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8.05.1 INTRODUCTION

The peel test has been used widely for the
mechanical characterization of adhesion phe-
nomena in various applications involving
adhesive joining and thin film technology in
industries as diverse as the micropackaging and
microelectronic industries and the automotive
industry. The test received considerable atten-
tion for several decades prior to early 2000s
and continued to be the subject of intense
scrutiny in a wide range of research areas (e.g.,
Feliu-Baez et al., 2001; Choi and Oh, 2001;
Asai et al., 2001; Bundy et al., 2000; Yang et al.,
2000; Hulcher et al., 1999; Tanaka et al., 2000;
Rahulkumar et al., 2000; Kawabe et al., 2000).
Many experimental and theoretical investiga-
tions have been performed on interfacial
fracture of the film/substrate systems. The
effects of the system parameters, such as the
peel angle employed, the film thickness, the
degree of intrinsic adhesion acting between
the materials, the test rate, temperature, etc.,
on the interfacial adhesion behavior have been
studied. In the most straightforward use of the
test, it can serve to rank adhesive interfaces. In
more fundamental applications, the test is
employed as a means of measuring the intrinsic
adhesive energy of an interface or an adhesive
layer. It is in such attempts where difficulties
often arise due to the occurrence of extensive
plasticity that significantly contributes to the
experimentally measured effective adhesion
energy. An effective partitioning of the intrin-
sic adhesive energy and the extrinsic plastic
dissipation provides the motivation underlying
the analyses reviewed in this chapter. Peel test
analysis attempts to predict the tensile stresses
set up in the adhesive layer in terms of the
measured peel force and material properties.
Following this line, Spies (1953) was the first to
analyze elastic peeling by considering the 901
peeling of a thin strip and the attached part of
the adherend as an elastic beam on an elastic
(Winkler) foundation with the detached part of
the beam undergoing large deformation (an
elastica). Similar elastic models have also been
presented by Bickerman (1957), Kaeble (1959,
1960), Jouwersma (1960), Yurenka (1962),
Gardon (1963), Saubestre et al. (1965), Kendall
(1973), Gent and Hamed (1975), Nicholson
(1977), and Bigwood and Crocombe (1989).
The effect of adherend plasticity was consid-
ered by Chen and Falvin (1972), Chang et al.
(1972), Gent and Hamed (1977), and Igarashi

(1984). Chen and Falvin (1972) obtained an
approximate solution for the peel stress in the
presence of adherend plastic deformation.
Gent and Hamed (1977) and Igarashi (1984)
adopted approximate methods to estimate
adherend plastic dissipation based on elemen-
tary beam theory. A numerical analysis of
elastic–plastic peeling was performed by Cro-
combe and Adams (1981, 1982), who used the
finite element (FE) method to calculate the
stress distribution ahead of an interfacial
crack. Atkins and Mai (1986) studied the
influence of residual strain energy on elastic–
plastic peeling. Kim and Kim (1988), Kim and
Aravas (1988), and Kim et al. (1989) system-
atically studied the elastic–plastic steadily
peeling problem and provided detailed analysis
of what will be referred to here as the beam
bending model (BB model). They took into
account elastic unloading and reversed plastic
bending of the strip and obtained estimates of
plastic dissipation contribution to the total
steady-state work of fracture. Their expres-
sions provided relations among the peel force,
adherend properties, and rotation at the root
of the detached film. Their results showed that
the plastic dissipation could often make a large
contribution to the total fracture energy and
depended strongly on the root rotation. Under-
lying the BB model are the standard assump-
tions of simple beam theory. In particular, the
stress state at every point in the beam produ-
cing the plastic deformation is uniaxial (or
plane strain tension for a wide strip). Using the
BB model, Williams (1993), Kinloch et al.
(1994), and Moidu et al. (1995, 1998) modeled
the attached part of a flexible adherend as an
elastic–plastic beam on an elastic foundation
and calculated the crack-tip slope angle and
plastic dissipation. They analyzed the role of
root rotation due to the adherend compliance.
In their analysis, it was assumed that the
adherend behaves elastically, although elastic–
plastic behavior was taken into account for the
attached part of the adherend. Kinloch et al.
(1994) used this approach to study the peeling
of laminated materials. Park and Yu (1998)
and Park et al. (1999) made an X-ray analysis
and experimental study of the peel test for a
Cu/Cr/polyimide system. The plastic strain in
the peeled metal films and the interfacial
fracture energy were measured.

Linear elastic fracture mechanics has been
proved to be a useful tool theoretically and
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experimentally for assessing the interface frac-
ture behavior and fracture toughness when the
adherends are elastic materials (Rice, 1988;
Hutchinson and Suo, 1992). By considering the
energy balance, one can set up the relation
between applied work and the interfacial
fracture work, while the applied work can be
directly calculated from the solutions of the
elastic boundary value problems. In an elastic
problem, stress intensity factors are used and
critical values of these factors are simply
related to the work of fracture. Correspond-
ingly, experimental methods for assessing the
fracture behavior of materials or materials-
bonded interfaces have been developed accom-
panying the theoretical advances (Evans et al.,
1988; Suga et al., 1988; Argon et al., 1989;
Wang and Suo, 1990; Thouless, 1990).

For the peel test under elastic conditions, the
peel force per unit width is a direct measure-
ment of the adhesive fracture energy, charac-
terizing the interfacial toughness of adhesive
(Kinloch, 1987). Throughout this chapter, the
notion of elastic conditions in the peel test will
recognize inevitable nonlinearity, including
small amounts of plasticity, which accompa-
nies the fracture process and which contributes
to the intrinsic adhesion energy of a particular
interface. The plasticity occurring outside the
fracture process region is the extrinsic plasti-
city. When the adherends, film, and substrate,
or at least one of these, are ductile materials
and the interface is sufficiently tough, extrinsic
plastic deformation is inevitable. As in the case
of conventional elastic–plastic crack growth
problems, the interface fracture process zone in
the peel test will be shielded extensively due to
the plastic deformations. When the adherend
undergoes the plastic deformation and unload-
ing process, the peel force per unit width
characterizes the total energy dissipated in the
system, both the extrinsic plastic dissipation in
the adherends and the interface separation
energy (or adhesive energy).

Within the framework of elastic–plastic
fracture mechanics, an embedded process zone
(EPZ) model has been developed (Needleman,
1987; Tvergaard and Hutchinson, 1992, 1993)
to analyze the complex interaction between the
work of the fracture process and the extrinsic
plasticity. The model embeds a cohesive zone
within an elastic–plastic continuum. The cohe-
sive zone is specified by a traction–separation
law, which is characterized by a work of
separation per unit area and a peak separation
stress. When applied to a steadily growing
crack problem, this approach enables the total
energy to be separated into two parts: intrinsic
separation energy (the work of the fracture
process) and the plastic dissipation due to

plastic deformation and unloading in the
region surrounding the embedded cohesive
zone. Wei and Hutchinson (1998) and Yang
et al. (1999) have used the EPZ model to
analyze peel test problems. A large contribu-
tion to the total fracture energy from the
plastic dissipation was displayed in their results
for sufficiently tough interfaces or, equiva-
lently, for one of the adherends having
sufficiently low yield strength. Other interfacial
models have been proposed that are also able
to capture some of these features, such as the
plasticity-free strip model (SSV model) of Suo
et al. (1993) and Beltz et al. (1996), and the
unified model of Wei and Hutchinson (1999).
In this chapter attention is limited to the EPZ
model.

It has been an accepted conclusion that,
when film is a ductile material, the total energy
of the system consists of the interfacial adhe-
sion energy plus the film plastic dissipation. As
mentioned above, there have been a number of
research efforts to predict plastic dissipation
using the BB model (Kim and Kim, 1988; Kim
and Aravas, 1988; Kim et al., 1989). From the
BB model, the plastic dissipation comes
entirely from the plastic bending and the
accompanying elastic unloading and reversed
bending in the film. Contributions to the
plastic deformation arising from the high
stresses occurring near the interface crack tip
cannot be resolved by the beam model, and for
all practical purposes the BB model neglects
this contribution to the plastic dissipation. In
most problems of crack growth in ductile
solids, the near-tip plasticity is the major
source of the plastic dissipation. The peel test
is unusual in that plastic dissipation occurs
both in the vicinity of the crack tip and well
away from the tip due to bending. In fact, the
BB model does not account for shielding of the
crack tip by plasticity generated by the high
local stresses. Wei and Hutchinson (1998)
adopted a hybrid analysis that couples a
general plane analysis (the GPA model with
an embedded cohesive zone) to analyze the
attached portion of the film with a beam
analysis similar to that used in the BB model
to account for behavior in the detached portion
of the film away from the tip. The goal is a
model capable of partitioning the work of
fracture of the interface from the plastic
dissipation by accounting for both bending
plasticity and plasticity generated near the
point where the film separates from the
substrate.

The primary objective of this chapter is to
compare and contrast the two types of models,
the BB model and the hybrid GPA/BB model.
In doing so, the issue of whether it is feasible to
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partition the work of interface separation from
extrinsic plasticity will be in the forefront. In
both models, the same cohesive zone represen-
tation (EPZ) will be used. In the interests of
brevity, the two types of models will be referred
to in the chapter as the BB model and the GPA
model. A schematic of each of the models is
sketched in Figures 1(b) and (c). Using the
same methods, attention will also be directed at
a new test method, the split test (Wei, 2002),
which has much in common with the peel test.
An overview of description of the peel test and
interfacial toughness is given in Section 8.05.2.
The GPA model will be introduced and
analyzed in Section 8.05.3. The parallel study
of the BB model is presented in Section 8.05.4.
The split test is introduced and analyzed in
Section 8.05.5. Conclusions, limitations of the
models, and recommendations for further
work are presented in Section 8.05.6.

8.05.2 PEEL TEST AND INTERFACIAL
TOUGHNESS

8.05.2.1 Overview

The peel test is a seductively simple experi-
mental method by which one attempts to
measure the interface toughness of a film/
substrate system. When the adherends (film
and substrate) are elastic materials and the film
undergoes steady-state peeling, it is universally
agreed that the experimentally measured peel
force per unit film width is directly related to
the work of fracture of the interface, as detailed
below. Assuming the strain energy per unit
area in the straight portion of the detached film
is much smaller than the peel force per unit
width (which is almost always the case), the
work done by external force is equal to the
work of the interface separation. However,
when one or both of the joined materials

undergo plastic deformation during steady-
state peeling, the peel force per unit width
equals the sum of the interface fracture energy
and the plastic dissipation. For many systems,
the plastic dissipation can be much larger than
the interface fracture energy. When this is the
case, interpretation of peel test results becomes
difficult. For example, while the peel force for
an elastic system is independent of the film
thickness, it can depend strongly on the
thickness when significant plasticity occurs,
clouding the interpretation of the test. The
primary goal of the peel test analyses presented
here is to elucidate the partitioning of the work
of separation (or, equivalently, the adhesion
energy) and the plastic dissipation.

8.05.2.2 Elastic Peeling and Energy Balance

The peel test geometry is sketched in Figure
2(a). In an elastic peeling process, both
adherends undergo the elastic deformation,
apart from inelasticity, including plasticity, i.e.,
inseparable from the fracture process. Let G0

be work of separation (energy per unit area of
interface). In steady-state peeling the work
done by the external force per unit width, P,
per unit length of interface debonding is
P(1�cosF), where F is the peel force direction
angle. The ratio of the strain energy in the film
per unit area remote from the crack tip to G0 is
P/2Et where t is the film thickness. If this ratio
is small compared to unity, essentially all the
work of the peel force is consumed by the
fracture process such that

Pð1� cosFÞ ¼ G0 ð1Þ

In an elastic steady-state peel test, the inter-
facial toughness (adhesion energy) G0 can be
obtained by measuring the peel force and the
direction in which it acts.

