of these para-

meters on the shear-band width was examined. It is obvious that the shear-band

thickness in metallic glasses is mainly governed by the STZ-activated free-volume

concentration incurring instability and the STZ size.

Because the fundamental unit process underlying plastic flow is an STZ, the

activation free volume facilitating local shear instability is actually the threshold of

the free volume in activated STZs, beyond which the STZs become topologically

unstable. At the atomic cluster level, the free-volume threshold must be a probabil-

ity (usually Gaussian) distribution [17,18]. Egami’s theory of topological fluctua-

tions in the bonding network has predicted that if the average local transformation

volume strain is larger than about 10%, the local atomic cluster site will become

topologically unstable and be liquid like [167]. This average local volume strain

can be analogous to the mathematical expectation of the probability distribution of

a local STZ-activated free-volume concentration in plastic flow. In addition, the
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recent work of Lu et al. [51] has also unveiled that the dividing line of free-volume

concentration is about 0.10, between a densely packed structure with a coordination

number (CN) of greater than 10 and a loose one with CN, 10. Therefore, we can

reasonably choose ξ
�� 0.10, d5 1.5 nm and ν5 0.36; the calculated shear-banding

width is w0 � 9 nm according to Eq. (8.7). This value agrees well with the charac-

teristic thickness (B10 nm) of shear bands in various metallic glasses, demonstrating

the intrinsic universality of local topological stability of STZs in glassy structures

undergoing inhomogeneous plastic flow. The shear-band thickness is underpinned

by a balance of the free-volume creation diffusion via the superposition of STZs.

Thus, the local topological instability of STZs, together with their activation size

and free volume, determines the width of the shear band in metallic glasses.

8.5.4 Shear-Band Spacing

During the process of loading, if one shear band is not sufficient to dissipate the

applied energy, additional shear bands will form within samples. Certainly, such

multiplication phenomenon of shear bands is sensitive to loading mode [26,56],

sample geometry [168], material composition [169], atomic topological order [170]

and so on. The operation of a single shear band will lead to stress unloading or

strain relaxation in the vicinity of that shear band. Such local unloading or relaxa-

tion causes other shear bands to be excluded from that vicinity, resulting in multi-

ple shear bands with characteristic spacing. In addition, the magnitude of shear-

band extension can be represented by the shear displacement within the band. At

the surface of the sample, the shear displacement behaves as a shear offset, which

has been widely observed [120,121,171]. It is assumed that a critical shear dis-

placement is required to create an MSB, and additional displacement may initiate

fracture of the material along the band.

Bending is an effective method to investigate the shear-band patterns in metallic

glasses [172]. Conner et al. [56,171] have carried out a series of experiments in

which they bent beams made of Zr-based (Vit 106) metallic glasses of various

thicknesses around mandrels of different radii. The nearly evenly spaced shear

bands as well as the shear offsets at the free surfaces were observed. Furthermore,

the sample thickness dependence of shear-band spacing and offset was quantita-

tively measured. Conner et al. [171] have performed an analysis of elastic perfectly

plastic bending by treating the shear bands as mode II cracks. In their consider-

ation, the maximum shear displacement occurs at the band end or the surface, while

at the shear-band tip the displacement is zero. They derived expressions for the

shear-band spacing and the shear offset, as well as their theoretical relationship.

Later, Ravichandran and Molinari [173] performed a more precise analysis to cap-

ture the essential details of the shear-banding phenomena during bending. By bal-

ancing the dissipated energy as calculated from elasto-plastic beam theory and the

energy dissipated along shear bands, and further introducing a failure criterion,

they obtained an explicit form of shear-band spacing at failure. The shear-band off-

set was also derived. These predicted models for shear-band spacing offset capture

the experimental observation taken from Conner et al. [56]. Based on the developed
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finite-deformation constitutive model of plasticity of BMGs and by implementing

the model in the finite-element programme, Yang et al. [126] simulated the bending

experiment performed by Conner et al. [56]. Their simulation results show that the

stress relaxation indeed happens due to the presence of a shear band, indicating a

linear relationship between the zone size and the plate thickness. This agrees well

with the experimental observation [56]. They further investigate the sample size

dependence of shear-band spacing directly by allowing for the formation of multi-

ple shear bands. The predicted almost linear spacing�thickness relationship is also

in good agreement with both that predicted by the stress relaxation analysis and the

experimental measurements of Conner et al. [56].

