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A B S T R A C T   

Background: Liver sinusoidal endothelial cells (LSECs) display unique fenestrated morphology. Alterations in the 
size and number of fenestrae play a crucial role in the progression of various liver diseases. While their features 
have been visualized using atomic force microscopy (AFM), the in situ imaging methods and off-line analyses are 
further required for fenestra quantification. 
Methods: Primary mouse LSECs were cultured on a collagen-I-coated culture dish, or a polydimethylsiloxane 
(PDMS) or polyacrylamide (PA) hydrogel substrate. An AFM contact mode was applied to visualize fenestrae on 
individual fixed LSECs. Collected images were analyzed using an in-house developed image recognition program 
based on fully convolutional networks (FCN). 
Results: Key scanning parameters were first optimized for visualizing the fenestrae on LSECs on culture dish, 
which was also applicable for the LSECs cultured on various hydrogels. The intermediate-magnification mor-
phology images of LSECs were used for developing the FCN-based, fenestra recognition program. This program 
enabled us to recognize the vast majority of fenestrae from AFM images after twice trainings at a typical ac-
curacy of 81.6% on soft substrate and also quantify the statistics of porosity, number of fenestrae and dis-
tribution of fenestra diameter. 
Conclusions: Combining AFM imaging with FCN training is able to quantify the morphological distributions of 
LSEC fenestrae on various substrates. 
Significance: AFM images acquired and analyzed here provided the global information of surface ultramicro-
scopic structures over an entire cell, which is fundamental in understanding their regulatory mechanisms and 
pathophysiological relevance in fenestra-like evolution of individual cells on stiffness-varied substrates.   

1. Introduction 

Liver sinusoidal endothelial cells (LSECs) are highly specialized 
endothelial cells which constitute the hepatic sinusoidal wall and act as 
the permeable barrier between blood stream and surrounding hepato-
cytes [1,2]. In healthy liver, LSECs display unique morphology char-
acterized by the presence of non-diaphragmed transcellular pores, or 

so-called fenestrae, and the lack of basement membrane [3]. These 
structural and phenotypic features maintain proper liver functions and 
homeostasis, promote efficient trafficking of lipoproteins, and regulate 
liver regeneration and immune tolerance [1,2,4,5]. The sizes of LSEC 
fenestrae range from approximately 50 to 200 nm in diameter and the 
majority of them are grouped into several-tens ultrastructures termed as 
sieve plates [6,7]. Alterations in the size and number of fenestrae play a 
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crucial role in the progression of various liver diseases, including dia-
betes mellitus, acute or chronic liver injury induced by hormones, al-
cohol, or drugs, as well as liver fibrosis and cirrhosis [3,8]. Thus, the 
visualization and quantification of LSEC fenestrae are of great interest 
to understand the pathophysiological processes and explore new ther-
apeutic strategies. 

The size of fenestrae is usually smaller than the optical resolution 
limit and no specific surface markers for fenestrae have been found to 
date [1,9]. As a result, their observations are largely relied upon 
scanning electron microscopy (SEM) in the literature [10]. Applying 
SEM requires multi-step sample preparation, including fixation, dehy-
dration, drying, and gold sputtering coating [11], leading to the po-
tential cell contraction and physicochemical damage to the cell surface 
and then resulting in additional pores and measurement errors [3]. 
Recently, several super-resolution fluorescence techniques, such as 
three-dimensional structured illumination microscopy (3D-SIM), direct 
stochastic optical reconstruction microscopy (dSTORM), and stimulated 
emission depletion (STED) microscopy, were used to visualize the 
presence of fenestrae and their co-localization with actin filaments 
[12–15]. These techniques usually require LSECs seeded on glass cov-
erslips with specific thickness or refractive index, which may constrict 
the selection of seeding substrates and compromise LSEC phenotype 
since a typical stiff substrate (36 kPa) can lead to loss of fenestrae 
[16,17]. Atomic force microscopy (AFM) is another label-free technique 
recently used to visualize fenestrae in fixed or live LSECs [6,8,18]. 
Time-lapse imaging of live LSECs by AFM is able to reveal the lifespan, 
formation and disappearance of LSEC fenestrae [19]. One obvious ad-
vantage of this approach is that AFM tips scan directly the upper surface 
of the samples, which is irrelevant to the seeding substrates. However, 
the methodology of AFM imaging and off-line analysis of LSEC fenes-
trae is still preliminary and needs to be further optimized. 

