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Abstract 

Two different spatial levels are involved concerning damage accumulation to eventual failure. 

nucleation and growth rates of microdamage nN* and V*.  
It is found that the trans-scale length ratio c*/L does not directly affect the process. Instead, 

two independent dimensionless numbers: the trans-scale one ( )* * *V including the 
* * *5 *

N c V including mesoscopic parameters only, play 
the key role in the process of damage accumulation to failure.  

The above implies that there are three time scales involved in the process: the macroscopic 
imposed time scale tim =  /a and two meso-scopic time scales, nucleation and growth of dam-
age, ( )* *4

N Nt =1 n c  and tV=c*/V*. Clearly, the dimensionless number De*=tV/tim refers to the 
ratio of microdamage growth time scale over the macroscopically imposed time scale. So, 
analogous to the definition of Deborah number as the ratio of relaxation time over external one in 
rheology. Let De  be the imposed Deborah number while  De  represents the competition and 
coupling between the microdamage growth and the macroscopically imposed wave loading. In 
stress-wave induced tensile failure (spallation) De* < 1, this means that microdamage has enough 
time to grow during the macroscopic wave loading. Thus, the microdamage growth appears to be 
the predominate mechanism governing the failure.  

Moreover, the dimensionless number D* = tV/tN characterizes the ratio of two intrinsic 
mesoscopic time scales: growth over nucleation. Similarly let D  be the “intrinsic Deborah 
number”. Both time scales are relevant to intrinsic relaxation rather than imposed one. Further-
more, the intrinsic Deborah number D* implies a certain characteristic damage. In particular, it is 
derived that D* is a proper indicator of macroscopic critical damage to damage localization, like 
D* ∼ (10–3~10–2) in spallation. More importantly, we found that this small intrinsic Deborah num-
ber D* indicates the energy partition of microdamage dissipation over bulk plastic work. This 
explains why spallation can not be formulated by macroscopic energy criterion and must be 
treated by multi-scale analysis. 
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This can entail sample size
three physical processes with three different rates, namely macroscopic elastic wave velocity a, 

to failure 
and time scales and governing damage evolution
“Deborah numbers”, coupling multiple space

(∼cm) to characteristic microdamage size c*(∼µm). Associated are 
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1. Introduction 

From damage accumulation to failure, there prevails an important time-dependent 
phenomenon involving spallation in which failure occurs under transient loading 
like nano- to micro-seconds. Experimental observations suggest a time-integral 
criterion for spallation [1], 

*( 1) × t = K   (1) 

where σ and σ* are stress and a stress threshold respectively, t  is the load dura-
tion, υ ν and K are two parameters. This criterion indicates that the critical stress 
to spallation is no longer a material constant, but a variable depending on its load-
ing duration. Furthermore, since the power exponent υ  in the criterion is usually 
neither 1 nor 2, the criterion implies neither momentum nor energy criteria macro-
scopically [1-3]. Comprehensive and critical reviews on spallation have been made 
[4-6]. It is stressed that “the continuum models based on the statistical nucleation 
and growth of brittle and ductile fracture appear to be an attractive approach, espe-

grain-boundary microcracks involve the cooperative interactions of propagating 
cracks. Insight into such processes is required from the perspective of stochastic 
mechanics and from computer simulations of the debonding of assemblages of 
grains”. 

It follows that spallation is a typical process with coupled multiple space and 
time scales. At least, there are two length scales: the sample size at macroscopic 
level and the microdamage size at mesoscopic level. On the other hand, there are 
three time scales: the stress wave loading duration macroscopically, the mesoscopic 
nucleation time and growth time of microdamage. So, spallation represents an 
illustrative example with multiple space and time scales. 