Recently, Zhang et al. [129] developed Grady’s model and explained shear-band

spacing in Zr-based BMGs under dynamic loads. They calculated the variation of

shear-band spacing with strain rate, normal stress and critical shear displacement.

It has been found that the shear-band spacing decreases with (a) increasing strain

rate, (b) decreasing shear displacement and (c) decreasing normal stress. The

results explained well their observed shear-band pattern beneath a dynamic

Vickers indentation. Also note that the difference with and without the thermal

effect is not significant for low confinement pressure and small shear displacement.

They thought this is reasonable because they did not observe obvious heating

phenomenon accompanying the shear bands even under such dynamic indentation.

In the model of Zhang et al. [129], the shear displacement was considered to be

constant along the shear band from its tip to its end. However, the experimental

observation shows a different situation [118]. The shear displacement varies between

almost zero and a maximum, with a value of zero at its tip, and the maximum

(up to tens of micrometres) at its end. This variation can explain the scatter values

of shear displacement that different researchers reported in different experiments

[113,118,128,159,160].

It is noted that the question of when the shear band occurs in one dominated

mode or in multiple mode has not been answered. What is the mechanism underly-

ing the shear-band patterns in metallic glasses? To this end, Dai and co-workers

[174] performed systematic four-point bending tests on Vit 1 BMGs. By develop-

ing a theoretical model that takes into account the structural feature of BMGs, they

have revealed that the shear-band propagation is controlled by the free-volume soft-

ening, and, however, the resultant momentum diffusion results in the multiplication

of shear bands with a certain characteristic spacing. The shear-band propagation

and nucleation (multiplication) are controlled by their respective consumed ener-

gies. Recently, Jiang and Dai [97] performed a specific loading, i.e. turn machin-

ing, to investigate the multiple shear-band behaviour. It is found that the material

removed exhibits a unique lamellar chip (Figure 8.15A) due to repeated shear-band

formation in the primary shear zone (PSZ). Based on the experimental observa-

tions, a coupled thermo-mechanical orthogonal cutting model, taking into account

force, free volume and energy balance in the PSZ, was developed, during which

the lamellar chip formation or the periodic multiple shear bands can be understood

as a self-sustained limit-cycle phenomenon (Figure 8.15B): there is autonomous

feedback in stress, free volume and temperature in the PSZ. More specifically,
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such multiple shear bands occur as a result of the periodic loading�unloading

cycle of material in the PSZ. It is revealed that the underlying mechanism is

the symmetry breaking of free-volume flow and source, rather than thermal insta-

bility. The results, on the one hand, confirm the picture of how shear-band spacing

results from stress relaxation [56,126,171,173]; on the other hand, it also provides

clear experimental evidence for the physical origin of shear-banding instability in

BMGs [20,27].

8.5.5 Pressure Sensitivity of Shear Banding

A lot of experimental observations [175�180] indicate that BMGs are pressure-

sensitive materials. The pressure dependence of (localized) plastic deformation

reflects the basic flow mechanism, which differs from that of their crystalline coun-

terparts. Although the precise physical picture of how this dependence arises from

the internal structure of BMGs remains elusive, it is plausible that it originates

from atomic-scale dilatation [10,181,182]. Crystalline solids can deform at constant

volume because the periodicity along slip planes provides identical atomic posi-

tions for sheared materials. However, a sheared portion of a BMG does not find

such a perfect fit and thus will leave some holes. As we have known, the macro-

scopic flow of BMGs occurs by the cascade of STZs. As a result, STZs change

into a loose configuration with a large volume, resulting in dilatation. Such dilata-

tion induces hydrostatic stress during STZ formation, and thus the resultant macro-

scopic plastic flow should depend on pressure or normal stress.