To evaluate the alterations and regulating factors of fenestra evo-
lution, the number and diameter distributions of fenestrae have to be 
quantitatively determined from the acquired images. Previous studies 
usually analyzed AFM images with ImageJ software manually or semi- 
automatically by threshold segmentation [6,15]. The former is labor- 
consuming and the latter requires high contrast between fenestrae and 
the surrounding membrane. Thus, it is critical to establish a set of in-
telligent, efficient and self-adaptive methods for fenestra recognition 
and quantification. Deep learning is a good candidate in this regard, 
since it is originated from machine learning and applies a set of simple 
algorithms to implement the high-level data abstractions by tagging the 
raw data from human experiences. Trained deep learning neural net-
works can replace manual labors and have been applied in cell re-
cognition [20]. For example, a fully convolutional network (FCN) is one 
typical network that has less complexity in preprocessing and post-
processing but successfully used to predict the semantic segmentation 
of size-irrelevant images and improve the accuracy and efficiency 
through end-to-end image block training [21,22]. Therefore, devel-
oping FCN-based algorithms could be helpful in accurate and fast re-
cognition of LESC fenestrae. 

Here we attempted to optimize AFM scanning parameters for vi-
sualizing the fenestrae on LSECs seeded directly on culture dish or on 
hydrogels pre-immobilized on the dish. Moreover, an image recognition 
program based on FCN was developed to estimate the porosity, number 
of fenestrae, and distribution of fenestra diameter. 

2. Materials and methods 

2.1. Cell isolation and culture 

2.1.1. Cell isolation 
Primary murine LSECs were isolated from 6 to 8 weeks old male 

C57BL/6 mice (Vital River Laboratories, Beijing, China) after approval 
by the Institutional Animal and Medicine Ethical Committee at the 
Institute of Mechanics, Chinese Academy of Sciences, as previously 

described [23,24]. Briefly, the mouse liver was perfused in situ from the 
portal vein with a Ca2+-free Gey's balanced salt solution at a rate of 
5 ml min−1 for 5 min and then switched to a 0.05% collagenase IV 
solution (Sigma-Aldrich, St. Louis, MO, USA) at a rate of 5 ml min−1 for 
an additional 5 min. The liver was then minced, and harvested in high 
glucose DMEM medium (Hyclone, Logan, UT, USA). The homogenate 
was filtered through a cell strainer (200 μm in diameter) to remove 
undigested tissue sediments and centrifuged at 54 ×g at 4 °C for 3 min 
twice. The collected supernatant was centrifuged at 500 ×g for 8 min, 
and the sediments were resuspended with 3 ml of a 24% Optiprep so-
lution (Axis-Shield, Dundee, Scotland) in high glucose DMEM medium, 
followed by 3 ml of 17.6%, 11.7% Optiprep solutions and DMEM 
gently. After density gradient equilibrium centrifugation at 1400 ×g for 
18 min at 20 °C, non-parenchymal cells containing LSECs were col-
lected from the layer between 11.7% and 17.6% Optiprep and washed 
with Dulbecco's phosphate-buffered saline (DPBS, Hyclone). Collected 
cells were then incubated with 10 μg/ml FITC-conjugated rat-anti- 
mouse CD146 and PE-conjugated recombinant human-anti-mouse F4/ 
80 monoclonal antibodies (mAbs) (Miltenyi Biotec, Bergisch Gladbach, 
Germany) at 4 °C in the dark for 15 min. Washed cells were used for 
flow cytometry sorting by FACS Aria III (BD Biosciences, Franklin 
Lakes, NJ, USA), where LSECs were isolated by CD146+F4/80− gating. 