2. Statistical Microdamage Mechanics 

The general evolution equation of microdamage number density is [8] 

( )I
i

N
i 1 i

n Pn
n

t p=

∂ ⋅∂ + =
∂ ∂

 (2) 

where t is time, nN is the nucleation rate of microdamage number density. i iP = p ,
“.” denotes the rate of variable pi ,  which represents the state of microdamage. Af-
ter taking the phase variable p as the current size of microdamage c, i.e. p = c, we 
have obtained a general solution to microdamage number density n(t,c; σ), [9-10] 

–

cially with a framework which provides some forms of a continuum cumulative-
damage description of the evolving fracture state” [6]. Recently, the work
in [7] suggests that “dynamic failure by the growth and coalescence of 
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where co is the nucleation size of microdamage and the time-dependent feature is 
expressed by the moving front of microdamage cof or cf in terms of the integral 

f

0f 0

c c

o oc c

dc dc 
t = =

V(c,c ; ) V(c,c ; )
 (4) 

More importantly, there are two mesoscopic rate processes of microdamage 
involved in solution (3): nN(c0;σ) is the nucleation rate of microdamage number 
density and V=V(c, c0; σ) is the growth rate of microdamage.   

The relation between continuum damage D and the number density of micro-
damage n is 

0
D(t, ) n(t, , c) dc

∞
= ⋅ τ ⋅x x  (5) 

where τ ∼ c3 is the failure volume of an individual microdamage with size c, 
[11-12]. Then, the statistical evolution equation of microdamage number density in 
Eq. (2) can be converted to the continuum damage field equation by integration 
under proper boundary conditions and its the one-dimensional Lagrangian form is 
[11-12]. 
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 (6) 

where f is the dynamic function of damage, which represents the statistical average 
effects of nucleation and growth of microdamage on continuum damage evolution 
and ′
conventional field equations of continuum, momentum and energy,  

v
T X

∂ε ∂=
∂ ∂

 (7) 

0
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T X
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 (8) 

′
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dc , c>c0 f,0

“Deborah numbers”, multiple space and time scales 

=d dc . Combining the damage field relation in Eq. (6) with the following 
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a coupled trans-scale framework is formed for the damage evolution [13-14], 
where ρ0 is density of intact material, λ is heat conductivity, θ is temperature and 
ediss is the energy dissipated in the material element. 

In accord with Π theorem in dimensional analysis, 10 parameters involved in 
spallation (see Table 1), can form 6 independent dimensionless numbers. However, 
when Eqs. (6-9) are non-dimensionalized it is found that there are 5 independent 
quantities only. 

Table 1. 8 parameters involved in spallation 
 parameter symbol dimension 

Sample size L
Density ρ ML–3

Elastic wave speed a LT –1

Characteristic stress σY ML–1T–2

Impact velocity vf LT –1

Heat conductivity λ MLT –3θ–1

macroscopic 

Heat capacity cV L2T–2θ 1 

Characteristic nucleation rate of microdamage nN
* L–4T–1

Characteristic growth rate of microdamage. V* LT –1mesoscopic 
Characteristic size of microdamage c* L 

In the 5 dimensionless numbers, there are 3 conventional macroscopic ones: the 
well-known Mach number, damage number and Fourier number, related to contin-
uum, momentum and energy equations respectively. Consider the other two 

trans-scale dimensionless numbers: the imposed Deborah number
*

*
*

ac
De

V
=  and 

the intrinsic Deborah number
* *5

* N
*

n c
D

V
= .

For a group of Al alloy spallation tests, ∼ (5-10)mm, vf ∼ 102 ms 1  c* ∼
4.27⋅10–6 m, V* ∼ 5.96 ms–1 and nN

* ∼ 5.22⋅104 mm–3µm–1µs–1, derivation leads to 
De* ∼ 1 and D  ∼ (10–2 ∼ 10–3) [10-12].

Noticeably, the ratio of two length scales on meso- and macro-levels c*/  does not 

appear here. Actually, the imposed Deborah number 
*

*
*

ac
De

V
=  is a combination of 

two ratios: the size scale ratio c*/  and the ratio of two velocities V*/a. Also, the im-
posed Deborah number De* is a unique trans-scale dimensionless parameter, since 
elastic wave speed a and sample size  are macroscopic parameters whereas mi-
crodamage size c* and microdamage growth rate V* are mesoscopic ones. This is 

3. Deborah Numbers, Coupling Multiple Space and Time Scales 

–

–

4

*



very different from all other dimensionless parameters. On the other hand, 
De* = tV/tim refers to the ratio of microdamage growth time scale tV = c*/V* over the 
macroscopically imposed time scale tim = /a. This is why we call it Deborah num-
ber. 