Very recently, Dai and co-workers [183] derived an intrinsic theoretical correla-

tion between the pressure-sensitivity coefficient and the dilatation factor in BMGs,

taking shear-induced dilatation into consideration in STZ operations. The behaviour

of STZs can be treated as an Eshelby-type inclusion problem [18]. To highlight the

essential physics, let the initial spherical STZ experience a shape distortion and an
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Figure 8.15 Lamellar chip morphology (A) of Vit 1 BMG and its underlying mechanism

and (B) limit cycles.

338 Adiabatic Shear Localization



accompanied bulk dilatation. It is easy to deduce that the shear strain is 2β and vol-

ume strain is 3α during such an STZ operation. The relationship between shear-

induced volume strain and shear strain is assumed to be linear, 3α5 ‘(2β), where ‘
is the dilatation factor measuring the ratio of dilatation to shear strain. Based on

these considerations, the relationship between the pressure-sensitivity coefficient m

and the dilatation factor ‘ is obtained, obeying

m5 3‘=½30ð12 2νÞ=ð72 5νÞ1 2ð11 νÞ‘2=ð12 2νÞ� ð8:8Þ

Now one question naturally arises: How does shear-induced dilatation affect

shear-banding instability in BMGs? To answer this question, Jiang and Dai [20]

recently conducted the 1D simple shear analysis for pressure-sensitive BMGs.

Figure 8.16 shows the internal length and timescales versus the dilatation factor

with various pressure-sensitivity indices. Note that the internal scales for shear

instability decrease with an increasing dilatation factor for any fixed m. This means
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that the shear-induced dilatation strain makes the shear-banding instability easier

and faster. In the fiducial interval (usually less than 0.3) of the dilatation factor, the

tensile hydrostatic stress further aids shear instability according to the present

results, which is consistent with the experimental observations by Flores and

Dauskardt [178]. The present results show that the dilatation or the pressure sensi-

tivity favours the origin or initiation of shear banding in metallic glasses.

The effect of pressure sensitivity on post-shear-banding behaviour has been inves-

tigated by Dubach et al. [176]. They found that with increasing pressure sensitivity,

the intersection angle of two families of shear bands gradually departs from 90�.
Moreover, Shi and Falk [184] have shown that the shear-band density significantly

decreases with increasing pressure sensitivity, using MD simulations, in which they

performed a series of uni-axial tensile tests on binary models of a glass with different

degrees of structural relaxation. The enhanced pressure sensitivity or dilatation, on

the one hand, facilitates the shear-banding initiation, and on the other hand, reduces

the multiplication of shear bands. This is apparently paradoxical; however, it can be

explained within the content of the free volume. It is well known that during struc-

tural relaxation, the free volume within samples is decreased. In such surroundings

with a lower free-volume content, the STZ operations become more difficult because

it requires more significant dilatation of the surrounding matrix. In fact, STZ opera-

tions occur preferentially in those regions having higher free volume as relatively

less dilatation is required. Therefore, the relaxed samples with lower free-volume

content hinder the formation of shear bands. However, for two samples with identical

states (the same free-volume content), if one has more dilatation during deformation,

i.e. creates more free volume, the shear-banding instability should initiate more easily

in this sample.

8.6 Shear Bands and Global Ductility

Ductility is a mechanical property that describes the extent to which solid materials

can be plastically deformed without fracture. Obviously, the ductility of BMGs is

determined by the shear banding, which is the only mode for the RT plastic deforma-

tion. If the propagation of a dominant shear band can slow down or be in a stick-slip

mode, then the onset of fracture might be delayed. In this case, the shear band is

regarded to be ‘cold’ or stable [142]. In addition, multiplication of shear bands, i.e.

distributing the plastic strain over many bands, contributes to global ductility

[169,170,172]. Certainly, the most attractive way to improve the ductility is the sup-

pression of shear bands, i.e. to achieve homogeneous deformation or necking prior to

final fracture [185�187]. In this section, we discuss several approaches to this issue.

8.6.1 Loading Mode and Strain Rate

Under deformation-constrained loading conditions such as compression [26,68],

rolling [188,189], bending [172] and indentation [190], obvious plastic flow can be
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achieved. In those cases, the shear-band propagation is geometrically constrained.

The emergence of plastic flow is of great interest for understanding the flow mech-

anism of this type of ‘brittle’ material [63,190]. However, those constrained geome-

tries are too restrictive to be generally useful for load-bearing applications. After

the geometrical restriction is released, the material still undergoes catastrophic fail-

ure with very limited ductility.