Figure 1 Peel test analytical models for attached film (a), the BB model (b), and the general plane analysis
model (c).
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8.05.2.3 Elastic–Plastic Peeling and Energy
Balance

When the film undergoes plastic loading,
elastic unloading, and reversed plastic loading
during steady-state peeling, the energy stored in
the peeled film per unit area of crack advance,
Gp, is equal to the difference between the
upstream and downstream energies per unit
area. The work done by the peel force per unit
crack advance is still equal to P(1�cosF), and
the interface fracture energy per unit of interface
debond area is G0. The energy balance requires

Pð1� cosFÞ ¼ G0 þ Gp ð2Þ

Usually, Gp is called the plastic contribution to
the total work of fracture. In the peel test, the
contributions to Gp arise in the general vicinity
of the crack tip where the crack-tip stresses are
the highest and somewhat downstream from the
tip due to bending and reversed bending.

8.05.2.4 Elastic–Plastic Split Test

The split test (Figure 2(b); Wei, 2002) has
much in common with the peel test, with both
relative advantages and disadvantages. In the
split test, two measurable parameters are
featured: the residual curvature k0 and the split
force Q. During steady-state splitting, the film is
subject to a wedge force at a fixed location
relative to the crack tip. The film undergoes a
sequence of processes from elastic–plastic de-
formation and unloading ending in an unloaded
state with a constant residual curvature. The
detached film behind the wedge rolls up into a
circular hoop due to residual stresses. Under
ideal circumstances, by measuring the residual
curvature of the circular hoop and the split
driving force in the test, one can obtain the
interfacial fracture toughness for the film/
substrate system. In the split test, under
steady-state splitting, the energy balance implies

Q ¼ G0 þ Gp þ Gf ð3Þ

where Q is the split force per unit width, Gp

is the plastic dissipation per unit area in the

split arm, and Gf is frictional dissipation per
unit area on the contact faces between the
splitter head and the film surfaces. Under
conditions of frictionless contact, Gf¼ 0. In
Section 8.05.5, an analysis is presented that
makes use of the measured residual curvature
of the split film to estimate Gp and, therefore,
to deliver the interfacial toughness G0 to be
obtained.

8.05.3 PEEL TEST ANALYSIS BASED ON
THE GENERAL PLANE ANALYSIS
AND THE EPZ MODEL

In this section, the GPA model with an
embedded cohesive zone is used to analyze the
steady-state peel test. As described previously,
the GPA model is a hybrid combination of a
FE model to resolve stress and strains of the
attached film in the region where it detaches
from the substrate and a BB model to account
for plasticity that occurs in subsequent bending
and reversed bending. It is assumed that the
film is wide compared to its thickness and,
therefore, a plane strain model is adopted.
Much of the content in this section is taken
from Wei and Hutchinson (1998), although
that study did not bring out the important role
of the yield stress to modulus ratio of the film
that will be emphasized here.

8.05.3.1 The Interface Traction–Separation
Relation (EPZ Model)

The thickness of the interface in the un-
loaded state is taken to be zero. Following the
notation for the interface traction–separation
relation introduced in Tvergaard and Hutch-
inson (1992, 1993) and in Wei and Hutchinson
(1998), let dn and dt be the normal and
tangential components of the relative displace-
ment of the respective faces across the interface
in the zone where the separation process
occurs, as indicated in Figure 3. Let dcn and dct
be critical values of these displacement com-
ponents, and define a single dimensionless

Figure 2 Two test methods: (a) the peel test, and (b) the split test.
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separation measure as

l ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðdn=dcnÞ

2 þ ðdt=dct Þ
2

q
ð4Þ

such that the tractions drop to zero when l¼ 1.
With s(l) displayed in Figure 3, a potential
from which the interface tractions in the
separation zone are derived is defined as

Pðdn; dtÞ ¼ dcn

Z l

0

sðl0Þdl0 ð5Þ

The normal and tangential components of the
traction acting across the interface in the
fracture process zone are given by

Tn ¼ @P
@dn

¼ sðlÞ
l

dn
dcn
;

Tt ¼ @P
@dt

¼ sðlÞ
l

dt
dct

dcn
dct

ð6Þ

The traction law under a purely normal
separation (dt¼ 0) is Tn¼ s(l) where l ¼
dn=d

c
n: The peak normal traction under purely

normal separation is #s; which will be termed
the interface strength. Under a purely tangen-
tial displacement (dn¼ 0), Tt ¼ ðdcn=d

c
t ÞsðlÞ

where l ¼ dt=d
c
t : The peak shear traction is

ðdcn=d
c
t Þ #s under a purely tangential displace-

ment of the faces. The work of separation per
unit area of interface G0 is given by Equation
(5) with l¼ 1. For the separation function s(l)
specified in Figure 3,

G0 ¼ 1
2
#sdcn 1� l1 þ l2ð Þ ð7Þ

The separation law is assumed to be
independent of the time rate of deformation,
as are the constitutive models characterizing
the film and substrate. The parameters govern-
ing the separation law of the interface are the
work of the fracture process G0, the peak stress
quantity #s; and the critical displacement ratio
dcn=d

c
t ; together with the factors l1 and l2

governing the shape of the separation function.

The potential function ensures that the work of
separation is G0 regardless of the combination
of normal and tangential displacements taking
place in the separation of the interface.
Experience gained in the earlier studies sug-
gests that details of the shape of the separation
law are relatively unimportant. The two most
important parameters characterizing interface
separation are G0 and #s: The dimensionless
parameter dcn=d

c
t is the next most important,

but the study of mixed mode interface tough-
ness (Tvergaard and Hutchinson, 1993) indi-
cates that predictions are relatively insensitive
to this parameter as long as the interface
process is dominantly normal separation. This
is the case for the peel test under the range of
peel angles considered here.

Attainment of l ¼ 1 at the end of the
traction–separation zone (the point of separa-
tion) is the condition for crack advance. In
steady-state propagation, this condition must
be imposed on the solution.

8.05.3.2 The GPA/EPZ Model for Steady-
state Peeling

The geometry of the model is displayed in
Figures 3 and 4 with a peel angle F: Plane
strain conditions are assumed, as appropriate
for a film whose width normal to the plane of
deformation in Figures 3 and 4 is sufficiently
large compared to its thickness t. Except for an
example of an elastic film peeling from an
elastic–plastic substrate presented at the end of
Section 8.05.3, the film is taken to be elastic–
plastic with Young’s modulus E, Poisson’s
ratio n; tensile yielding stress sY; and strain
hardening exponent N. Rate-independent ma-
terial behavior is assumed. The substrate is
elastic with modulus Es and Poisson’s ratio ns:
The standard J2 flow theory of plasticity, based
on the von Mises yield surface, is used to
characterize plasticity in the film. The small
strain version of the theory is employed,

Figure 3 The peeling process characterized by the EPZ model.
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consistent with the fact that the strains and
rotations in the films attached to the substrate
and near the tip of the steadily growing crack
are indeed small under steady-state conditions.
The tensile stress–strain relation used to
characterize the film material is

s ¼
Ee; if srsY

sYðe=eYÞN ; if sZsY

(
ð8Þ

The interface crack is assumed to have
propagated a sufficient distance such that
steady-state conditions prevail in the vicinity
of the propagating interface crack (Hutchinson,
1974). In Figure 4, the interface propagates to
the left. Where the plastic strain rate ’epij is
nonzero dark shading depicts the active plastic
zone. Light shading shows zones behind the
advancing tip that have unloaded but contain
residual plastic strains. Zones of reversed
plastic loading generally will occur at some
distance from the crack tip in the detached film
strip (Kim and Aravas, 1988; Kinlock et al.,
1994). Dark shading also depicts these.

The peel angle F specifies the angle that the
peel force per unit width of film P makes with
the plane of the interface. Let MðsÞ be the
bending moment (per unit width) about the
middle plane of the separated film at a distance
s along the film measured from the crack tip.
The origin of the coordinate system ðx1; x2Þ is
at current location of the tip where l ¼ 1: For
analysis purposes, the problem is subdivided
into two parts (cf. Figure 4): the substrate plus
the film to the left of s ¼ x1 ¼ L1; and the
separated infinite film segment to the right of
L1: Wei and Hutchinson (1998) have argued
that accurate results from the cohesive zone
model require a full 2D plane strain, con-
tinuum analysis of the behavior in the vicinity
of the interface crack. Representation of the
film and substrate by a BB model of the film is

unable to capture the highly nonuniform stress
and strain distributions in the vicinity of the
separation zone and will miss essential features
of the separate-ion phenomena. For example, a
BB model cannot capture the small-scale
yielding limit based on the stress singularity
when the active plastic zone is confined to a
region near the crack tip. An Eulerian-based
FE formulation designed to cope with steady-
state conditions will be employed. The point at
s ¼ L1 is where the full 2D continuum analysis
of the crack-tip problem is matched to a 1D
bending problem for the separated film strip.
This point must lie to the right of the active
plastic zone at the crack tip and to the left of
any reversed plastic bending. Otherwise, the
location of this matching point will be seen to
have essentially no effect on the solution as long
as the slope y1 there is small. The term GPA
refers to the coupled two-segment analysis.

The film that emerges from the region to the
left of L1 has been subject to plastic deforma-
tion and has a residual curvature k0 prior to any
reversed plastic deformation. The film at the
matching point s ¼ L1 has undergone elastic
unloading sustaining a momentM1 less than the
maximum moment, which is attained at some
point to the left of L1: The moment–curvature
relation of the film emerging into the region to
the right of L1 is displayed as the unloading
branch in Figure 4. The initial portion of the
curve of M vs. k is shown dashed since it is not
used in the analysis. (This is the portion of the
behavior computed using the full 2D represen-
tation of the film.) Reversed plastic deforma-
tion, if it occurs, takes place when M becomes
sufficiently negative (Kim and Kim, 1988; Kim
and Aravas, 1988; Kinlock et al., 1994). At a
distance s far from the tip, the film becomes
straight, corresponding to the state M ¼ �MN

with k ¼ 0: The final residual curvature of the
unloading film (M¼ 0) is labeled in Figure 4 as

Figure 4 The mechanics behavior of a peeled film with conventions for modeling.
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kf : For the purpose of comparison with the BB
model in the next section, the residual curvature
k0 emerging from the crack-tip region prior to
reversed plastic bending is computed as part of
the solution to the peel test problem and
presented.

Plastic deformation due to reversed plastic
bending contributes to the overall rate of
plastic work in the system, and it reduces the
final residual curvature of the film from the
value, k0; inherited from the plastic deforma-
tion in the vicinity of the interface crack tip.
Reversed plastic deformation depends on the
Bauschinger behavior of the material, which is
not well quantified by conventional yield sur-
face descriptions, and especially not by an
isotropic hardening theory. Because reversed
plastic deformation occurs in the segment of
the problem, i.e., well characterized by 1D
nonlinear bending theory, full details of the
plastic constitutive behavior under reversed
loading need not be considered. It will be
shown that only the normalized shaded area w0

under the overall moment–curvature relation
of the film in Figure 4 matters in the final
results.