The intrinsic Deborah number
* *5

* N
*

n c
D =

V
 characterizes the rate ratio of the 

two intrinsic mesoscopic processes: nucleation over growth. Actually, D*= tv/tN,
where tV = c*/V* and ( ) 1* *4

N Nt n c
−

=  are the growth and nucleation time scales re-
spectively. Note that the characteristic nucleation time tN is not the time needed for 
an individual microdamage to nucleate, but the time to form a characteristic nucle-
ated damage fraction, since *

ND  means the damage fraction merely due to nuclea-
tion in unit time. 

*
4 3N

N N

3
N N

1 1t
n c [(n c )c ]

1 1
(N c ) D

= =

= =
(10)

Above all, in the case study of spallation, there are three time scales: the macro-
scopic imposed time scale tim= /a∼10–6 s and two meso-scopic time scales, growth 
time scale tV = c*/V*∼10–6 s and the nucleation time scale ( ) 1* *4

N Nt n C
−

= ∼10 3 s.
These lead to De* ∼1 and D  ∼ (10–2 ∼ 10–3) too. However, this is not the whole 
story of Deborah numbers. 

4. The Significance of Deborah Numbers in Failure 

4.1 Imposed Deborah number governs the failure process 

Note that the imposed Deborah number De*= tV/tim represents the competition 
and coupling between the microdamage growth and the macroscopically imposed 
wave loading. Also, in the concerned spallation case De*∼ 1, this indicates that mi-
crodamage has enough time to grow during the macroscopic wave loading and then 
microdamage growth may be the predominate mechanism governing spallation.  

*

istic damage, since Eq. (5) can be written as 

−

and damage localization 
4.2 Intrinsic Deborah number signifies characteristic damage

5“Deborah numbers”, multiple space and time scales 

*Turn to the intrinsic Deborah number D . Firstly, D  implies a certain character-

* * ***

* * *

*
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All variables with bar above denote non-dimensionalized and normalized ones, 
hence the preceding dimensionless combination, i.e. the intrinsic Deborah number 
D , represents the magnitude of damage D. In the concerned spallation, this means 
a characteristic damage is of D  ∼ (10–2 ∼ 10–3) . 

Also, D* is a proper indicator of critical damage to localization. Damage local-
ization can be formulated as follows[15] 

D
DX[ ] )T T

D D
X

∂∂ ∂∂
∂ ∂≥∂
∂

 (12) 

It has been derived that provided the dynamic function of damage can be expressed 
by  

f f (D, )= σ  (13) 

Under a certain approximation the damage localization condition (12) can be ex-
pressed by the following inequality [15],

D

f
f

D
≥  (14) 

Where D

f
f

D

∂=
∂

. Obviously, this condition (14) represents an intrinsic feature 

and irrelevant to any specific conditions of tests. 
Combining the damage localization condition in Eq. (14), the definition of dy-

namic function of damage in Eq. (6) and the expression of damage in Eq. (5), a 
critical damage to localization can be derived:  

f N 0
f N 0 0 0* *5 0 0

N 0 f
c *

f N 0 00

*

(c )n (c )
(c )n (c )dc dc

n c V(c , c )
D

V (c )n (c )dc

D O(1)

∞ ∞

∞

ττ ⋅
≈ ⋅

′τ

= ⋅

 (15) 

This once more is the intrinsic Deborah number D*.
As above, the dimensionless combination preceding the normalized integrals in-

dicates the magnitude of the critical damage to localization. Compare the obtained 

)
))

))

*

*



result with experiments. As noted before, experiments gave 
* *5

* N
*

n c
D

V
= ∼ (10–2 ∼

10–3). According to the localization condition in Eq. (14), there results in the criti-
cal damage to localization Dc ∼ 4 10–3 [12]. Clearly, the intrinsic Deborah number 
D* does characterizes the magnitude of the critical damage Dc. Some simulations 
(Fig. 1) demonstrate that the intrinsic Deborah number does signify a certain char-
acteristics in damage localization. 

In the numerical study, a fixed De = De /D  = 65.9 is taken. The most localized 
distribution occurs in the case of (De = 0.151 equivalent to D  = 0.0023), whilst 
the case (De = 0.415 equivalent to D  = 0.0063) demonstrates hardly localized 
distribution. This is in agreement with the analysis that lower D  indicates lower 
threshold of critical damage to localization. In Fig. 1,  is the plate thickness 
(sample size). 

