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Eigenfrequency loci veering, which indicates strong mode coupling and sometimes mode 
localization, is a much sought-after property in the applications of mass sensing and 
opto/electromechanics. A weak physical coupling is the mechanism responsible for the 
eigenfrequency loci veering and overhang is a widely used structure to realize such mechanism. A 
continuum model, which is more accurate and straightforward as compared with the discrete models, 
is presented for the structure of two overhanged cantilevers.The eigenvalue problem formulation 
based on this continuum model leads to a direct computation of the eigenfrequencies, which does 
not involve any numerical discretization procedure. A comprehensive study on the eigenfrequency 
loci veerings and mode splittings of the overhanged structure is presented. The influences of various 
parameters on the eigenfrequency loci crossing and veerings are also systematically studied. An 
efficient optimum design tool for the eigenfrequency loci veering of an overhanged structure is 
provided by the continuum model together with a direct computation method. 
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1. Introduction 

Due to its catastrophic nature, a tiny introduction of disorder, such as adsorption of an analyte, can 
cause rather significant variations of the eigenfrequencies and mode shapes of a coupled structure, 
which is the sensing mechanism of many mass resonators [1, 2, 3]. In an overhanged mass resonator 
based on the mode shape sensing mechanism, the effect of mode localization needs to be enhanced to 
increase its sensitivity [1]. The enhancement mechanism is to reduce the coupling stiffness [1, 2]. For 
the resonator with two overhanged cantilevers, the physical coupling stiffness	k	ୡ and the cantilever 
effective stiffness k are with the following relation [2] 

 

2 2
2 1

2
12

ck

k

 



 . (1) 

Where ωଶ and	ωଵ are the two (measured) adjacent eigenfrequencies and  ωଶ > 	ωଵ. The difference 
between two eigenfrequencies (ωଶ −	ωଵ) is termed the frequency splitting [4]. Clearly, according to 
the above equation, the smallest frequency splitting results in the smallest kc for a given k. This 
smallest frequency splitting is also called veering neck or veering width. Veering signifies the strongest 
mode coupling [4]. An essential information conveyed by Eq. (1) is that a weak physical coupling (	k	ୡ) 
results in an eigenfrequency loci veering, which corresponds to the strongest mode coupling. 

As shown in Fig. 1, an overhang, which is variously called a shared mechanical ledge  or shuttle 
mass, connects two cantilevers. Overhang provides a simple and direct coupling mechanism for 
(sub)structures, which has been used in various applications [1-3]. The discrete models with the lumped 
parameters have been used to study the overhanged structure [1, 2]. In this study, we provide a 
continuum mechanics model to study the two overhanged cantilevers. Our continuum model presents a 
systematic and comprehensive study on the impacts of various parameters on the eigenfrequencies. For 
example, the geometric parameters, such as the length, width and thickness (which implicitly includes 
the separation distance) and material property (Young’s modulus) of an overhang together with the 
various differences such as mass, stiffness and length between two cantilevers. The previous discrete 
models [1, 2] in essence only offer some qualitative explanations on the experimental findings rather 
than providing an optimization tool. With this continuum model, an efficient and more accurate 
optimization tool is presented. 

2. Model development 

In the schematic diagram of an overhanged cantilever structure in Fig. 1, one end of the overhang sis 
connected with two beams and the other is clamped. Here b, h and Lo are the width, thickness and 
length of the overhang, respectively. The corresponding parameters for beam 1 and 2 are b1, h1 L1 and 
b2, h2 L2. For the succinctness reason, the governing equation is written as follows 
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Here m, m1 and m2 are the mass per unit length of the overhang, beam 1 and beam 2, respectively. 
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And E, E1, E2 and I, I1, I2 are the Young’s moduli and the second moments of area of the overhang 
and two beams, respectively. The following dimensionless quantities are introduced : 
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Now Eq. (2) is nondimensionalized as follows: 
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The dimensionless quantities in Eq. (4) are defined as follows 
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Physically,   and   are the dimensionless mass per unit length and bending stiffness of the overhang; 

1  and 2  are the beam 2 dimensionless deviations of the mass per unit length and bending stiffness 

from those of beam 1, respectively. There are six boundary conditions equations are for the 
cantilevered overhang and another  six equations are to ensue the continuity of displacement, slope, 
moment and shear force at x = Lo. Therefore, there are total 12 equations for us to carry out the 
eigenfrequency computation for Eq. (4). And again, for the succinctness reason, we just give some 
results without presenting the detailed computation procedures. 