The study of Wei and Hutchinson (1998)
followed in this section considered the follow-
ing parameters:

E; n; sY; N; t ðfilmÞ; Es; ns ðsubstrateÞ;
G0; #s ðinterfaceÞ:

ð9Þ

The substrate was assumed to undergo only
elastic deformations. In a later subsection,
plasticity in the substrate will be considered.
The peel angle F and the work per unit width
of film w0 characterizing reversed plastic
bending complete the parameter set. An addi-
tional variable, which is likely to have a major
influence on the peel force, is residual stress in
the attached film acquired in the bonding
process. When the residual stress is a non-
negligible fraction of the yielding stress, it will
alter plastic dissipation in subsequent peeling.
Residual prestress can be included in the GPA
model, but it will not be considered here in the
interest of reducing the number of variables.

The following material-based length quan-
tity plays a fundamental role in the solution

R0 ¼
1

3pð1� n2Þ
EG0

s2Y
ð10Þ

The extent of the plastic zone scales with R0:
When P is only slightly larger than G0; this
length can be regarded as an estimate of the
plastic zone height in the film at the crack tip
(Tvergaard and Hutchinson, 1992, 1993, 1994).
In general, however, R0 is less than the plastic

zone height and should simply be regarded as a
fundamental parameter with dimensions of
length. The same length quantity (apart from
a numerical constant) emerges as fundamental
in the analysis of Kim and Kim (1988) and
Kim et al. (1989). Dimensional considerations
dictate that the solution for the peel force P
must have the general nondimensional form

Pð1� cosFÞ
G0

¼ F
t

R0
;

#s
sY

; N; F;
sY
E
;
Es

E
; n; ns

� � ð11Þ

where F is dimensionless. When elastic peeling
conditions pertain, F ¼ 1: Implicit in this
dependence are details of the hardening rule
for reversed plastic straining, e.g., isotropic vs.
kinematic hardening. The number of dimen-
sionless variables in any mechanics model of
the peel test is large, even when any residual
stress arising during bonding is ignored. To
reduce the number of variables, Wei and
Hutchinson (1998) took n ¼ ns ¼ 0:3; and
assumed either no elastic mismatch ðEs ¼ EÞ
or a highly compliant film on a stiff substrate
with E ¼ Es=100: The shape parameters in the
traction–separation law were taken to be l1 ¼
0:15 and l2 ¼ 0:5; while dcn=d

c
t is fixed at unity,

following earlier studies of Tvergaard and
Hutchinson. Of the remaining dimensionless
variables in Equation (11), t=R0; #s=sY; N,
sY=E; and F all have significant influence on
Pð1� cosFÞ=G0 when plastic dissipation is
nonnegligible. In earlier work on interface
fracture of two thick substrates separated by a
ductile layer (Tvergaard and Hutchinson, 1994)
or of interface fracture of a prestressed ductile
film on a thick substrate (Wei and Hutchinson,
1997a), the effect of the yield stress primarily
entered through t=R0 with little additional
dependence on sY=E: However, for the peel
test, because of the susceptibility of the film to
plastic bending as well as near-tip plasticity, the
yield stress has a strong role through both of
these dimensionless parameters and the sepa-
rate role of sY=E will be featured.

Results presented as Pð1� cosFÞ=G0 ¼ F
represent the ratio of the total work of peeling
to the work of the separation process, or,
equivalently, by (2), 1þ Gp=G0: Thus, the
extent to which this ratio exceeds unity reflects
the relative contribution of the plastic dissipa-
tion to the total work of fracture.

8.05.3.3 Formulation and Numerical Solution

The two parts of the problem in Figure 4 are
analyzed separately and coupled by requiring
continuity of force, moment, displacement, and
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rotation at x1 ¼ L1: The first part to the left of
L1 is analyzed as a steady-state, plane-strain
continuum problem employing a special itera-
tive scheme briefly mentioned below. The
second part to the right of L1 is treated as a
finite rotation, bending problem (an elastic–
plastic ‘‘elastica’’) with a residual curvature k0
arising from plastic deformation in the first part.
The analysis of each part is described, followed
by a prescription of the coupling conditions.

8.05.3.3.1 FE solution for x1rL1

The incremental relation between the stress
and strain in the J2 flow theory of plasticity is

’sij ¼ Dijkl ’ekl ð12Þ

where elastic–plastic modulus tensor can be
expressed as

Dijkl ¼
E

1þ n

�
dikdjl þ

n
1� 2n

dijdkl

� ð3=2ÞO
½1þ ð2=3Þð1þ nÞH=E�s2e

s0ijs
0
kl

�
ð13Þ

Here s0ij is the stress deviator, se ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3s0ijs

0
ij=2

q
is the effective stress, O ¼ 1 for plastic loading
and vanishes otherwise, and H is plastic
hardening modulus. For the power-law strain
hardening case (see Equation (8)), one has

H ¼ E
1

N

� �
se
sY

� �1=N�1

�1

" #�1

ð14Þ

The emphasis here is on the steady-state
growth wherein the crack has advanced suffi-
ciently far from initiation such that stresses and
strains no longer change from the vantage
point of an observer translating with the crack
tip (Hutchinson, 1974). The crack problem is
posed for steady-state crack growth under
constant driving force P: A zone of active
plasticity moves with the crack tip and a wake
(or unloading) of plastically deformed, but
elastically unloaded, material extends to the
right, as depicted in Figure 4. Downstream, the
stresses and strains well ahead of the advancing
interface crack tip ðx1-�NÞ vanish because
residual stresses in the film are assumed to be
absent. In the small strain, small rotation
steady-state problem, the rate at any point of
a quantity such as stress and strain is related to
the leftward velocity V of the crack tip and the
gradient in x1-direction by

ð ’sij ; ’eijÞ ¼ V
@sij
@x1

;
@eij
@x1

� �
ð15Þ

where V is the leftward velocity of the
crack tip. Substituting the steady-state

formula (15) into the rate-independent incre-
mental constitutive relation (12), a partial
differential equation for stress and strain to
x1 in the form

@sij
@x1

¼ Dijkl@ekl
@x1

ð16Þ

is obtained, which is independent of V.
It is the above feature that makes it possible

to directly solve the problem without having
to consider transient behavior preceding at-
tainment of steady state. Dean and Hutch-
inson (1980) and Parks et al. (1981) developed
the Eulerian-based solution scheme. It was
applied to the related studies of steady-state
thin film delamination, thin film peeling, and
cracking by Wei and Hutchinson (1997a, 1998,
1999). Wei and Hutchinson (1998) present a
detailed outline of the solution method. The
numerical procedure requires integration
along stream lines to obtain the history of
the stress and plastic strain at any point in the
field. Moreover, iteration is required to ensure
that the conditions of steady state are met at
every point in the field. The FE procedure
employed an equal-height mesh specially
designed for the regions around the crack
surface near the crack tip to cope with the
steady-state wake and the stream-line integra-
tion. Most of the numerical results presented
below are taken from Wei and Hutchinson
(1998), who used eight noded isoparametric
elements with four Gauss integration points in
each element.

8.05.3.3.2 Solution in the film for x14L1

Within the first part, the film emerges from
the active plastic zone with a plastic strain
epijðx2Þ that depends on x2 but is independent
of x1: This is the state inherited by the film
segment to the right of L1: If the film were
unloaded prior to any reversed plastic bend-
ing, it would have a residual curvature k0
given by

k0 ¼ �12

t3

Z t

0

x2 �
1

2
t

� �
ep11ðx2Þdx2 ð17Þ

As noted earlier, reversed plastic deformation
further to the right of L1 will reduce the final
residual curvature of the unloaded peeled film
to kf :

The film segment to the right of L1 is
modeled as an in-extensional elastic–plastic
‘‘elastica,’’ following several earlier ap-
proaches. The present outline is taken from
Wei and Hutchinson (1998). In the segment to
the right of L1; the relation of moment per unit

Peel Test Analysis Based on the General Plane Analysis and the EPZ Model 189



width M and the curvature k is of the form
shown in Figure 4. During unloading prior to
reversed plastic bending, M ¼ Bðk� k0Þ;
where B ¼ Et3=½12ð1� n2Þ� is the elastic bend-
ing stiffness per unit width of the film. With s
as the distance along the film middle surface
measured from the tip, and with y as the
rotation of the film middle surface relative to
the x1-axis, k ¼ dy=ds: Equilibrium requires
dM=ds ¼ �P sin ðF� yÞ: Use k ¼ dy=ds and
integrate the equilibrium equation from M ¼
�MN; where y ¼ F and k ¼ 0; to M to obtain
the connection between M1 and y1 at the point
s ¼ L1 (Figure 4):

M1 ¼Bk0 1� cosðF� y1Þð Þ 2P

Bk20

� ���

þ1� w0

�1=2
�1

�
ð18Þ

where w0 ¼ 2W0=Bk20: In this form, which is
due to Wei and Hutchinson (1998), it can be
seen that the relation between M1 and y1
(which is an exact integration of the nonlinear
elastic–plastic bending equation) depends on
reversed plastic bending only through the area
ratio w0: As Bk20=2 is the area below the k-axis
in Figure 4 in unloading elastically to k ¼ 0; w0

provides a measure of the effect of reversed
plastic bending. It will be unity if no reversed
plastic bending occurs. Smaller values of this
ratio are pertinent when peeling involves
significant plastic deformation. The quantity
w0 can be computed for any specific stress–
strain description for reversed stressing. How-
ever, given the variety of plasticity descriptions
for reversed stressing and the lack of agreement
on which constitutes the best choice, we prefer
to follow the earlier work of Wei and
Hutchinson and retain w0 as an independent
parameter.

8.05.3.3.3 Coupling of two parts of the solution
at x1 ¼ L1

Continuity of displacement, rotation, force,
and moment is required at the point s ¼ x1 ¼
L1 where two parts of the solution are
matched. For the problem of the first part, a
linear distribution of tractions is applied to the
film along x1 ¼ L1 with resultants chosen to
coincide with the horizontal and vertical
components of the force per unit width
ðP cosF; P sinFÞ and the moment per unit
width M1: The rotation y1 in the first part is
computed as the rotation of the centerline of
the film at x1 ¼ L1: The continuity conditions
are included in the set of equations to be
satisfied in the iterative solution process. Thus,
M1 and y1 computed from the first part satisfy

Equation (18) at the end of the iteration
process.

8.05.3.4 Numerical Results from the GPA
Model for Steady-state Peeling

Wei and Hutchinson (1998) performed
calculations based on the formulation just
described, and selected results from that paper
will be presented here. Additional results have
been computed and will be presented. These
reveal the importance of sY=E as a distinct
parameter in the solution set. The results have
been selected to bring out the dependence of
the normalized peel force, Pð1� cosFÞ=G0; on
the dimensionless parameters identified in
Equation (11). The fraction w0 measuring the
contribution from reversed plastic bending is
an additional parameter that will be consid-
ered. As emphasized in Section 8.05.3.2, Pð1�
cosFÞ=G0 represents the ratio of the macro-
scopic work of fracture to the work of interface
adhesion. The extent to which Pð1� cosFÞ=G0

exceeds unity reflects the relative contribution
of plastic dissipation in the film to the total
work of fracture.

8.05.3.4.1 Normal peel force ðF ¼ 901Þ

Curves of Pð1� cosFÞ=G0 as a function of
the normalized film thickness t=R0 are shown
in Figure 5 for a peeling force acting normal to
the interface ðF ¼ 901Þ: In Figure 5(a) the
elastic modulus of the substrate is identical to
that of the film, while in Figure 5(b) the
substrate is a hundred times stiffer than the
film ðEs=E ¼ 100Þ: Otherwise, the parameters
characterizing the film and the interface are the
same in the two plots. The interface is taken to
be relatively strong with the interface strength
#s four times the yielding strength of the film
sY: The strain-hardening index of the film is
N¼ 0.1. The work of interface adhesion G0

enters as the normalization of the peel force P
and also in the length parameter R0 defined in
Equation (10). The full range of reversed
plastic bending is spanned by the curves in
Figures 5(a) and (b).