As discussed in Section 8.4.1, higher strain rates can promote shear-band forma-

tion in time. For some specific composites, if the resultant shear bands can distrib-

ute within samples as homogeneously as possible, it could enhance remarkably the

global ductility not only in compression [191,192] but also in tension [192,193].

However, as pointed out by Jiang et al. [68], the shear banding preferentially oper-

ates in the same regions at a higher strain rate. So the BMG under higher strain

rates stands a good change of forming a dominant shear band, which tends to lead

to fast catastrophic fracture [22,25,194]. In addition, it is worth noting that dynamic

strain rates (.103 s21) usually incur adiabatic heating, which also speeds up the

transition of shear banding to unstable failure [20]. Therefore, although higher

strain rates facilitate shear-band formation, the strain-rate dependence on ductility

has a two-edged effect. The ductility is determined by the competition among the

processes just mentioned: material and loading dependence.

8.6.2 Pre-treating

In conventional engineering materials, we can improve their mechanical properties

by the pre-treating of samples such as introducing residual stress/strain (gradient)

and severe plastic deformation. The similar pre-treating processes have also been

applied to BMGs, in expectation of improving their ductility, even in tension. So

far, there have been some pre-treating methods:

� Shot-peening [195]
� Pre-compression, including lateral [196], end-surface [197] and hydrostatic pressure [198]
� Surface wrap [199,200]
� Introducing a stress gradient [201]
� Releasing the boundary friction [202]
� Rolling [189].

Among them, shot-peening, pre-compression and rolling usually introduce resid-

ual stresses and/or inhomogeneous deformation, i.e. shear bands, into samples. For

instance, Zhang et al. [195] carried out shot-peening of a Vit 1 BMG and found

that the peened samples showed increased plasticity in bending and in compression.

The enhanced ductility results from a combination of compressive residual stress,

reducing the likelihood of surface cracking and more ‘uniform’ deformation

induced by a high population of pre-existing shear bands. These pre-treatments,

however, are not effective for improving the tensile ductility [189]. For the pre-

compressive samples [196�198], their tensile ductility deserves further attention.

Surface wrap treatments actually allow the wrapped object, such as a Cu con-

finement sleeve [199] or Cu coating [200], to participate in the global deformation
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that should be originally taken by the sample alone. In this case, even the already

fractured sample induced by a dominant shear band still undergoes an applied

stress. Therefore, the observed plasticity or ductility is actually apparent, which is

similar to that arising from tilting or bending of specimens [201]. Very recently,

Scudino et al. [202] investigated the effect of boundary conditions on the compres-

sive plasticity of the Vit 1 BMGs by using a pure Cu foil as a lubricant material

between loading platens and the sample. They found that the soft metal is very

effective for reducing the contact friction at the platen�specimen interface, leading

to a remarkable increase in plastic deformation with respect to the conventional

semi-fluid MoS2 lubricants or no lubricant. It seems that the more homogeneously

the stress state is in the sample during deformation, the more ductile the deforma-

tion of the sample is. However, as mentioned earlier, the stress inhomogeneity/

gradient pre-existing in the sample favours plasticity [196,197,201]. The reason

may be that the pre-existing stress gradient compensates for the stress inhomogene-

ity that arises during deformation. Also note that, in the present case, the Cu plates

actually undertake a portion of deformation, which leads to a lower yield stress.

8.6.3 Sample Size and Machine Stiffness

In the early 1990s, Inoue et al. [203] observed that Fe-based and Co-based metallic

glasses wires could exhibit good bending ductility only if the sample diameter was

below a critical value. Such a size effect for ductility was studied quantitatively by

Conner et al. [56,171], by bending Zr-based plates, ribbons and wires. They found

that the strain to fracture increases markedly as the sample dimension decreases.

Note that different sample sizes are produced in two ways. The first is samples

with different sizes are cut from an identical as-cast plate or rod. Thus, the samples

obtained are almost identical both chemically and structurally. In the second case,

the samples with different sizes are directly cast from melt alloys and thus have

distinct atomic structures due to different cooling rates. In this section, we only

focus on the first case, i.e. the sole sample size effect. The structural factor will be

discussed in the next section.

