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Abstract. It has been accepted that low-frequency vibrational modes are causally correlated to funda-
mental plastic rearrangement events in amorphous solids, irrespective of the structural details. But the
mode-event relationship is far from clear. In this work, we carry out case studies using atomistic simu-
lations of a three-dimensional Cu50Zr50 model glass under athermal, quasistatic shear. We focus on the
first four plastic events, and carefully trace the spatiotemporal evolution of the associated low-frequency
normal modes with applied shear strain. We reveal that these low-frequency modes get highly entangled
with each other, from which the critical mode emerges spontaneously to predict a shear transformation
event. But the detailed emergence picture is event by event and shear-protocol dependent, even for the
first plastic event. This demonstrates that the instability of a plastic event is a result of extremely complex
multiple-path choice or competition, and there is a strong, elastic interaction among neighboring instability
events. At last, the generality of the present findings is shown to be applicable to covalent-bonded glasses.

1 Introduction

How crystalline solids deform plastically is fundamentally
clear, thanks to extensive studies of a finite number of
crystal types [1–3]. Under external stimuli, plastic ar-
rangements always initiate around lattice defects such as
dislocations and grain boundaries. Amorphous solids, by
contrast, can exhibit an infinite variety of configurations
where lattice defects are entirely lost [4]. In this case, el-
ementary plastic events become elusive, and identifying
their structural fingerprints poses a formidable challenge.
Over the past decades, numerous efforts [5–11] have been
made to define various predictors for amorphous plastic-
ity. Pure structural parameters have proven to be distantly
related to plastic rearrangements. But physical quantities
involving dynamic properties or high-order structural in-
formation offer enhanced predictability.

Elasticity is a material property, intermediate between
structure and plasticity, which can act as a middle way
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of predicting plasticity [12–21]. From a potential energy
landscape perspective, elasticity and plasticity are strictly
distinguished. The elasticity reflects the features of curva-
ture of landscape basins, whereas the plasticity is barrier
hopping or vanishing of inter-basins. But intuition tells us,
it is easier to hop out of a relatively flat, shallow basin.
This activation process can be understood as the saddle-
node bifurcation of landscape induced by shear [12,22]. To
predict such bifurcation, Maloney and Lemâıtre [13] have
constructed the decomposition of elastic deformation in
the vibrational space, yielding

dr
dγ

= −
∑

m

ζm

ω2
m

Ψm, (1)

where dr/dγ is the nonaffine displacement field, i.e., the
change of the system’s configuration r with applied shear
strain γ, ωm is the frequency of the vibrational normal
modes Ψm, and ζm is the mode decomposition of the non-
affine force field. Equation (1) predicts that, if the fre-
quency of a mode goes to zero, this critical mode must
dominate the direction of dr/dγ whose length will diverge
simultaneously. Such a divergence accounts for the break-
down of eq. (1) as an indicative of the onset of a plastic
event. Guided by the low-frequency critical modes or their
derivatives, one can identify structural “soft spots” where
plastic events sprout with a high propensity [18,23–26];
the triggering strain of plastic events can be predicted [27].
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In this work, we do not straightly aim at the pre-
diction of amorphous plasticity by defining any mode-
derived indicator. In contrast, we restrict our attention
to the spatiotemporal evolution of vibrational modes as-
sociated with plastic events, which has so far not been
studied in details. The evolution of modes per se is the
dynamic response of hyper-dimensional energy landscape
to external loading. To highlight the essential physics, we
purposely focus on the first four plastic events in a model
glass, and carefully trace the event-related low-frequency
modes during shear straining. This belongs to case stud-
ies, but vividly portraying extreme complexity of plastic
instability events in amorphous solids, from which we can
gain some useful insights into amorphous plasticity.

2 Atomistic simulations

A well-studied three-dimensional (3D) Cu50Zr50 model
glass [28–30] is adopted as a representative of general
amorphous solids, which contains 19652 atoms interact-
ing with a Finnis-Sinclair–type embedded-atom method
potential [31]. We prepare this model glass from its melt-
ing state, which has been equilibrated at 2000K for 2 ns
that is much longer than its α-relaxation time. Then the
equilibrated liquid is quenched to 0K glass configuration
with a cooling rate of 1010 K/s. An additional sub-Tg an-
nealing at 700K is performed for 60 ns to accelerate the
aging dynamics, which drives the inherent structure (IS)
to the deeper basin on the energy landscape. The prepared
stable glass is of distinguishable low-frequency modes and
therefore facilitates the clarification of the contribution of
versatile modes to the displacement field.