Recall that w0 ¼ 1 corresponds to no re-
versed plastic bending. At the other limit w0 ¼
0; reversed plastic bending occurs as soon as M
becomes negative. This latter limit would never
be fully attained and would be approached
only if the plastic deformation accompanying
peeling were large. Suppression of reversed
plastic bending has the effect of decreasing the
moment carried by the film at the crack tip,
thereby requiring a larger peel force to
propagate the crack than when reversed plastic
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bending occurs. It is evident from Figure 5 that
reversed plastic bending plays some role in
determining the peel force, but not a dominant
one. Similarly, a stiff substrate reduces the peel
force relative to that for a more compliant
substrate, but the effect is again subdued.

Wei and Hutchinson (1998) studied the
influence of the location x1 ¼ L1 where the
two parts of the solution described in Section
8.05.3.3 are matched by repeating the calcula-
tions with different choices of L1 to test for
numerical sensitivity. Since the first part of the
solution (the FE solution) is based on a small
rotation formulation, it is also essential that y1
turns out to be small. The calculations
reported here were computed with L1=R0 ¼
20: This choice ensures that the matching point
is well ahead of the active plastic zone at the
crack tip and well to the left of the zone of
reversed plastic bending. The angle y1 never
exceeds 101 and is usually much less than this.
Repeating selected calculations such as those
shown in Figure 5 for other choices of L1=R0;
differing by as much as a factor of 2,
produced, at most, only a 2% or 3% change
in the peel force.

The major trend brought out by Figure 5 is
the dependence of the peel force on the film
thickness t. Numerical values of Pð1�
cosFÞ=G0 in Figures 5(a) and (b) have been
computed at the values of t=R0 between 0.5
and 12 (and to even larger values in Figure 16).
When t is small compared to R0; plasticity
occurs throughout the film, but plastic dissipa-
tion is nevertheless small compared to G0

because the volume of film material is small.
The peel test is an unusual illustration of a
fracture phenomenon where large-scale yield-
ing is associated with lower toughness than

small-scale yielding. In the limit as t goes to
zero, P approaches the interface adhesion G0:
At the other limit, when t=R0 is sufficiently
large, P=G0 approaches an asymptote. This
asymptote corresponds to a small-scale yield-
ing limit in the sense that the active plastic zone
is confined to the crack tip, is small compared
to the film thickness, and becomes independent
of t=R0: In this limit, there is no yielding on the
top surface of the film above the tip and no
reversed plastic bending such that w0 ¼ 1:
Steady-state toughness in this limit is the same
as that for an interface crack in small-scale
yielding at the same mode mixity (Tvergaard
and Hutchinson, 1993). The trend in Figure 5
from large-scale yielding at small t=R0 to small-
scale yielding at sufficiently large t=R0 cannot
be captured by the BB model since that model
does not describe plastic dissipation in the
small-scale yielding limit. Detailed compari-
sons will be made subsequently.

The relatively strong interface ð #s=sY ¼ 4Þ
gives rise to considerable plastic dissipation
such that the total work of fracture is
approximately an order of magnitude greater
than the work of interface adhesion when the
film is sufficiently thick. For normalized inter-
face strengths #s=sY above 4 in Figure 6, the
peel force attains a maximum when the
normalized thickness is t=R0E6 for the case
w0 ¼ 1: The peak becomes somewhat more
prominent at smaller peel angles, as will be seen
below. Peel tests on metal films with very
strong interfaces and values of P=G0 as large as
100 display a pronounced peak at intermediate
film thicknesses (Kim and Kim, 1988). The
beam model of Kim and Kim (1988) predicts a
peak peel force at roughly comparable values
of normalized thickness.

Figure 5 The variations of normalized fracture work with film thickness for several values of w0:
(a) Es/E¼ 1.0, (b) Es/E¼ 100.
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The effect of the strain-hardening index N of
the film is displayed in Figure 7 for the case
w0 ¼ 0: The other parameters specifying the
film/substrate system are the same as those in
Figure 5. Strain hardening elevates crack-tip
stresses and, accordingly, makes it possible to
attain a given interface strength #s at a reduced
peel force. It also increases the moment experi-
enced near the crack tip at a given peel force.
The relative effect is the largest for thicker films
with the highest levels of plastic dissipation.

In the GPA model of the peel test, the
interface strength #s has very important influ-
ence on ratio P=G0; as seen in Figure 8. Curves
are shown for two ratios of film to substrate
moduli and three strain hardening exponents.

The curves are all for the case w0 ¼ 0 and
E=sY ¼ 300; and they are computed with
t=R0 ¼ 10 corresponding to films that are
sufficiently thick to lie near the asymptotes in
Figures 5 and 6. The normalized interface
strength #s=sY determines the extent to which
the peel force exceeds the interface work of
fracture G0: When #s=sY is less than B2, plastic
dissipation is nearly negligible compared to G0:
Local stress levels at the interface crack tip are
low and induce relatively little plastic straining
for the yielding stress taking as sY=E ¼ 1=300:
This is the range of interface strengths for
which the peel force is essentially the interface
work of adhesion for all film thicknesses,
except those having very low values of sY=E

Figure 6 The variations of normalized fracture work with film thickness for several values of interface
separation strength.

Figure 7 The variations of normalized fracture work with film thickness for several values of strain-
hardening index N.

192 Peel Test and Interfacial Toughness



(see ahead). Plastic dissipation becomes an
increasingly large fraction of the total work of
fracture for values of #s=sY larger than 2,
depending also on N, or for the yielding stress
decreasing, as seen subsequently. As empha-
sized by Wei and Hutchinson (1998), Figure 8
drives home perhaps the most important
qualitative point emerging from the GPA
model: the peel force scales with the work of
interface adhesion, but the extent to which the
peel force exceeds the work of adhesion depends
primarily on the normalized interface strength.
Qualitatively, these trends are similar to those
found by Tvergaard and Hutchinson (1992,
1993) for the ratio of the total work of fracture
to the work of the fracture process for mode I
crack propagation in homogeneous metals as

well as for mixed mode interface fracture under
small-scale yielding. In those studies, an em-
bedded fracture process model with the trac-
tion–separation law (Equation (6)) was also
employed to represent the fracture process on
the extended crack plane or on the interface.

To complete the set of results for peeling
under a normal force, the residual curvature k0
(Equation (17)) emerging from the crack-tip
region (and prior to reversed plastic bending)
and the opening angle a under load measured
at the interface crack tip are presented. Curves
of normalized residual curvature Etk0=½sYð1�
n2Þ� as a function of t=R0 are plotted in Figure
9 for the same set of film/substrate parameters
used in plotting Figures 5 and 6. The compa-
nion plots for the crack opening angle are given

Figure 8 The normalized total work of fracture as a function of the interface separation strength for several
cases of N.

Figure 9 The variations of normalized residual curvature with film thickness for several values of w0 and N.
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in Figure 10. The opening profile of the crack
near its tip in steady-state propagation can be
closely approximated by the angle that the
separated film surface makes with substrate
surface, with due account for the fact that the
opening displacement at the tip itself is at
the critical separation value dnð0Þ given by the
traction–separation law (Equation (6)). An
effective definition can be given in terms of
the crack face opening dnðrÞ a small distance r
behind the tip according to

tan a ¼ dnðrÞ � dnð0Þ
r

ð19Þ

In the present study we have taken r¼ t.
Further discussion of a is deferred to the next
section.

8.05.3.4.2 The role of peeling angle F

Curves of the normalized peel force as a
function of film thickness are shown in Figure
11 for four peel angles. The parameters
characterizing the system are the same as those
in Figure 6. If plasticity makes a significant
contribution to the total work of fracture, then
decreasing the peel angle decreases Pð1�
cosFÞ but increases the peel force P. For peel
angles less than B601, a peak in the peel force
exists at an intermediate film thickness (about
t=R0 ¼ 6 for the case shown). The peak is even
more prominent for larger values of w0;
corresponding to less extent of reversed plastic
bending.

The dependence of P=G0 on the norma-
lized interface strength #s=sY is displayed in

Figure 10 The crack-tip slope angle as a function of the film thickness for several values of w0 and N.

Figure 11 The variations of normalized fracture work with film thickness for several values of peel angles.
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Figure 12 for four peel angles ranging from 201
to 901. These results were computed for
relatively thick films ðt=R0 ¼ 10Þ; correspond-
ing fairly closely to the asymptote for large
t=R0: The trend with interface strength is similar
to that discussed for the normal peel force. It
can be seen, however, that the macroscopic
work of fracture, Pð1� cosFÞ; decreases with
decreasing peel angle at a given interface
strength, with plasticity making less contribu-
tion. The smaller the peel angle, the larger the
peel force P at a given interface strength. The
residual curvature emerging from the tip region
k0 and the opening angle a are plotted as
functions of the normalized interface strength in

Figures 13 and 14 for three peel angles and two
levels of strain hardening, again for normalized
film thickness, t=R0 ¼ 10: The trend of these
quantities with interface strength is similar to
that of the peel force. At low interface strength,
both quantities are independent of #s; F; and N.
As #s=sY increases, k0 and a increase sharply
and become dependent on F and N.

8.05.3.4.3 The role of yield stress

The influence of the yield stress to Young’s
modulus ratio, sY=E; on the fracture tough-
ness in interface fracture problems of several

Figure 12 The normalized peel force as a function of the interface separation strength for several peel angles.

Figure 13 The normalized residual curvature as a function of the interface separation strength.
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multilayer (Tvergaard and Hutchinson, 1993)
and thin film/substrate systems (Wei and
Hutchinson, 1997a) has been investigated
independent of the role of the yield stress in
sY=E and #s=sY: The results showed that the
influence of sY=E is relatively weak in those
problems. However, in the present peel test
problem, due to the mixed effect of the bend
and near-tip constraint, interface fracture
behavior is very sensitive to the ratio sY=E:
The peeling can be a small-scale yielding
problem when the thickness is sufficiently
large, in which case sY=E has little effect.
However, peeling involves both near-tip plas-
ticity and ‘‘remote’’ plasticity and is, therefore,

a large-scale yielding problem. Under these
circumstances, sY=E plays an important role.
Figures 15(a) and (b) show how the normalized
total fracture work (peel force), Pð1�
cosFÞ=G0; changes with the normalized mate-
rial yield stress, sY=E (or yielding strain), and
the thin film thickness t=R0 for the vertical
direction peeling ðF ¼ 901Þ: From Figure 15, it
is observed that the normalized work of
fracture increases dramatically with decreasing
sY=E: Lowering the yield stress allows the film
to bend more easily thereby lowering the
moment arm through which P acts, which, in
turn, requires an increase in L1: At sufficiently
large values of sY=E little plastic deformation

Figure 14 The crack-tip slope angle as a function of the interface separation strength.