4.3 Intrinsic Deborah number signifies partition of energy dissipation  

The energy partition will be clarified by examining the energy equation [16-17]. 
After splitting the dissipation term into damage and plastic ones, Eq. (9) may be 
rewritten as  

p 2

0 V 2T T T X

∂θ ∂ε ∂Σ ∂ θσ + γ + λ
∂ ∂ ∂ ∂

where Σ and γ are the total surface area of microdamage and corresponding 
equivalent surface energy in unit volume respectively. Certainly, the partition of 
plastic dissipation (the first term on the right hand side) and the damage one (the 
second term) are of our interest. Again, the dimensionless energy equation is:  

p 2
*

2
D

T T T Y

∂θ ∂ε ∂Σ ∂ θ= σ + + Ψ
∂ ∂ ∂ ∂

 (17) 

As before, all variables with bars are dimensionless and normalized, i.e. in O(1). 
The last term indicates the heat transfer and Ψ is a dimensionless number relevant 
to Fourier number. For aluminum, λ=238W/m⋅K, ρ0~2700Kg/m , cV~903J/kg⋅K, 

a~5000m/s, 30 V

0 V

10
v a

1
c a a

−λ ρλ κΨ = = = = <<
ρ

. This implies that spal-

lation appears to be adiabatic.  
Now, the energy dissipation involved in spallation consists of two parts only: 

plastic dissipation and damage dissipation. Examine the term of damage dissipation 
in more details. Approximately, γ can be estimated with (σYεY c ) and Σ with 
(nN c 4/V ) whereas the plastic dissipation with σYεY. therefore, the dimen-
sionless and normalized combination preceding the damage dissipation term 

7

ρ =c

“Deborah numbers”, multiple space and time scales 
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*

*
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(16)
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T

∂Σγ
∂

is (σYε Y c ) nN c 4/V / σYε Y = nN c 5/V  = D  as shown in Eq. (17). 

It becomes clear that the energy dissipation involved in spallation consists of two 
very different parts: plastic dissipation in O(1) whilst damage dissipation in O(D ), 
see Eq. (17). It can be said that the temperature rise in spallation is mainly due to 
plastic dissipation, since D <<1. Fig. 2 gives a numerical result of the energy parti-
tion in spallation. One can notice that the damage dissipation varies around the 
magnitude of the intrinsic Deborah number D .  

It is clear from Fig. 2(a) that the temperature increments induced by damage is 
much less that that induced by plastic dissipation. And the ratio of temperature in-
crements due to damage over plastic dissipation varies around the value of D , as 
shown in Fig. 2(b). 

5. Conclusion 

Two independent dimensionless numbers: the trans-scale imposed Deborah 

number 
*

*
*

ac
De =

V
 and the intrinsic Deborah number 

* *5
* N

*

n c
D =

V
govern the 

process of damage accumulation to failure.  

The trans-scale imposed Deborah number
*

*
*

ac
De =

V
 represents the competition 

and coupling between the microdamage growth and the macroscopically imposed 
wave loading. In spallation De* < 1 means that micro-damage has enough time to 
grow during the macroscopic wave loading. Thus, the microdamage growth ap-
pears to be the predominate mechanism governing the failure.  

Fig. 1. The spatial distribution of damage normalized by its maximum. 

*******

*

*

*

*

*

*

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

De* = 0.415

0.277

0.207

0.166

0.151

M = 0.0305
S = 0.153
De = 65. 9

N
or

m
al

iz
ed

 d
am

ag
e 

di
st

rib
ut

io
n 

D
/D

m
ax

Normalized coordiante x/l

.



Fig. 2. The spatial distribution of temperature rise. 

The intrinsic Deborah number
* *5

* N
*

n c
D =

V
 characterizes the ratio of micro-

damage growth rate over nucleation. The intrinsic Deborah number D* implies a 
certain characteristic damage and is a proper indicator of critical damage to dam-
age localization. More importantly, this small intrinsic Deborah number D* ∼ (10–2 

∼ 10–3) indicates the energy partition of microdamage dissipation over bulk plastic 
work in spallation.  

9“Deborah numbers”, multiple space and time scales 
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