We perform the athermal quasistatic shear (AQS)
atomistic simulations to harvest plastic events triggered
by shear strain. A simple shear is applied on the glass
with a very small strain step δγ = 10−5, and the Lees-
Edwards boundary conditions are used throughout. Dur-
ing the AQS protocol, the glass configuration r always
resides in an IS of potential energy U(r, γ). For the IS
at a given strain, the normal modes Ψm and correspond-
ing ωm are computed through the exact diagonalization
of the Hessian matrix H = ∂U/∂r∂r with a cutoff radius
of 7.6 Å. The nonaffine displacement δr during each δγ is
calculated as the real displacement minus the macroscopic
affine portion; here δr can be either elastic or plastic.

3 Results and discussion

Figure 1 shows the first four plastic events, manifesting as
the four stress drops separated by linear elastic segments.
The inset gives the typical stress vs. strain trajectory un-
der AQS, which is well resolved by the prescribed strain
step δγ = 10−5. It can be seen that the first four events
occur at very early stage of straining, far below the global
yield point. Their onset strains γc are 0.253%, 0.277%,
0.295% and 0.534%, respectively. Each event is complete
in an individual strain step. Such low triggering strains
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Fig. 1. The first four plastic ST events indicated as four stress
drops in the AQS stress vs. strain trajectory. Inset: the entire
trajectory beyond the global yield.

imply that, in the AQS limit, the studied glass resides
in a marginal stable state [26,32–34]. The IS of glass is
rather rough and hierarchical, hence any tiny basin could
be sampled during straining. This is further evidenced by
the real-space configurations of the four events in 3D; see
fig. S1 in the Electronic Supplementary Material (ESM).
We find that these events belong to localized shear trans-
formations (STs) occurred at distinct spatial positions. It
must be addressed that such spatial separation of plastic
events benefits from the very deep basin of the initial sam-
ple. Otherwise events’ overlap in space possibly occurs.
Their ST nature is supported by the atomic shear-strain
correlation that they induce; see fig. S2 in the ESM, show-
ing the quadrupolar pattern like an Eshelby inclusion [35].
The four ST events look spatiotemporally isolated. We
therefore take them as case studies to explore their plas-
tic instabilities in the mode space.

Figure 2(a) plots the stress difference δτ =
τ(γ) − τ(γ − δγ) as a function of γ. This plot to
some extent reflects the change of shear modulus with
strain, in which the four ST events are magnified as
precipitous drops of δτ . The lowest-frequency ten modes
Ψm are calculated for the initially unstrained state γ0,
and they are numbered as modes 1, 2, . . . , and 10 in
increasing order of their frequencies ωm. We calculate the
participation ratio of the ten modes, and find that modes
1 and 2 belong to quasilocalized modes that should obey
the non-Debye ω4

m scaling law [36–38], while the others
are extended Debye modes. By the spatial projection of
Ψm (see sect. 3 in the ESM), we carefully trace these
modes during the straining process, particularly when
they are crossing/anti-crossing or pass through plastic
events. Figure 2(b) gives the evolution of the frequencies
ωm of the ten modes from the initial state to the onset of
the fourth event. It can be seen that, preceding each stress
drop (or ST) event, there always emerges a critical mode
Ψ∗ with its frequency diverging towards zero (ω∗ → 0)
at γc. This is consistent with previous reports [13,17,
23]. The critical modes are 1, 2, 3 and 6, respectively,
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Fig. 2. (a) The stress difference δτ = τ(γ) − τ(γ − δγ), (b)
the lowest ten mode frequencies ωm and (c) the projection Pm

of the nonaffine displacement field δr(γ → γ + δγ) onto the
modes Ψm(γ) as a function of applied strain γ.

corresponding to the first four events. However, these
ST events are not as simple as they look at first glance.
We notice that modes 4 and 5 are also stirred by the
applied shear straining. Six low-frequency modes thereof
participate in the occurrence of the first four ST events.
The frequency evolution of these modes is highly strain-
dependent, which essentially reflects how the glass selects
the deformation paths to release the plastic ST events.

To quantify this instability-path selectivity, we project
the nonaffine displacement field δr onto the vibrational
mode Ψm, here Ψm is calculated at the start strain point
of δr. The projection parameter is defined as

Pm = Ψm · δr/|δr|. (2)

where 0 ≤ Pm ≤ 1. The larger the Pm value is, the higher
the directional consistence between δr and Ψm. There-
fore, this defined parameter can quantitatively measure
the instantaneous contribution of each mode to the non-
affine deformation. Figure 2(c) calculates the strain evo-
lution of the Pm values for the lowest six modes: Ψm, m =
1, 2, . . . , 6. We observe that, corresponding to the sudden
drop of ω∗ to 0 at γc, the contribution P∗ of the critical
mode Ψ∗ will sharply rise close to 1, which also indicates
the onset of a plastic event but from a spatial viewpoint.
The observed spatiotemporal consonance reveals that
plastic instabilities follow the Ψ∗-controlled minimum en-
ergy path. It is noted that the critical modes Ψ∗ can even
dominate the configuration δr of the entire plastic events
next to them, since all P∗(γc) → 1. This feature should be
intrinsic to individual ST events, but not suitable for the
avalanche plastic events involving multiple STs [13,39].