Figure 15 The normalized fracture work as a function of the film thickness and yield stress: (a) for weak
interface strength, and (b) for strong interface strength.
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occurs and the test approaches the elastic limit.
By contrast, note from Figure 15(a) that even a
system with a relatively weak interface
ð #s=sY ¼ 1Þ experiences significant elevation of
the effective work of fracture above the elastic
limit when sY=E is relatively low. This is a
contribution of plasticity from remote bending
and not from near-tip deformation. The effect
of a stronger interface can be seen in compar-
ing Figures 5(a) and (b). As noted before, the
role of the interface strength is clearly distinct
from the role of the work or separation.
Loosely speaking, plastic dissipation includes
two parts: one from plastic bending, i.e.,
controlled by sY=E; and the other associated
with overcoming the constraint of interface
adhesion to realize steady-state growth, which
is primarily influenced by the yield stress
through t=R0 and #s=sY:

The comparisons showing the combined
influence of interface strength and yield stress
are extended over a very large range of t=R0 in
Figure 16. The significantly enhanced total
work of peeling at intermediate thickness levels
becomes evident. The prior comments about
approaching the small-scale yielding limit
apply here, and for the systems with weak
interfaces this limit is approximately the elastic
limit. Note, however, that this limit is only
attained at very large t=R0: Finally, we
emphasize again that Figure 16 brings out the
two distinct sources of plasticity in the peel
test. In the case of weak interface in Figure
16(a), plasticity from bending has the greatest
influence and at the thick film limit plastic
dissipation is small with the total work of
peeling approaching G0: By contrast, for
systems with the strong interfaces in Figure

16(b), thicker films tend to have larger total
works of peeling and this is associated with the
significant contribution of plastic dissipation at
the crack tip in the small-scale yielding limit.

8.05.3.4.4 Steady-state peeling of an elastic
film bonded to an elastic–plastic
substrate

The GPA model and numerical solution
method applies equally well to the case where
the yield strength of the film is sufficiently high
such that plasticity occurs only in the substrate.
Here we include one example from Wei and
Hutchinson (1998) to illustrate the potential of
the approach. Let sY denote the yield stress of
the substrate and assume that Equation (8)
governs substrate tensile behavior (with E
replaced by Es). The length quantity R0 is still
defined crack tip and complications arising
from multiple yielding regions in the film by
Equation (10), but with E replaced by Es:
Calculation of P=G0 is more straightforward in
this case, because the active plastic zones in the
substrate is confined to the interface are absent.
Curves of Pð1� cosFÞ=G0 as a function of
t=R0 are displayed for four peel angles in
Figure 17 for the case where the film and
substrate have identical elastic properties and
the normalized interface strength is #s=sY ¼ 4:
When the film is elastic, the plastic zone in the
substrate does not shrink to zero when t
becomes small and the limiting work of
fracture does not approach G0: A distinct peak
in the peel force occurs at t=R0D1; small-scale
yielding conditions are approached rapidly as
t=R0 increases. The ratio Pð1� cosFÞ=G0

Figure 16 The normalized work of fracture work as a function of film thickness over a wide range of
thickness, revealing the major effect of the yielding strain: (a) for a weak interface, and (b) for a strong
interface.
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depends only weakly on the peel angle in the
small-scale yielding limit implying relatively
little variation in mode mixity on the peel
angle.

8.05.4 PEEL TEST ANALYSIS BASED ON
THE BB MODEL AND THE EPZ
MODEL

8.05.4.1 Fundamental Relations

In this section, a set of results analogous to
those in the last section will be presented based
on the BB model endowed with an EPZ. In this
way, it will be possible to make direct
comparisons between the GPA model and the
BB model.

As the first step in analyzing the BB model,
the behavior of an elastic–plastic plate subject
to a pure bending moment under plane strain
conditions is presented in this subsection, as
shown in Figure 18. The uniaxial stress–strain
relation of the material is assumed to be the
form as given in Equation (8), which can be
generalized to the multiaxial stress states as

%s ¼
ð3
2
E=ð1þ nÞÞ%e; if %srsY

sYð%e=%eYÞN ; if %sZsY

(
ð20Þ

Here, %s ¼ ðð3=2Þs0ijs0ijÞ
1=2 and %e ¼

ðð2=3Þe0ije0ijÞ
1=2 are the effective stress and

effective strain, with s0ij ¼ sij � ð1=3Þskkdij
and e0ij ¼ eij � ð1=3Þekkdij as the respective
deviatoric quantities, and %eY ¼ eY=½ð3=2Þ=
ð1þ nÞ�:

8.05.4.2 Elastic Bending

For elastic bending (Figure 18), under the
plane strain, the relation of bend stress and
bend strain can be expressed by

s ¼ E

1� n2
e ¼ %Ee ð21Þ

where %E ¼ E=ð1� n2Þ: At the elastic bending

limit, plastic yielding occurs, %s ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� nþ n2

p
jsj ¼ sY; simultaneously on the

top and bottom surfaces of the plate. Thus,
with the usual assumption that plane sections
remain planar and normal to the neutral line
after loading, the axial strain at any point is a
linear distribution. A relation of bending
moment per unit length with beam-bending
curvature is easily obtained as M=M0 ¼
ð2=3Þk=ke; where k ¼ dy=ds is the curvature
of the middle surface at z ¼ 0 with y being the
slope of the middle surface. M0 ¼ ð3=2ÞMe;
Me; and ke are elastic limit moment and

Figure 18 A beam element subject to a moment M
per unit width.

Figure 17 The normalized work of fracture work as a function of the film thickness for the case of an elastic
film and an elastic–plastic substrate.

198 Peel Test and Interfacial Toughness



curvature, respectively, defined by

Me ¼
sYt2

6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� nþ n2

p ; ke ¼
2ð1� n2ÞsY

Et
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� nþ n2

p ð22Þ

Now consider the peel test geometry in
Figure 2. Equilibrium at any point along the
film strip requires dM=ds ¼ �P sinðF� yÞ:
Using k ¼ dy=ds; M=M0 ¼ ð2=3Þk=ke and in-
tegrating the equilibrium relation, one obtains

M ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Et3

6ð1� n2ÞP½1� cosðF� yÞ�

s
ð23Þ

Imposing the maximum moment condition
Mmax ¼ Me; one obtains the limit condition
for elastic peeling expressed here as a condition
on the film thickness:

tZtlimit ¼ 18pð1� nþ n2ÞR0
Pð1� cosFÞ

G0

ð24Þ

where the definition of R0 is that recorded
previously in Equation (10). In the elastic
regime, Pð1� cosFÞ=G0 ¼ 1: Thus, by Equa-
tion (24), elastic bending behavior will only
pertain when the thickness exceeds B45 R0:
This estimate is generally in accord with the
findings of the GPA analysis as discussed in
connection with Figure 16.

8.05.4.2.1 Elastic–plastic bending

In this subsection the relation between the
moment and curvature of the film is obtained
prior to any unloading using a deformation
theory (total strain formulation) characteriza-
tion of the elastic–plastic material. The results
obtained reduce to that of Kim and Aravas
(1988) for the case of an elastically incompres-
sible material.

From the elastic–plastic constitutive rela-
tions for deformation theory, when the elastic
yield limit is exceeded,

eeij ¼
1

E
½ð1þ nÞsij � nskkdij �; epij ¼ ls0ij ¼

3ep

2 %s
s0ij

ð25Þ

Specifically, for the strain-hardening exponen-
tial relation in Equation (20), one has

l ¼ 3ep

2 %s
¼ ð1þ nÞ

E

%s
sY

� �1=N�1

�1

" #
ð26Þ

From total strain relation eij ¼ eeij þ epij and
the plane strain condition e22 ¼ 0 for thin plate
bend stress field, it follows that

s22 ¼ as11 ¼ as ð27Þ

where

a ¼ 1
2
½1�U0ð %s=sYÞ�;

U0ð %s=sYÞ ¼ ð1� 2nÞ
1þ ð2=3Þð1þ nÞ½ð %s=sYÞ1=N�1 � 1�

ð28Þ

Thus, the effective stress and effective strain
can be obtained as

%s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� aþ a2

p
jsj; %e ¼

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� aþ a2

p

3ð1� aÞ jej ð29Þ

The plane bending assumption remains valid in
elastic–plastic bending. Within the first elastic–
plastic bending region of the peeling strip (refer
to Figure 4, from point A to point B on the
M�k curve), deformation theory can be
applied. For the power-law-hardening material
with %s ¼ sYð%e=%eYÞN and using (29), one can
obtain the relation of bending stress to bending
strain in plastic zone and consequently the
moment–curvature relation:

M ¼ 2Ekx3

3ð1� n2Þ þ 2seY
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� nþ n2

p

� 1� nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� nþ n2

p k
ket=2

� �NZ t=2

x

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� aþ a2

p

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� aþ a2

p

1� a

 !N

zNþ1dz

here z ¼ x2 � ð1=2Þt: The location of z ¼ x
indicates the boundary between the elastic and
plastic zones, and seY ¼ sY=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� nþ n2

p
is

elastic limit bending stress. The value of the
function U0ð %s=sYÞ in Equation (28) is very
small compared to unity as can be seen in
Table 1 where U0 is listed for typical %s=sY and
selected material parameters. Therefore, a is
close to 1/2. If a is set to 1/2 with respect to
small U0; the moment–curvature relation
becomes

M ¼ 2Ekx3

3ð1� n2Þ þ 2seY
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� nþ n2

p

� ð1� nÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� nþ n2

p k
ket=2

� �N
2ffiffiffi
3

p 1�N

�
Z t=2

x
1�NU0 þ

1

2
N2 þ 2

3
N � 1

6

� �
U2

0 þ?
� �

� zNþ1dz ð30Þ

The coefficients in the U0-expansion in (30)
are also small. Thus, one can neglect the
influence of U0 in this relation with the result

M

M0
¼ 2

3
� 2

N þ 2
g

� �
1

ðk=keÞ2
þ 2

N þ 2
g

k
ke

� �N

ð31Þ
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where

g ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
3
ð1� nþ n2Þ1�N

q
ð1� nÞN ð32Þ

For incompressible materials, n ¼ 0:5; g ¼ 1;
the result given by Kim and Aravas (1988) is
recovered.

8.05.4.2.2 Elastic–plastic unloading

Elastic unloading from the state ðM0; k0Þ
satisfies

M

M0
¼ 2

3

k� k0
ke

ð33Þ

It can be established that intersection
point transitioning from loading to unloading
(point B in Figure 4) is located at the left of
crack tip for the BB model. However, the
location is very near the crack tip with a
distance of the order of O(dc). Therefore, for
simplification, we take point B as the same as
crack tip.

8.05.4.2.3 Summary of fundamental relations

At the unloading point (point B), M ¼
MB; k ¼ kB; from Equations (31) and (33),

MB

M0
¼ ð2=3ÞðkB � k0Þ

ke

k0 ¼ kB þ 3

N þ 2
g� 1

� �
k3e
k2B

� 3

N þ 2
g

kNB
kN�1
e

ð34Þ

From the ‘‘elastica’’ analysis (Wei and Hutch-
inson, 1998),

kB ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½1� cosðF� ytipÞ�

2P

B
þ ð1� w0Þk20

r
ð35Þ

where B is the elastic bending stiffness. In
Equation (35), w0 ð0rw0r1Þ characterizes the
material behavior on reverse plastic loading
(Bauschinger effect) as described in Section
8.05.3 and ytip is the critical value of the

crack-tip slope angle. The moment–curvature
relations are shown as M=M0 ¼ ð2=3Þk=ke for
elastic bending and as Equation (31) for
elastic–plastic bending, respectively.