During MD simulations of uni-axial tension of Mg�Cu metallic glasses with

scales of about 10 nm, Bailey et al. [135] have seen surprisingly that necking insta-

bility occurs before shear banding. They presumed that the disagreement with mac-

roscopic observations comes from the local nature of a shear band compared with

the ‘global’ nature of a necking instability. In a macroscopic sample, the effective

‘wavelength’ of the necking mode will be of the order of the sample size, while the

characteristic size of a shear band is still of the order of tens of nanometres, which

makes the latter much more likely to become unstable. Such a large difference in

scale is lost in their simulations, in which the sample size is reduced to the shear-

band size. Another factor that suppresses shear banding relative to necking is the

necessity of breaking symmetry to choose the orientation of the shear plane. It is

therefore expected that, in the rod sample down to 100 nm in diameter, necking

instability is more likely to take place than the shear-banding instability. Recent

experiments have confirmed this point. Actually, Jang and Greer [187] observed
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the necking instability in the nano-tension of a specimen with a diameter of

100 nm. Similar necking phenomena have also been observed in the tension of

metallic glass plates with dimensions of the order of 100 nm [186]. Most interest-

ingly, during the tension of Al-based metallic glass with a size less than 20 nm,

even an atomic chain was formed after sample necking [204]. In particular, homo-

geneous deformation can also be observed in compression [185,205], bending

[185], even tension [206] of metallic glasses with similar characteristic sizes, dur-

ing which the samples are usually constrained to some extent. Now it can be con-

cluded that the critical nuclei size or approximately characteristic size of a shear

band (usually tens of nanometres) separates the inhomogeneous from homogeneous

deformation. If the sample size is larger than this value, then shear-banding insta-

bility occurs, and the sample exhibits brittle behaviour; in the other case, the neck-

ing instability or even homogeneous flow dominates, and the sample is ductile.

As mentioned in Section 8.5.1, Masumoto and Murata [138] have noticed the

effect of machine stiffness on shear banding. They found that the higher the stiff-

ness of the machine, the shear bands progressively become more stable. Recently,

Han et al. [153] investigated quantitatively this effect considering a sample-

machine system. Assuming the crack-like behaviour of a shear band, they derived

an instability condition for shear-band propagation, given by:

S5
πEd2s
4lsκM

. Scr ð8:9Þ

where κM is the stiffness of the testing machine, Scr is a critical shear-band instabil-

ity index that is a material parameter related to intrinsic plasticity and E, ds and ls
are the Young’s modulus, diameter and height of the sample, respectively.

Equation (8.9) indicates that the larger the S (larger ds and/or smaller κM for a fixed

aspect ratio of the sample) the larger the possibility of shear-banding instability.

Based on a series of compressive tests with a range of controlled values of sample

size and machine stiffness, ScrB0.72 and B4 are determined for the aspect ratios

of 2 and 1, respectively. To modify the conflict with the sample-height effect on

shear banding in Eq. (8.9), Cheng et al. [142] proposed a more precise factor for

shear-banding instability ls (11 S). Taking the energy balance of the shear-banding

propagation into consideration in the sample-machine system, Yang et al. [154]

arrived at a simple geometrical relation for the size-dependence ductility of BMGs:

Lext 5 ls 1 ιds $ Lint ð8:10Þ

where Lext is an extrinsic length scale corresponding to the elastic energy release

and ι is a dimensionless parameter accounting for the effect of machine stiffness;

whereas Lint can be viewed as the internal resistance of a BMG to unstable shear

banding and is independent of sample sizes. Unstable brittle fracture induced by

the shear band will occur if Lext$ Lint. If the material is fixed, i.e. Lint5 constant,
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Lext should determine the shear-band behaviour and thus the ductility. Yang et al.

[154] found that the ductility measured for the Zr-based BMGs with different sim-

ple geometries shows a very good correlation with the extrinsic length scale Lext,

here assuming ι5 1 for simplicity. It predicts a critical intrinsic length scale of

approximately 9 mm. It must be pointed out that the criteria just mentioned were

obtained based on the compressive case. Extension of them to tensile cases needs

to be attempted very carefully.