However, far away from the critical instability points,
the situation becomes much more complex. Pm is more
susceptible than ωm to reflect the complexity of defor-

mation paths. We notice that, at some strain points, the
maximum Pm does not necessarily correspond to the mode
with the minimum ωm. This might result from the addi-
tional contribution ζm of the nonaffine force [7,27], which
in turn confirms that the critical modes only dominate the
configurational change close to plastic instabilities. We
also find that the Pm values could be almost identical for
different frequencies ωm. This means that the glass arrives
at a fork in the deformation path. More importantly, the
path instabilities will compete or interfere with each other.
For example, after the 2nd ST, the path instability along
the mode 4 is surpassed by that along the mode 3 (leading
to the 3rd ST), and thus becomes stable again. The revival
of the mode 4 afterwards impedes the first instability
along the mode 6, although the second instability of the
latter leads to the 4th ST. The two terminations of path
instabilities exactly correspond to the frequency kinks of
modes 4 and 6, respectively, in fig. 2(b). This accounts
for the two abortive stress drops δτ as marked by red
arrows in fig. 2(a). These results reveal a strong, elastic
interaction among these spatiotemporally-isolated plastic
events, which is reminiscent of the elastic avalanches
reported recently [34,40]. The event-event interaction
observed here benefits from the continual, across-event
trace of vibrational modes and nonaffine displacements.

Next, we explore the spatial patterns of both defor-
mation fields δr and vibrational modes Ψm, which are
projected on the shear (e.g., x-y) plane. But the atoms
are chosen from a proper slab that resides in the x-y
plane and has a thickness of 6 Å along the z direction.
The identical slabs are used for a plastic event and
its associated vibrational modes. From fig. 2, we know
that the vibrational modes related to plastic events are
strongly strain-dependent. It is further confirmed by
fig. 3 which shows that the initial pattern of the critical
mode is totally different from its final pattern. The latter
has a configurational consistence close to 1 with its
corresponding plastic event, see fig. 2(c). The four critical
modes at γc are of typical quasilocalized character, but
their initial feature at γ0 can be either quasilocalized
(modes 1 and 2) or extended (modes 3 and 6).

We will purposely examine specific strain points, in or-
der to visualize the interaction of vibrational modes and
their relationship with upcoming plastic events. The 1st
ST event is a perfect case, since it seems to only link with
the mode 1. Figure 4 shows that this is not so straight-
forward —before the strain of 0.220%, the mode Ψ2 (Row
(c)) looks more similar to the δr during the 1st ST (see
fig. S4(a) in the ESM). Keep in mind, at that strain stage,
this similarity cannot be detected, because we do not know
the configuration of the 1st ST. In addition, the frequency
ω2 of the mode Ψ2 does not show any anomaly before the
0.220% strain (see fig. 2(b)). At the 0.220% strain, the
modes Ψ1 (Row (b)) and Ψ2 are almost the same, indi-
cating an entanglement of deformation paths. After this
fork point, the spatial pattern of the mode Ψ1 gradually
points to the 1st ST’s configuration, whereas the mode
Ψ2 evolves along other directions. Later, the Ψ2 leads to
the 2nd ST, but at that time we do not know. The path
transfer from the mode 2 to 1 explains why the lowest ω1
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Fig. 3. The initial patterns (upper panel) of critical modes and their final patterns (middle panel) at the critical instability
strains. Lower panel: the nonaffine displacement fields during the plastic events corresponding to these critical modes.
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Fig. 4. A cast study showing the emergence of the 1st ST event associated with vibrational modes. Row (a): the nonaffine
displacement field δr. Row (b): the critical mode (Ψ∗ = Ψ1) of the 1st ST event. Row (c): the mode Ψ2. Note that δr occurs in
the strain step δγ just next to the strain γ at which the modes are calculated.

first shift upwards to the ω2 and then decreases sharply
to zero (see fig. 2(b)). It seems that the mode 1 is not
passively hybridized by the mode 2. Instead, the former is
actively regulated by the latter and becomes the critical
destabilizing mode thereof.

It must be pointed out that the elastic configurational
change δr is negligibly small, and keeps almost unchanged
as compared to δr of plastic events (Row (a)). Therefore,

the path selection detected in the mode space is barely
perceptible in the real space. This suggests that normal
modes, as a set of base directions of nonaffine displace-
ments, provide an effective probe into the deformation
paths before plastic instabilities.