The embedded cohesive zone will be com-
bined with the above results. To simplify the
analysis, we consider a special case of the
cohesive zone model with l1 ¼ 0 and l2 ¼ 1 in
(7), such that the distribution of the separation
stress along the cohesive zone is constant and
equal to #s: Under a critical separation dc; the
work of interface adhesion is

G0 ¼ #sdc ð36Þ

The moment equation along the cohesive zone
can be derived from equilibrium as

M ¼ MB þ P sinFðL� sÞ � 1
2
#sðL� sÞ2 ð37Þ

where L is length of the cohesive zone, s is the
coordinate starting from the left terminal point
to the right of the cohesive zone. At crack tip,
s¼L. The value of L is unknown a priori and
will be determined as part of the solution. The
rotation of beam within the cohesive zone is
assumed to be small such that the curvature
can be approximated as k ¼ dy=dsEd2wz=ds

2

with wz being the deflection of middle plane of
the beam. If the substrate material is taken to
be rigid, the boundary conditions for the
segment of the beam within the cohesive
zone are

wz ¼ 0; y ¼ 0; k ¼ 0; at s ¼ 0;

wz ¼ dc; y ¼ ytip; at s ¼ L
ð38Þ

Finally, we follow the procedure used in
Section 8.05.3 of Wei and Hutchinson (1998) to
account for reversed plastic bending without a
detailed specification of the stress–strain curve
under reversed stressing. This is accomplished
with the aid of the parameter B0 defined in
Equation (18) and which also appeared in
Equation (35).

Table 1 Values of U0ð %s=sYÞ at various material parameters n and N.

%s=sY ¼ 1.2 1.5 2.0 2.5

N¼ 0.1 n ¼ 0:5 0.000 0.0000 0.0000 0.0000
n ¼ 0:4 0.041 0.0056 0.0004 0.0001
n ¼ 0:3 0.087 0.0120 0.0009 0.0001
n ¼ 0:2 0.138 0.0190 0.0015 0.0002

N ¼ 0:2 n ¼ 0:5 0.000 0.0000 0.0000 0.0000
n ¼ 0:4 0.099 0.0420 0.0133 0.0055
n ¼ 0:3 0.207 0.0880 0.0280 0.0120
n ¼ 0:2 0.322 0.1411 0.0461 0.0191
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8.05.4.3 Parametric Forms

The parametric forms governing the BB/
EPZ model are essentially the same as those
discussed for the model in Section 8.05.3.
Under steady-state conditions, variations of
peel force, residual curvature, and crack-tip
slope angle will be obtained. The form of the
solutions for the normalized quantities can be
expressed as the functions of independent
parameters according to

Pð1� cosFÞ
G0

¼ f
E

sY
;

#s
sY

; N; n;
t

R0
; w0; F

� �
Etk0

sYð1� n2Þ ¼ g
E

sY
;

#s
sY

; N; n;
t

R0
; w0; F

� �

ytip ¼ r
E

sY
;

#s
sY

; N; n;
t

R0
; w0; F

� �
ð39Þ

where the length parameter R0 is defined in
Equation (10) and ytip is the crack-tip angle
under steady-state peeling as determined from
the BB analysis. The crack-tip angle will be
compared with the analogous quantity a
defined in Equation (19) for the GPA model.

As an alternative, one could take the crack
tip opening displacement dc as the normalizing
length quantity in Equation (39), because dc
and R0 can be related from Equations (36) and
(10) as

R0 ¼
ð #s=sYÞðE=sYÞ
3pð1� n2Þ dc ð40Þ

As previously emphasized, Pð1� cosFÞ in
Equation (39) is also equal to the energy
release rate of the peel test system under

steady-state peeling with G0 as the interface
fracture work (or interfacial toughness) in that
limit.

8.05.4.4 Results and Analyses

The normalized total fracture work (or peel
force) under steady-state peeling characterizes
the toughness increase due to contribution of
the plastic dissipation. For pure elastic peeling,
the normalized fracture work is equal to 1. The
parameter k0 measures the residual inelastic
curvature for the strip prior to reversed plastic
bending, if that occurs. The crack-tip angle
under the steady-state peeling in the present
model is a computed quantity that relates to
the parameters of the EPZ model and the film
properties in a complicated way. The numerical
results will be presented following the form
indicated in Equation (39), and they will be
compared and contrasted with the correspond-
ing results from the GPA/EPZ model of
Section 8.05.3.

Figure 19 presents the normalized fracture
work Pð1� cosFÞ=G0 as a function of the film
thickness, t=R0; for a range of interface
separation strengths, #s=sY; and for two strain
hardening exponents, N. The normalized frac-
ture work is seen to be insensitive to the
interface separation strength, but somewhat
sensitive to N. As t=R0 becomes large, Pð1�
cosFÞ=G0 approaches unity in accordance with
the recovery of the elastic behavior. The peak
values of the total work of peeling occur for
t=R0E1 and 2, respectively, and for N¼ 0.2
and 0.1. Figure 20 displays variations of the
normalized fracture work with respect to t=R0

for several values of N. Figure 21 illustrates the

Figure 19 The normalized work of fracture as a function of the film thickness for several separation
strengths.
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effect of reverse plastic bending as determined
by w0: It should be noted that realistic values of
w0 are usually much smaller than unity because
the M–k curve for thin beam bending is usually
very flat (Park and Yu, 1999). For this reason
relatively low values of w0 have been assumed
in Figure 21. The role of the normalized yield
stress, sY=E; is seen in Figure 22.

Significant differences between the BB model
and the GPA model can be found when one
compares the dependence on interface strength
for the two models (cf. Figure 19 vs. Figures 6
and 8). Interface strength has little influence on
the total work of peeling in the BB model
predictions, while it is quite influential accord-
ing to the GPA model if #s=sY42: It is not
surprising that the BB model indicates little
influence of the interface strength on the total
work of fracture, because the model invokes
the assumptions of beam bending even in the

vicinity of the crack tip. There, the stress and
strain distributions are highly nonuniform and
focused, typical of those for any problem at a
crack tip. The BB model cannot capture the
intensely focused stresses and strains at the
crack tip. This is reflected in the fact that
the total work of peeling approaches G0 at
sufficiently large thickness for all levels of
#s=sY: By contrast, the GPA model predicts
that total work of fracture is given by the
small-scale yielding work of fracture, i.e., G0

plus the dissipation at the crack tip in the
small-scale yielding limit. When #s=sY42; the
small-scale yielding work of fracture can be
many times of G0: It would appear to be self-
evident that the BB model should not be
expected to correctly capture this important
limit, and it does not. Alternatively, qualitative
trends for the dependence of the total work of
peeling on N; sY=E; and w0 from the BB model

Figure 21 The normalized work of fracture work as a function of the film thickness for several values of w0.

Figure 20 The normalized work of fracture as a function of the film thickness for several values of N.
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are roughly similar to those from the GPA
model. Moreover, both models predict that the
total work of peeling approaches G0 as t=R0

becomes small. This is the regime where plastic
bending of the film is highly pronounced, but
nevertheless it makes only a relatively small
contribution to the total work of peeling
because the film is so thin. As the film gets
thinner and thinner, the plastic dissipation
scales with the thickness while G0 is indepen-
dent of thickness.

There is another reason to question the
fidelity of the BB model with the embedded
cohesive zone. The computed length, L; of the
cohesive zone turns out to be only of the order
of the thickness of the film, t; for almost all the
entire range of the parameters used in generat-
ing the results discussed above. In some
instances L is less than t: Beam theory is not

capable of dealing with steep variations of
stresses and curvatures over distances of the
order of t: The fact that the computed values of
L turn out to be as short as they do strongly
suggests an internal inconsistency in the
combined use of the BB and EPZ models.

For completeness, several other dependen-
cies predicted by the BB model are also
presented. Figure 23 displays the influence of
the peel angle F on the normalized fracture
work. The largest effect occurs for 1rt=R0r6:
Figure 24 shows that Poisson’s ratio has little
effect on the total work of fracture. Thus, the
modeling assumption made by Kim and
Aravas (1988) that elastic compressibility can
be neglected in the BB model is fully justified.

Figures 25 and 26 show the normalized
residual curvature as a function of t=R0 for the
parameter combinations discussed above. As

Figure 23 The normalized work of fracture as a function of the film thickness for several peel angles.

Figure 22 The normalized work of fracture as a function of the film thickness for several yield stresses.
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in the case of the results presented for the GPA
model, the residual curvature, k0; is the value
emerging from the cohesive zone. It excludes
any reversed plastic bending, which can be
predicted with knowledge of the Bauschinger
effect for the stress–strain data. As in the case
of the total work of peeling, the insensitivity of
the residual curvature to #s=sY is unrealistic. It
is interesting to note that the residual curvature
from the BB model (Figures 25 and 26) is
substantially higher than that predicted by the
GPA model (Figures 9 and 13). This is again a
consequence of the oversimplification under-
lying the BB model. The unidirectional stress
field invoked in the bending model ignores the
high constraint on plastic flow near the inter-
face in the film in the cohesive zone. This

constraint produces the high elevation of the
hydrostatic stress component, which is so
characteristic of any near-tip elastic–plastic
field. The result is that more plastic bending
occurs in the BB model in the cohesive zone
than in the GPA model. It seems reasonable to
assume that the GPA prediction is more
trustworthy than that of the BB model. For
thick films, the comparison is complicated by
the fact that the BB model is unable to capture
the small-scale yielding contribution to the total
work of fracture.

The companion set of plots for the critical
crack-tip angle, ytip; in steady-state peeling is
contained in Figures 27 and 28. The strong
dependence on the extrinsic thickness para-
meter, t=R0; is a clear evidence that the critical

Figure 24 The normalized work of fracture as a function of the film thickness for several values of Poisson’s
ratio.

Figure 25 The normalized residual curvature as a function of the film thickness for several separation
strengths.
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crack tip angle cannot be viewed as a critical
fracture parameter intrinsic to the interface.
There is some influence of #s=sY on ytip; but the
trend is the opposite of that predicted by the
GPA model, as seen from Figure 14. The
discrepancy between two models is consistent
with strong influence of #s=sY on the peel force
in the GPA model and the very weak
dependence of the peel force on #s=sY for the
BB model. Further discussion of two models
will be given in Section 8.05.6.

8.05.5 SPLIT TEST ANALYSIS

8.05.5.1 Preview

In the above sections, the peel test problem
has been analyzed in detail. It is evident from

these results that it is very difficult to determine
the intrinsic interfacial toughness G0 directly
from the peeling experiment if significant
plasticity occurs in the film (or the substrate).
There are several dimensionless parameters
that have substantial and complicated effects
on the relation between the peel force and G0:
Unfortunately, the simplicity of the test in the
elastic limit is lost when significant plasticity
occurs.

The split test overcomes some of the
difficulties associated with partitioning G0 in
the peel test (Wei, 2002), though it brings in the
possibility of another complication. As indi-
cated with Figure 2(b) or Figure 29, there is an
additional measurable quantity, the residual
curvature k0; which aids the partitioning
process. It will be shown that this extra

Figure 27 The crack-tip slope angle as a function of the film thickness for several values of interface
separation strength.

Figure 26 The normalized residual curvature as a function of the film thickness for several values of N.
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quantity, with the help of the parameter
relations from a beam-bending analysis, leads
to the interface toughness G0; provided that
crack-tip dissipation is not a dominant con-
tribution. Therefore, from this point of view,
the split test has the potential as an important
test method. In the present section, the split
test is analyzed using both the BB model and
the GPA model. Closed form parametric
solutions are derived from the BB model for
determining the interfacial toughness in terms
of experimentally measurable quantities, all for
the case in which the substrate is taken to be
rigid (in Section 8.05.5.2). In the remaining
parts of this section, the GPA model will be
adopted. The general description for the split
test problem is presented in Section 8.05.5.3.

The parametric relations of the normalized
split force, normalized residual curvature, and
the crack-tip slope angle are computed in
Section 8.05.5.4. A connection between solu-
tions for the split test and the peel test is
analyzed and discussed in Section 8.05.5.5.
Finally, the general plane analysis result is
applied to a wedge-loaded experiment for Al-
alloy double-cantilever beam (Thouless et al.,
1998; Yang et al., 1999) in Section 8.05.5.6.
When the GPA model is used (throughout
Sections 8.05.5.3–8.05.5.6), the general case is
considered, in which both film and substrate
are elastic–plastic. However, in order to
decrease the number of parameters in our
analysis, the effect of the modulus mismatch
between film and substrate is neglected.