2.1.2. Cell culture 
After the isolation, LSECs were seeded on rat tail collagen type I- 

coated (Shengyou Biotechnology, Hangzhou, China) culture dish or 
polydimethylsiloxane (PDMS) or polyacrylamide (PA) hydrogel sub-
strates pre-placed on the dish. Cells were cultured in Endothelial Cell 
Medium (Sciencell Research Laboratories, Carlsbad, CA, USA) at 37 °C 
with 5% CO2 for 6 to 24 h, then fixed with 1.0% glutaraldehyde 
(Aladdin, Shanghai, China) for 10 min and stored in DPBS (Hyclone) 
before use. In some cases, live cells were treated with 5 μM cytochalasin 
D (Tocris Bioscience, Bristol, UK) before AFM imaging. 

2.2. Preparation of PDMS and PA hydrogel 

2.2.1. PDMS substrates 
PDMS (Dow Corning, Midland, MI, USA) with a nominal elastic 

modulus of 1.86 MPa was mixed up by a silicone elastomer base and a 
curing agent completely in a weight ratio of 10: 1 (base: curing agent) 
[25]. The PDMS mixture was poured onto a piece of glass, degassed 
with a vacuum desiccator (Yilibotong Company, Beijing, China), and 
then fully cured in an oven at 85 °C for 1 h. 

2.2.2. PA hydrogel substrates 
PA hydrogel with a nominal elastic modulus of 1050 Pa was pre-

pared as previously described [26–30]. Briefly, 0.075 ml of 40% acry-
lamide (Sigma-Aldrich), 0.05 ml of bis-acrylamide (Sigma-Aldrich), 
0.1 ml of 10 × PBS (Solarbio, Beijing, China), 0.05 ml of 1% tetra-
methylethylenediamine (Sigma-Aldrich), 0.05 ml of 1% potassium 
persulfate (Sigma-Aldrich), and 0.675 ml of ultra-pure water were 
mixed to form a solution with a final concentration of 3% acrylamide 
and 0.1% bis-acrylamide. 100 μl mixture was added onto the hydro-
philic-treated glass-bottom dish, covered with an 18 mm diameter cir-
cular coverslip to allow the hydrogel to be polymerized for 10 min, and 
rinsed with ultra-pure water overnight. The PA hydrogel surfaces were 
then conjugated to N-succinimidyl acrylamidohexanoic acid (VWR, 
Radnor, PA, USA) and activated for 15 min by 306 nm ultraviolet ex-
posure and Irgacure 2959 (Sigma-Aldrich) catalyst immediately before 
coating with 100 μg/ml rat tail collagen I (Shengyou Biotechnology, 
Hangzhou, China) overnight. 

2.3. AFM measurements 

AFM imaging was conducted at room temperature in PBS using a 
Bioscope Catalyst (Bruker Corporation, Billerica, MA, USA). Two 
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different AFM working modes, contact mode and PeakForce- 
Quantitative Nano Mechanics mode (PF-QNM) mode [31], were ap-
plied in the measurements. All AFM probes with reflective gold-coated 
triangular cantilevers and pyramidal tips were purchased from Bruker 
Corp, in which MLCT-C and MSNL-10-C cantilevers were used in con-
tact mode while MLCT-E and Scansyst Fluid cantilevers were used in 
PF-QNM mode. The external dimensions and spring constant of the 
cantilevers were summarized in Table S1. NanoScope analysis software 
(Bruker Corporation, v1.80) was used for generating the images of 
cellular morphology (deflection error) and height. 

2.4. Development of FCN for fenestra tracing 

2.4.1. Manual annotation of fenestrae 
The color scale of LSEC morphology images collected above were 

first adjusted with NanoScope analysis software to make the fenestrae 
darker than surrounding membrane and easier to be identified by 
human eyes. The modified images were then input into an in-house 
developed Label software upon MATLAB (v8.3, MathWorks, Natick, 
MA, USA). All fenestrae with typical characteristics and clear contours 
in every image were recognized by experience and labeled manually 
along their outer edges. There should be no overlap between the 
neighboring labels. The images were finally converted into binary 
images by setting the labeled fenestrae to white, and the background to 
black. A ground truth (GT) file of each picture for these fenestrae was 
then generated from the Label software. 