The case studies of the 2nd, 3rd, and 4th ST events
are presented, respectively, in figs. S4(b)–(d) and S5–S7
of the ESM. These events show more complex than the
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Fig. 5. The lowest six-mode frequencies as a function of applied shear strain along the (a) xy, (b) −xy, (c) xz, (d) −xz, (e)
yz and (f) −yz directions. The critical mode emerges from these low-frequency modes, indicating the onset of the first plastic
event. Inset: the critical mode at γc and the nonaffine rearrangement during the first event.

1st one, since at least three modes are observed to partici-
pate in their respective instabilities. For the 2nd ST event,
the participant modes are 2 (critical mode), 3 and 4. For
the 3rd ST, the modes are 3 (critical mode), 5 and 6. For
the 4th ST, the modes are 4, 5 and 6 (critical mode). The
three-mode competition can easily incur a trident fork of
deformation paths, which can be seen at γ = 0.250% in
fig. S5 or γ = 0.450% in fig. S7. The multiple-path choice
of the plastic event and strong interaction of neighboring
events thereof can be also observed. But the details re-
lated to each plastic event are case by case, showing the
emergent universality [41].

Finally, we study the shear-protocol dependence of
plastic events, and its importance has been addressed re-
cently [7,27]. We prepare a cube-shaped Cu50Zr50 glass

that is apparently isotropic, and perform AQS simula-
tions on it by simple shear along the xy, −xy, xz, −xz,
yz and −yz directions. We trace the lowest-frequency six
modes and see which mode induces the first plastic ST
event. The results are shown in fig. 5. It can be seen that
different shearing protocols lead to different manners in
which the critical mode emerges. As a result, the criti-
cal strains triggering the first plastic event are entirely
different, reflecting the difficulty of activation of incipi-
ent plasticity. Among the six critical modes, three evolves
from the lowest-frequency mode 1; two from the mode 2;
one from the mode 3. However, it is interesting to find
that different deformation paths probably lead to simi-
lar or identical plastic events in space. For example, the
first event for the xy shearing has a configurational consis-
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tence of ∼ 0.86 with that in the −xz direction, although
both of them undergo different strain-evolution processes.
A similar phenomenon is also observed for the −xy and
xz shearings: the two plastic events are of configurational
consistence close to 1. In this situation, different defor-
mation paths can even follow different modes (1 and 2),
but leading to identical plastic events at different trigger
strains.

4 Conclusions

We conclude this work with some insights beyond the
previous knowledge of amorphous plasticity. The new in-
sights benefit from both the multiple-mode tracing of
plastic events and the across-event tracing of vibrational
modes. First, we realize that the spatiotemporal entangle-
ment of neighboring modes, i.e., so-called low-frequency
hybridization, is not meaningless far away from plastic
events; on the contrary, it is a necessary or natural pro-
cess in which the glass actively chooses the deformation
paths on the energy landscape to reach plastic instabili-
ties. Second, the critical or destabilizing mode hybridizes
not only with background plane waves, but also with other
destabilizing modes leading to plastic events. This results
in a strong, elastic interaction among neighboring plastic
events even at the very early stage of deformation. The
occurrence of a plastic event will in turn reconstruct the
low-frequency modes and thus affect the next event. Such
mode-event interplay is the core of amorphous elastoplas-
tic models [42,43]. Thirdly, the strain evolution of normal
modes shown here, to some extent, reflects the information
on the anharmonicities of the potential energy landscape.
The importance of the latter has been corroborated re-
cently [10,44], where nonlinear modes can be defined by
expanding the landscape to higher-order approximation
around its minimum. However, from our opinion, neither
normal nor nonlinear modes have the power to predict a
plastic event at a strain distance very far away from the in-
stability onset, although the latter offers higher accuracy.
It remains greater challenging to achieve the across-event
prediction for both types of modes. We therefore suggest
that statistic description of modes, normal or nonlinear,
may be more viable to provide a probability prediction of
plastic events, as done in refs. [23,26].

Last but not least, we carry out extra simulations on a
new model of the Pd80Si20 glass; see figs. S8 and S9 in the
ESM. This model is a metal-metalloid alloy that is very
different from the Cu50Zr50 glass, a typical metal-metal
system. In this way, the generality of the present find-
ings is shown to be applicable to either metallic-bonded
or covalent-bonded glasses.
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13. C. Maloney, A. Lemâıtre, Phys. Rev. Lett. 93, 195501

(2004).
14. C.E. Maloney, A. Lemaitre, Phys. Rev. E 74, 016118

(2006).
15. M. Tsamados, A. Tanguy, C. Goldenberg, J.-L. Barrat,

Phys. Rev. E 80, 026112 (2009).
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