8.6.4 Composition and Atomic Configuration

The previous sections mainly discussed the effects of external factors on ductility

of BMGs. Strictly speaking, the competition of external�internal factors deter-

mines the global ductility of metallic glasses, as indicated by Eq. (8.9) or (8.10). In

this section, the intrinsic plasticity or ductility of materials is focused on. Poisson’s

ratio ν and equivalently the shear-bulk modulus ratio (G/K) criterion for intrinsic

plasticity have been long established in crystalline alloys and are now found to be

validated in metallic glasses. Lewandowski et al. [207] compiled a list of experi-

mental data and found that there is a universal, sharp correlation for metallic

glasses: they are intrinsically plastic for G/K, 0.412 0.43 or equivalently for

ν. 0.312 0.32. Recent research [169,208,209] has also demonstrated that the

Poisson’s ratio is a good indicator of the potential of metallic glasses to sustain

plastic deformation. It is well known that elastic constants of a material are deter-

mined by its composition and microstructure. Therefore, a Poisson’s ratio criterion

allows us to understand the intrinsic plasticity of BMGs from the viewpoint of

alloy composition and atomic configuration. For instance, through composition

changes, Liu et al. [169] created some Zr-based BMGs that have relatively large ν
values and display a capability to undergo multiple shear bandings and thus com-

pressive ductility. Certainly, a specific soft�hard region structure (this will be dis-

cussed shortly) exists in their systems, which implies that the composition and

structure are coupled to some degree in real cases.

When the alloy composition is fixed, different atomic configurations of BMGs

can be obtained by changing the cooling history, i.e. the cooling rate. Shi and Falk

[184] performed a series of uni-axial tests on binary models of metallic glasses by

using MD simulations. It was revealed that the stress overshoot decreases as the

cooling rate decreases. As we know, the stress overshoot is a measure of the ten-

dency of shear banding. The larger the overshoot, the more metallic glasses are

prone to shear localization. Recent experiments also show a similar tendency,

although the sample size effect was included [168]. In the pure shear case, similar

results have been obtained by Cheng et al. [210]. Furthermore, they examined the

Poisson’s ratio, configurational potential energy (CPE), shear modulus, bulk modu-

lus and population of FI and fragmented polyhedral (FP) in the samples with differ-

ent cooling rates. Table 8.2 includes these results for comparison. It can be found

that the Poisson’s ratio is higher in the sample with the higher cooling rate; its PEL

is similar to that of a fragile liquid, with the higher CPE, the lower barrier of the

megabasin and the lower effective curvature upon shearing at the basin bottom.
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The shear modulus Gc is then lower in this sample. With this PEL, the population

of FI (solid-like clusters) is lower, whereas the concentration of FP (liquid-like

clusters) is higher. A higher population of liquid-like clusters implies that there is a

higher free-volume concentration within the sample. In this case, the shear localiza-

tion occurs more easily or earlier, which is confirmed by Jiang and Dai [20]. In

fact, the intrinsic correlation between fragility and Poisson’s ratio in non-metallic

glasses or metallic glasses has been reported by many researchers [211�214].

Because the bulk modulus corresponds to another dimension (hydrostatic expansion

or shrinkage) in the PEL, which is correlated with valence electron density and not

sensitive to configuration or cooling rates, when the composition is fixed, roughly,

the lower the shear modulus of the sample, the more ductile the sample is.

However, in the real case, the bulk modulus decreases with increasing cooling rate.

Such a small decrease hardly affects the compressive ductility, but significantly

degrades the tensile ductility, which will be discussed in detail in the following.

According to the results of Cheng et al. [210], it can be concluded that the

Poisson’s ratio criterion for plasticity indeed has a structural origin [215].

In BMGs, the deformation mode is no longer anisotropic dislocation motion,

which is sensitive to lattice types and slip planes, but rather an isotropic and uni-

versal one featured by the STZs. The STZ essentially is an SRO or MRO atomic

cluster undergoing inelastic shear distortion. Assuming a Gaussian radial distribu-

tion function at SRO or MRO scale, Jiang and Dai [216] correlated the Poisson’s

ratio with the atomic structures of metallic glasses. The structural conditions for

plasticity of BMGs can be concluded as follows:

� Atomic packing is denser.
� Such packing is more disordered.
� Atomic interaction is more anharmonic.