 
Figure 1: The schematic diagrams of an overhanged cantilever structure with two beams and their 

dimensions. 
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3. Results and discussion  

Because it is customary to present the square root of the (dimensionless) eigenfrequency, the 

variations of the first ten n  s ( n n  , n = 1 to 10) as the functions of o are presented in Fig. 2. 

The eigenfrequency square roots of a uniform beam ( if s) are also presented for comparison. For the 

convenience of statement, we call n  and if  eigenfrequency hereafter. 

In Fig. 2, there are only five eigenfrequencies ( if s, i = 1 to 5) whose value is less than 16 and the 

values of these first five eigenfrequencies ( if s) [41] are presented in Table 1. In comparison, in the 

same range there are ten eigenfrequencies in the overhanged structure. Because the overhang couples 
the two beams, there are newly emerging eigenfrequencies o 2i is with even subscript numbers and 

marked as dashed lines in Fig. 2. At ξo = 0, the two beams are uncoupled. Therefore, they are 
independent and show the characteristics of a uniform beam, i.e., 2i = 2 1i   = if  at o  = 0. At o  = 0, 

the eigenfrequencies of 2 1i   and 2i  arise as a pair. As o increases, 2 1i   and 2i begin to separate: 

2 1i   stays unchanged as if ; while, 2i increases rapidly to approach 1if  . As the result, the mode 

associated with 2i  also experiences the same emerging and then separating process. The same 

scenario also occurs in a circular graphene membrane [5] and overhanged beams  tuned by an 
electrostatic force. This new 2i -mode generating and separating phenomenon is called mode splitting 

[5]. The emergence of new modes is due to the mixing of modes [5]. As shown later, the mode shape 
associated with 2i is the mixing of the modes associated with if  and 1if  . A mode splitting is 

equivalent to an transparency [5]. In opto/electromechanics, an eletromagnectically induced 
transparency means that the system is switched from reflecting to transmitting the 
optical/electromagnetic waves [6].  

 
Figure 2: The first ten eigenfrequencies ( n , n = 1 to 10) as the functions of the overhang length ( o ) 

for two identical beams, 
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4. Conclusion 

A continuum model on the overhanged two-cantilever structure, which can be easily extended to an 
array with multiple cantilevers, is proposed. Unlike a discrete model which only describes two-mode 
interaction, this continuum model includes the interactions of all modes. The eigenvalue formulation 
leads to a direct computation on the system eigenfrequencies without any discretization procedure. 
With this continuum model and a direct computation method, the eigenfrequency loci veering are 
presented by simply computing the eigenfrequencies as the functions of the overhang length/thickness 
and differences of the beam length, stiffness and mass. The overhang couples the two cantilevers, 
which leads to the mode splitting and then veering. The mode splitting, which generates a new mode, 
results from the mixing of two adjacent modes of a uniform beam. With the increase of the overhang 
length, the rapid eigenfrequency increase of this new mode results in its separation from that of a lower 
mode, which then leads to its veering with that of a higher mode. The overhang length is the most 
important parameter determining the veering loci; the length difference of the two beams can produce 
more veering loci. By presenting the eigenfrequency spectra, a more comprehensive study is provided, 
which can be useful in the optimum design of the overhanged structures. In the structure of two 
overhanged cantilevers, the veering indicates the strong mode coupling, while, the mode localization 
can be small or even none. The veering locus of two adjacent eigenfrequencies also corresponds to the 
locus of two other adjacent eigenfrequencies with the largest separation. Physically, this means that the 
weak and strong physical couplings can be easily alternated by exciting two different modes, which 
may hold some potential applications for mass sensing or opto/electromechanics. 
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