Figure 28 The crack-tip angle as a function of the film thickness for several values of N.

Figure 29 Split test geometry and simplified model.
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8.05.5.2 Split Test and the Interface Adhesion
Toughness (BB Model)

As shown in Figure 29, the slip test involves
measurement of the split force Q; the crack-tip
opening slope angle ytip (see below), and
the residual curvature, k0: Reversed bending
phenomenon does not occur in the split test so
that in the notation of the previous two
sections, w0 � 0: Based on the BB model, one
can obtain relations among all the govern
parameters (Wei, 2002). Moreover, the analy-
sis provides the total plastic dissipation accord-
ing to

Gp ¼ 1

2
Meke �

1

2
MBðkB � k0Þ

þ 2

3
� 2

N þ 2
g

� �
M0 ke �

k2e
kB

� �

þ 2g
ðN þ 1ÞðN þ 2ÞM0

kNþ1
B

kNe
� ke

� �
ð41Þ

where Gp is the area below the M–k curves
calculated through formula in Equation (31).
All parameters in the above formula are
defined as the same as those in Section 8.05.4.
For example,Me and ke are given in (22), and g
is defined in Equation (32). In the case of split
test, for the BB model, the formulas in
Equations (34) and (31) are still valid, and
the parametric relations in Equation (34) are
rewritten as

MB

M0
¼ ð2=3ÞðkB � k0Þ

ke

k0 ¼ kB þ 3

N þ 2
g� 1

� �
k3e
k2B

� 3

N þ 2
g
kNB
kN�1
e

ð42Þ

However, Equation (35) should be replaced by

kB ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinðbþ yf � ytipÞ

sinðbþ yfÞ
2Q

B
þ k20

s
ð43Þ

Equation (43) can be derived easily, along the
lines of Equation (46) given in the sequel. Here
B is the bending modulus. Frictional dissipa-
tion between the splitter and the film is
obtained from the force balance (Figure 29):

Gf ¼ sin yf
sinðbþ yfÞ

Q ð44Þ

where yf ¼ tan�1f0 is the frictional angle
between the splitter head surface and the split
film surface, and f0 is the frictional coefficient.
In the absence of friction, yf ¼ 0:

The interfacial toughness (work of adhesion)
is obtained by

G0 ¼ Q� Gp � Gf ð45Þ

Utilizing Equations (41)–(45) as described in
what follows, one can determine G0 if split test
data for k0; Q; and ytip are available. Given
measured estimates of k0; Q; and ytip; one can
obtain kB and MB from Equation (42) and
frictional angle yf from Equation (43), and
further attain Gp from (41) and Gf from
Equation (44). Finally, G0 is evaluated using
Equation (45). The crack-tip angle ytip is only
required if nonzero friction is considered.

8.05.5.3 Characterization of the Split Test
(GPA Model)

The split test geometry and related analytical
model sketched in Figure 29 is now analyzed
using the GPA model with an embedded
fracture zone. Splitting along the interface of
the film and the elastic–plastic substrate is
considered. The split film thickness is t. The
splitter head (usually a diamond material) is
treated as a rigid material. We assume that the
splitter head contacts smoothly with the split
film and substrate surface such that the contact
is frictionless. The splitter head contacts with
the split arm at edge of the section C. The EPZ
model characterizes the interfacial fracture
process near the crack tip. As the crack tip
steadily advances, the active plastic zones
depicted by the dark shading in Figure 29
around the fracture process zone and the top
surface move with the crack tip. During the
fracture process, unloading zones depicted by
the light shading area in Figure 29 are formed,
emerging from the active plastic zones. As in the
peel test analysis, the total problem is divided
into two subproblems: one is a large bending for
the split film, to the right of the L section, and
the other is the 2D analysis for a thin film
delaminating along the film/substrate interface.

8.05.5.3.1 Large bending solution for split film

The moment–curvature relation is sketched
in Figure 29. As already remarked, reversed
plastic bending does not occur in the split test.
Upstream, a constant residual curvature with
zero moment is left behind. The solution for
detached part can be obtained as

M ¼ 0; k ¼ k0 ðy4yc ¼ bÞ

M ¼ Bk0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð2Q=Bk20 sin bÞsinðb� yÞ

q
� 1

� �
k ¼ k0 þM=B ðyBoyrycÞ ð46Þ

where yB and yc are the slope angles with
x1-direction at the B-section and C-section,
and k0 is the residual curvature. The formula
for calculating the residual curvature k0 from
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the plastic strains based on the second part
solution has been given in Equation (17).

8.05.5.3.2 2D analysis for film delaminating
under steady state

Again with reference to Figure 29, an
elastic–plastic delamination of the thin film
under plane strain and small deformation
conditions is considered. The region includes
the film to the left of the section L and the full
substrate. Issues underlying the choice of the
point L have been described in Section 8.05.3.
The matching process for coupling the two
solutions at L is similar to that described for
the peel test case in Section 8.05.3.

For the split test, the total fracture work per
unit width and per unit crack advance is equal
to the split force Q. Neglecting the friction, one
can separate the total fracture work into two
parts: the interface adhesion energy G0 (or
interfacial toughness) and plastic dissipation
GP; the latter includes plastic bending and
unloading dissipation of the separated film and
the plastic dissipation due to plastic deforma-
tion and unloading in substrate. Namely

Q ¼ G0 þ Gp ð47Þ

For elastic splitting: Q � G0: Thus, in the
respective elastic limits, both tests have the
attractive feature that the applied force per
width is the intrinsic work of fracture, assum-
ing no frictional dissipation in the split test.

Gathering all the independent parameters
and noting Figure 29, one can formally write

normalized expressions for the key quantities
in the test as

Q
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The third relation a ¼ F3ð:::Þ describes the
dependence of the crack-tip angle as defined
in Equation (19).

Detailed results for three functions in
Equation (48) have been obtained by numerical
solution of the two-part GPA model. The
procedures, including the FE method, are
similar to those described in Section 8.05.3.

8.05.5.4 Results and Analyses

Variations of the normalized split forces
Q=G0 as a function of the normalized thin layer
thickness t=R0 are shown in Figure 30 for
several splitting angles. The split force Q=G0

increases to an asymptote as t=R0 increases.
When t=R0 is larger than B8, the solutions
become insensitive to further increases in t=R0:
The asymptote corresponds to the conven-
tional small-scale yielding, wherein all the
plasticity is confined to the immediate vicinity
of the crack tip. In this limit, the plastic zone
size tends to a stable value, i.e., far smaller than
the split layer thickness. From Figure 30, when
t=R0 is small and decreasing, the normalized
split force Q=G0 decreases and tends to unity.

Figure 30 The variation of the normalized split force with the normalized split arm thickness for several
splitter head angles.
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Although in this case the plastic zone height
covers the entire split layer thickness and large-
scale plastic yielding occurs, the plastic dis-
sipation contribution to the total fracture work
decreases to zero as t=R0 goes to zero, just as in
the case of the peel test. Also note that
increasing b can only moderately raise the
value of Q=G0:

Figure 31 shows the normalized residual
curvature vs. the normalized layer thickness for
several splitter angles. The residual curvature
increases as the layer thickness decreases.
Especially when t=R0 is smaller than 3, the
residual curvature increases strongly with
decrease of t=R0: However, when t=R0 is larger
than B3, the residual curvature increases

slowly with decreasing the split layer thickness.
As in the case of the splitting force, the residual
curvature is relatively insensitive to the split-
ting angle b; especially when t=R0 is larger
than 3.

The crack-tip angle a is plotted in Figure 32
against the normalized split layer thickness.
The trends are similar to those for the residual
curvature, but in this case the splitting angle b
has a definite effect.

Figure 33 shows the effect of the yield stress
parameter E=sY on the relation of Q=G0 to
t=R0: As was seen in the peel test, the effect is
large. Lowering the yield stress of the film (and
the substrate as well in the present calculation)
significantly increases the plastic dissipation

Figure 32 The variation of the crack-tip angle with the normalized split layer thickness for several splitter
angles.

Figure 31 The variation of the normalized residual curvature with the normalized split layer thickness for
several splitter head angles.
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and, therefore by Equation (47), increases
Q=G0:

Further investigation of the influence of the
yielding strain on the total energy is shown in
Figure 34 for the case of weak separation
strength, #s=sY ¼ 1: At E=sYo300; relatively
little plastic dissipation takes place, but for
larger values (lower yield strains) the plasticity
contribution becomes the major portion in the
total work of fracture. At the same time, the
thickness of the film has only modest effect on
the splitting load. The corresponding influences
of E=sY on the normalized residual curvature
k0 and the crack-tip angle a are shown in
Figures 35 and 36, respectively.

In Figure 37, the dependence of Q=G0 on the
normalized separation strength #s=sY and the
material strain-hardening exponent N is dis-

played for E=sY ¼ 300: The trends are quali-
tatively similar to the corresponding results for
the peel test. For E=sY ¼ 300; plastic dissipa-
tion plays a small role as long as #s=sYo2; but
it becomes increasingly important as the inter-
face strength increases due to the higher force
required to separate the film. Materials with
low strain hardening become very difficult to
split from the substrate when #s=sY43: This
effect is similar to that observed for small-scale
yielding fracture toughness for homogeneous
materials or for interfaces as shown in earlier
studies (Wei and Hutchinson, 1997a, 1998;
Tvergaard and Hutchinson, 1992, 1993; Evans
et al., 1999). To some extent it also reflects
limitations of the conventional plasticity used
in the present modeling, as will be discussed in
the conclusions.

Figure 33 The relation of the normalized split force to split arm thickness for different yield strains (sY/E),
displaying the strong influence of the yield strain.

Figure 34 The effect of the material yield strain on the normalized split force for a weak separation strength.
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8.05.5.5 Connection between Split Test and
Peel Test

Let us start with the peel test, and consider a
peel angle F larger than p=2: Let F ¼ p=2þ b
and note the definitions of the respective angles
in Figures 29 and 38. As motivated by the
sketch in Figure 38, we will compare the peel
test at a peel angle F ¼ p=2þ b with the split
test for a splitter of angle b: The total work of
separation in the peel test is Pð1þ sin bÞ; while
that in the split test is Q: A correspondence
between the solutions for the two tests is made
by requiring the total work of separation to be
the same in each test, i.e., Q ¼ Pð1þ sinbÞ:
The GPA model will be applied to both tests
with the respective bending solutions and FEM
results matched at the common point L. With

Figure 35 The effect of the yielding strain on the normalized residual curvature for several split layer
thicknesses.

Figure 36 The effect of the yielding strain on the crack-tip angle for several split layer thicknesses.

Figure 37 The influences of the normalized separa-
tion strength on the normalized split force for
different strain hardening exponent values N.
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this construction, the portion of the problem
analyzed by FEM is the same in each of the
two tests.