If the constituent atoms are fixed, i.e. the anharmonicity is identical, brittle

BMG systems should have larger mean distances and less disorder. The opposite

refers to plastic systems. However, the structural conditions for plasticity of BMGs,

Table 8.2 Physical Properties of Metallic Glass Samples with High and Low Cooling Rates

Samples High Cooling Rate Low Cooling Rate

Stress overshoot Low High

Poisson’s ratio High Low

PEL

CPE High Low

Shear modulus Low High

Bulk modulus Almost same

Population of FI Low High

Population of FP High Low
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i.e. higher atomic packing density and more significant atomic dispersion, are

difficult to simultaneously satisfy during the real experimental process. A higher

density of atomic packing can be achieved by structural relaxation or lowering the

cooling rate during glass forming, during which atomic disorder is reduced. Hence

a BMG becomes stiffer or harder. This is reflected in a change in the elastic

constants and a decrease in the Poisson’s ratio and embrittlement [207]. However,

the disordered packing of atoms implies that a BMG is soft. Often, we can obtain a

soft BMG with disordered atomic packing by using higher cooling rates, during

which more randomly distributed free volume is inherited from the liquid. But such

BMG systems have lower density of atomic packing, which is adverse to the plas-

ticity, especially to the tensile ductility. It is expected that a monolithic BMG may

be very plastic not only in compression but also in tension, when a perfect balance

among the preceding conditions is realized by careful selection of its composition,

controlling liquid�glass transition and temperature and/or mechanical treatments.

8.6.5 Shear Banding in Metallic Glass Composites

The pioneering work in this aspect was performed by Johnson and co-workers

[217] aiming at defence applications. They fabricated Vit 1 matrix composites rein-

forced with uni-axially aligned tungsten wires and used them as kinetic energy

penetrators, in which the BMG matrix shows self-sharpening behaviour due to

localized shear-band failure, and the tungsten wires contribute to the kinetic energy

due to high density. They found that the tungsten fibre-reinforced BMG composite

has approximately a 10�20% improvement in penetrator efficiency over the tung-

sten heavy alloy. This research arouses growing interest due to its potential military

value [218�221].

On the other hand, the concept of developing composites by combining the

BMG matrix with second phases has been introduced to overcome the RT brittle-

ness. Broadly, there are two types of BMG composites. One can be called ‘in situ

composites’, where nanocrystalline phases or polymorphic glassy phases are grow-

ing in situ within the original metallic glass matrix [222�226]. The other is ‘ex

situ composites’, where second-phase particles, fibres or slices are added to a melt

prior to casting [221,227�232]. For whichever BMG composites, it is always antic-

ipated that more shear bands, as well as deformation or transformation of second

phases in some cases, contribute to macroscopic plastic strain before fracture, i.e.

ductility. Therefore, the shear-banding behaviour in these composites and its inter-

action with second phases are of central significance.

Usually, the second phases have three contributions to ductility. Firstly, they

create stress concentrations around their sides due to the mismatch resistance of

them and glassy matrix to the external stress. Large numbers of shear bands can

form from these stress-concentrated sites. To this end, ‘soft’ elastic/plastic inhomo-

geneities are often introduced into a glassy matrix [223,233�235]. Secondly, they

act as the obstacle to shear-band propagation across the sample. After the shear

bands encounter the second phases, these bands are either arrested or bypassed. To

achieve this purpose, you should carefully choose the size and volume fraction of
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the second phases. Matsumoto et al. [236] recently performed MD simulations of

mode II deformation on a notched Zr-based BMG plate containing one nanocrystalline

particle of Ni ahead of the notch base. They found that the resistance to shear banding

is efficiently improved by introducing particles with sufficient size compared to the

shear-band width. In addition, if you want to suppress the shear band in favour

of cracking, Hofmann et al. [223] argue that the sizes of the second phases should

match a material length scale related to fracture toughness, i.e. the size of a crack tip’s

‘plastic zone’. Schuh et al. [10] examined the effect of volume fraction of the second

phase on the plastic strain to failure in compression and tension for a variety of com-

posites. Data suggest that different second phases have different optimum volume

fractions that are very sensitive to the matrix, loading mode and the respective sizes of

the second phase and matrix. Thirdly, in some cases, the nanocrystalline second phase

itself undergoes transformation, dislocation and twinning, which not only contributes

to ductility but also produces work hardening [44,170,224,235].

Hays et al. [233] pioneered a quantitative analysis of the effects of second phase

on the macroscopic plasticity. Based on the experimental observations, they con-

cluded that the global plastic strain is controlled by the shear-band thickness and

spacing. Obviously, overall plasticity or ductility can be improved by decreasing

shear-band spacing by appropriately tailoring the microstructure. Very recently,

Abdeljawad and Haataja [237] developed a diffuse-interface continuum model to

examine the role plastic strain accumulates in ductile particles prior to shear band-

ing. Based on a series of simulations, they suggested that the total plastic strain is a

function of the particle size.

8.7 Prospects and Summary

As a unique deformation mode and a precursor of catastrophic failure, the nature of

shear banding in metallic glasses has both scientific and practical significance. In this

aspect, areas of interest involve (a) the geometrical configuration of shear bands such

as thickness, length and spacing; (b) the structural change and temperature rise that

occurs in shear bands; (c) the shear-band dynamics, including the propagating mode

and velocity of shear bands; (d) the deformation accommodated by shear bands, includ-

ing plastic strain and its strain rate; and (e) the shear-banding ductility relationship.

Amongst them, the mechanism of shear-band formation and propagation is of central

importance. In summary, we briefly provide some important conclusions:

� The shear-banding instability in metallic glasses initiates due to the coupled free-volume

softening and thermal softening. Neither free-volume softening nor thermal softening can

incur shear instability alone.
� During the shear-instability process, the free-volume softening plays the dominated role,

whereas the thermal softening is a secondary effect. They contribute to each other. Physically,

the shear band nucleates due to a cascade of stress-activated STZs or flow defects with the

thermal fluctuation in the background.
� The shear-band evolution is a dissipation system, including thermal, momentum and free-

volume dissipation from the shear band. The dissipated energy within the shear band is
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determined by the balance between the momentum diffusion and the free-volume diffu-

sion. The optimum dissipated energy corresponds to the shear-band thickness, about

10 nm. The momentum dissipation governs the shear-band spacing.
� The shear bands can branch, intersect, multiply, be arrested and even be suppressed,

which contributes to the global plasticity of metallic glasses.

Nevertheless, there are many unresolved problems regarding shear bands in

metallic glasses, which deserve further study. For example:

� Shear-band dynamics. The question of what modes the shear band propagates in has not

been resolved well. The shear-band speed reported in the literature is confusing, from

several micrometres to thousands of metres per second. How can an existing shear band

disappear or stop? To answer these basic questions, it is urgent to develop proper experi-

mental techniques with enough spatio-temporal resolution.
� Shear-band-induced crack process. A shear band finally evolves into a crack. It is not

clear how a crack nucleates within a shear band. How to characterize the energy dissipa-

tion prior to cracking and crack nucleation needs to be studied.
� Development of shear-band multiplication methodology. So far, much work has focused

on the compressive plasticity via the multiplication of shear bands. As for the deforma-

tion-unstrained loading case, e.g. uni-axial tension, these methods pose a great challenge.

Developing shear-band multiplication methodologies suitable for the tension case is of

more practical significance.
� Shear banding in BMG derivatives. The shear-banding process in pure BMGs has

attracted much attention, in which its origin is reasonably clear, whereas the evolution

process still remains unclear. However, the investigation of shear banding in BMG deri-

vatives, including composites and porous materials, is still little understood. Current work

is mainly confined to experimental observations and deals little with the quantitative

description. Many questions deserve to be studied. For example, how does the introduc-

tion of a second phase (particle or void) affect the process of shear banding in the BMG

matrix? If the ASB occurs in the second-phase particles, how do the two types of shear

bands, i.e. the ASB and the free-volume-governed shear band, act together? How does

the shear band within the matrix propagate through the second phases?
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