From Equation (18), the bending solution of
the peel test is

M ¼ Bk0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ½2Q=Bk20ð1þ sinbÞ�
�½1þ sinðb� yÞ� � w0

s
� 1

( )

k ¼ k0 þM=BðyBoyoF ¼ p=2þ bÞ
ð49Þ

The formula for computing k0 is the same as in
Equation (17). Unlike the split test, k0 in the
peel test is difficult to measure since the peeled
arm undergoes a very complicated deforma-
tion due to reversed plastic bending. The
parameter w0 is that introduced in Section
8.05.3 (Figure 38); it has the range 0rw0r1:

The corresponding beam solution for the split
test is given by Equation (46). Note that the
inclination angle at the section L, y ¼ yL; is
much smaller than b: When w0 ¼ 0; the
difference between the solutions from Equa-
tions (49) and (46) at L comes from the
two terms: ð1þ sinðb� yLÞÞ=ð1þ sinbÞ and
sinðb� yLÞ=sinb: The difference between these
solutions is very small since yL{b: It is this
observation that justifies the present construc-
tion of the correspondence between the two
tests. The correspondence is less good for large
w0 in the peel test, as seen in Figure 39 for one
particular numerical example. The major
conclusion to be drawn is that in the hypothe-
tical absence of reversed bending in the peel
test, the two tests are expected to give similar
total works of fracture if the peel and splitting
angle satisfy F ¼ p=2þ b:

Figure 39 The variation of the normalized energy rate with the normalized peeled layer thickness for several
w0 values of the peel test problem. The dashed line corresponds to the split test result.

Figure 38 The peel test geometry and analytical models. The shaded area indicates reversed bending. Case 1
has no reversed bending. From case 1 to case 4, the reversed bending strength w0 increases. The peel angle
F¼ 901þ b is larger than 901.
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8.05.5.6 Application to a Wedge-loaded
Experiment for Al-alloy Double-
cantilever Beam

Thouless and co-workers have carried out a
series of wedge-loaded experiments for the Al-
alloy double-cantilever beam specimens (Thou-
less et al., 1997, 1998; Yang et al., 1999). They
employed a nominally rigid wedge with a
rounded tip. The wedge test differs only
slightly from the split test. By moving the
wedge towards the crack tip at the split, a pair
of driving forces is exerted on the each split
arm and makes the double-cantilever beam
delaminate along the bonded interface. The
contact points move forward with crack tip.
The influence of the curvature radius of wedge
tip on the residual radius of the split arm was
obtained. The closer the contact point between
wedge and split arm to the crack tip, the
smaller the radius of curvature of the wedge
tip. Similarly, for the sharp wedge (splitter
head) as discussed here, as the splitter angle b
decreases, the contact point between splitter
face and split arm is close to crack tip.
Therefore, the splitter angle b for a sharp
wedge plays a similar role as the curvature
radius of a blunt wedge. We apply the split test
analysis in last subsection to the test geometry
of a symmetrical double-cantilever beam. For a
double-cantilever beam specimen in a wedge-
loaded split test, b is the half tip angle of the
wedge. For the purpose of comparison, we will
consider the same test geometry and Al-alloy
material used in the experiments by Thouless
and co-workers. By comparing the present
analysis with their experimental results, a
connection between the curvature radius of
the blunt wedge and the splitter angle of the
sharp wedge will be established.

For the material Al alloy considered in Yang
et al. (1999), the material is characterized by a
yielding stress of sYE100MPa; a Young’s
modulus of 70GPa, and a Poisson’s ratio of
0.3. Therefore, ðE=sY; nÞ ¼ ð700; 0:3Þ in the
present analysis. For the moderate hardening
metal, the value N ¼ 0:2 is adopted for the
stress–strain relations in Equation (8). For
weakly bonded double-cantilever beam speci-
men, corresponding to a relatively large
fracture process zone, Yang et al. (1999)
measured G0¼ 1.4 kJm�2 and #s=sY ¼ 1: From
Equation (10), the plastic zone size in small-
scale yielding case is computed as R0 ¼
1:15 mm:

The symmetry of the double-cantilever beam
specimen enables only one wing of the double-
cantilever beam to be considered. On the
interface (symmetry surface), the mode I crack
condition pertains. The problem geometry
becomes the same as Figure 29, assuming that
the plastic dissipation from the film is much
larger than that from the substrate, i.e., as long
as the substrate is taken as a rigid material in
there. The correspondence between the two
models is not exact because the displacement
tangential to the interface is constrained to be
zero in the split test but not in the wedge test.
However, this difference is not expected to be
important. The driving force Q in Figure 29,
the critical crack-tip opening displacement, and
the corresponding interface fracture toughness
G0 in a split test are only half of their
counterparts in the double-cantilever test.
However, the ratio Q=G0 is unchanged, equal
to the corresponding ratio of the double-
cantilever beam case.

Figure 40 shows the normalized residual
curvature as a function of the splitter angle
for various film thicknesses. The normalized

Figure 40 Normalized residual curvature as a function of splitter shape: sharp wedge with angle b
(solid lines) and blunt wedge with tip curvature diameter D (source: circles; experiments for Al alloy from
Yang et al. (1999)).
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residual curvature slowly increases with in-
creasing b: However, the residual curvature
increases markedly as the film thickness varies.
The experimental results of Yang et al. (1999)
are also shown in Figure 40, plotted against the
normalized wedge tip diameter D=R0 rather
than b: The analytical results are surprisingly
consistent with the experimental results within
realistic domains of geometrical parameters, b
and D=R0: In Figure 40, 1=k0 is the residual
radius of curvature of the split film. In this
analysis, E=sYð1� n2Þ ¼ 769; and, in Figure
40 at b ¼ 501; the residual radii are about
14mm, 40mm, and 77mm, respectively, for
split film thickness t¼ 1mm, 2mm, and 3mm.
Figure 40 establishes a strong correspondence
between the sharp wedge parameter b and the
blunt wedge parameter D: From the figure,
D¼ 1mm of blunt wedge case corresponds to
b ¼ 32:51 of sharp wedge case, and D¼ 3.6mm
corresponds to b ¼ 651:

In the application, the split force Q (driving
force per unit width) is also obtained. For
example, at b ¼ 501 the split forces (per unit
width) are 4.4Nmm�1, 5.8Nmm�1, and
6.9Nmm�1, respectively, for split film thick-
ness t¼ 1mm, 2mm, and 3mm.

8.05.6 CONCLUDING REMARKS ON
MODELING THE PEEL TEST

For what is regarded generally as a simple
test, the peel test is remarkably complicated
when plastic deformation makes a significant
contribution to the total peel work of fracture.
Aside from its apparent simplicity and popu-

larity, the peel test does not provide an easy
means of determining the interface adhesion
energy G0; except under conditions where
plastic dissipation is negligible. It should be
apparent from this chapter that modeling the
peel test with the objective of partitioning the
total work of peel to obtain G0 is far from
straightforward. The cohesive zone model
combined with the detailed continuum analysis
near the crack tip (the GPA/EPZ model) brings
out the combined roles of the two parameters
characterizing the interface G0 and interface
strength #s; in determining the peel force and
the contribution of plastic dissipation to the
total work of fracture. The coupling between
these parameters is highly nonlinear. The
GPA/EPZ model reveals a fairly clear qualita-
tive picture of the two major sources of the
plastic dissipation: localized crack-tip plasti-
city, Gtip

p ; and ‘‘large-scale plasticity’’ due to
bending, Gbending

p : Figure 41 presents a sche-
matic overview of the regimes of these con-
tributions to the total work of fracture. At high
interface strength, as measured by #s=sY; local
crack-tip plastic dissipation can constitute a
large fraction of the total work of fracture,
such that the peel force is many times of G0; as
indicated by regions B and C in Figure 41.
When t=R0 becomes sufficiently large, plasti-
city in bending does not occur and Gtip

p
becomes the major source of the dissipation
(C). However, as t=R0 decreases, bending
plasticity also comes into play. When the
interface strength is small and t=R0 is large,
in region D, the entire peeling process is elastic
and the test provides a direct evaluation of G0:
However, even a system with a relatively weak

Figure 41 A schematic displaying the regimes of plastic dissipation in the peel test as dependent on
the normalized interface strength and the normalized film thickness. The plot is roughly applicable for
sY/E41/500. The boundary between regions A and B is quite sensitive to sY/E.
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interface will produce Gbending
p at small t=R0 as

in region A of Figure 41. But as discussed
in Section 8.05.3, the ratio Gbending

p =G0 may,
nevertheless, be small if the volume of material
(i.e., thickness of the film) is sufficiently small.
The location of boundaries between different
regimes in Figure 41 depends on another
parameter, sY=E; and to a lesser, but never-
theless significant, extent on the strain-hard-
ening index, N:

In principle, the GPA/EPZ model provides a
computational means of partitioning the total
work of fracture into the interface adhesion
energy and plastic dissipation. However, there
are two primary difficulties in using such a
model to determine the interface adhesion
energy G0 from peel test data. The first is
simply the fact that at least three dimensionless
parameters play important roles in the theore-
tical results: #s=sY; sY=E; and t=R0: One of
these, #s=sY; cannot be determined directly and
is therefore difficult to assign. These are no
issues that impede the usefulness of the model
for qualitative understanding, but they make it
difficult to obtain a reliable quantification for
specific peel systems.

The second difficulty relates to the inade-
quacy of conventional plasticity theory used in
carrying out the calculations (e.g., the J2 flow
theory). For metals, there are compelling
reasons to believe that conventional plasticity
theory significantly underestimates hardening
and stresses when the gradients of plastic strain
are large as, e.g., at a crack tip (Fleck and
Hutchinson, 1997). More and more experi-
mental evidence is accruing indicating that,
when nonuniform deformation occurs on the
mm scale, elevations in stresses occur that are
several times those observed at larger scales at
equivalent strain levels (Bagchi et al., 1994;
Bagchi and Evans, 1996; Lipkin et al., 1998;
Evans et al., 1999). Stress elevation fosters
interface separation at the tip of a crack on a
strong interface. Size effects resulting in stress
elevation at small scales have been found in the
other kinds of problems as well, such as micro-
indentation tests (Stelmashenko et al., 1993;
Ma and Clarke, 1995; McElhaney et al., 1998;
Wei et al., 2001), torsion tests of thin copper
wires (Fleck et al., 1994), as well as bending
tests of thin films (Stolken and Evans, 1998).
Plasticity theories have been formulated that
incorporate a material length scale and size
effects (e.g., Fleck and Hutchinson, 1993, 1997;
Aifantis, 1992; Acharya and Bassani, 1996;
Gao et al., 1999; Huang et al., 2000), but at this
stage of their development it is probably to
soon to be able to use them for quantitative
modeling. Qualitative trends expected from a
GPA/EPZ model, which employs the enhanced

mm scale plasticity theory, can be seen in Wei
and Hutchinson (1997b).

Finally, based on the findings in Section
8.05.4, it has to be stated that a model based on
beam (or plate) theory coupled with a cohesive
zone does not seem to be viable. As has been
emphasized in Section 8.05.4, such a model
fails to capture near-tip plastic dissipation and
therefore is unable to give realistic predictions,
or even correct trends, for relatively thick films
with strong interfaces. The very important role
of interface strength is not revealed at all by
this type of model. It should be no surprise that
this class of model is unable to capture near-tip
behavior, since beam theory is derived under
the tacit assumption that variations along the
beam take place over lengths that are long
compared to the beam thickness. Near-tip
plasticity occurs on the scale of the thickness
or even smaller. Even more troubling, the
length of the cohesive zone as computed from
this class of models turns out to be of the order
of the thickness in nearly all cases. This is a
clear signal that the modeling assumptions are
inconsistent with the use of beam theory. While
these statements clearly imply that coupling a
beam model to a cohesive zone does not make
sense, it does not constitute an argument
against the usefulness of other models based
on beam theory. Models that employ the
crack-tip opening angle as computed from a
beam model (without a cohesive zone) may be
useful if the critical opening angle is treated as
a characterizing parameter. However, the basic
goal of partitioning the intrinsic work of
fracture in the test is not achieved with a
model of this type.
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