2.4.2. FCN training 
Fenestra identification in localized LSEC images can be formulated 

as a semantic segmentation problem and thus a FCN framework 
adopted from literature [21] was employed to recognize the fenestrae. 
Here FCN was trained on four NVIDIA GTX1080Ti GPU with 11 GB 
GDDR5 RAM using cuda 8.0 and cuDNN 5 with caffe framework [32] 
under Linux system (Ubuntu16.04, Canonical, London, UK). In the first- 
run training, total 107 localized images and their corresponding GT 
files 1 (GT1) were employed, of which 93 images and their label files 
were augmented six times by horizontal reflection and clockwise ro-
tation for reducing the overfitting and then divided into both the 
training and validating sets with a ratio of 7 to 2 while the remaining 14 
images served as the testing set. The training was conducted for 10 
epoches, in which each epoch included 5000 iterations and the FCN was 
validated every epoch. Four metrics from common semantic segmen-
tation and scene parsing evaluations were applied as used in the lit-
erature [21], i.e., pixel accuracy (shorted as, pixel acc.), mean accuracy 
(mean acc.), mean region intersection over union (mean IU) and fre-
quency weighted IU (F.W. IU). Let nij be the number of pixels of class i 
predicted to belong to class j in total ncl different classes and ti = ∑jnjibe 
the total number of pixels of class i. The above four matrices were thus 
calculated as pixel acc. = ∑inii/∑iti, mean acc. = (1/ncl)∑inii/ti, mean IU 
=(1/ncl)∑inii/(ti + ∑jnji − nii), and F.W. IU: (∑ktk)−1∑itinii/ 
(ti + ∑jnji − nii). After 10 epoches, the first-trained FCN model (FCN1) 
was obtained. 

2.4.3. FCN retraining 
The FCN1 model was then retrained since the mean IU estimated 

was lower than the levels reported in the literature [21] and the re-
sulted fenestra size, shape and location were different from the manual 
identification in the GT1. Here 82 images with clear structural features 
of fenestrae were screened out of the first-run training, and pooled 
together with 32 newly-added images. Specifically, the fenestra tracing 
of 82 images used to train FCN1 was profiled by FCN1 to obtain 82 
images with labeled fenestrae, which was named as computer image 1 
(CI1). These fenestrae in CI1 were compared with their original images 
and the GT file of CI1 was modified when fenestra shape or size could 
not match or the fenestrae were overlapped with other fenestrae, which 
was named as GT2 file. 82 original images with GT2 and 32 new images 

with their GT file were again augmented six times and divided into both 
training and validating sets with a ratio of 7 to 2 while the testing set 
was as same as the one in the first-run training. The second-run training 
was conducted also in terms of epoches, and the FCN2 was obtained 
after 20 epoches. 

2.4.4. Evaluation metrics of FCN testing set 
To compare the consistency of LSEC fenestra recognition between 

FCN models and manual identification, 14 images in the testing set 
were employed to evaluate the similarity of fenestra size, shape, loca-
tion, and number accuracy by Dice similarity coefficient (Dice) [33] and 
F1 score [34] defined as, respectively, 

=
+

Dice X Y X Y
X Y

( , ) 2( )
( )

,and
(1)  

= ×
× + +

F score TP
TP FP FN

2
21 (2) 

where X and Y are the readouts of respective FCN model and manual 
identification, TP and FP are the numbers of true positive and false 
positive values, respectively, and FN is the number of false negatives 
based on overlapped pixels in FCN model and manual identification. In 
addition, three common biological indicators of the porosity, number of 
fenestrae, and distribution of fenestra diameter [35] were used to de-
monstrate the fenestra recognition. Here porosity is the ratio of the 
fenestra area to the cell area. The fenestra morphology identified by 
FCN model was approximately circular and therefore the diameter of 
equivalent area was determined to estimate fenestra diameter dis-
tribution. 

STAR★Methods. 

Key Resources Table.    

Reagent or resource Source Identifier  

Antibodies 
CD146 Miltenyi Biotec 130–102-230 
F4/80 Miltenyi Biotec 130–116-499 
Chemicals, Peptides, and Recombinant Proteins 
Optiprep Axis-Shield 1114542 
Glutaraldehyde Aladdin G105906 
Polydimethylsiloxane Dow Corning DC184 
Cytochalasin D Tocris 

Bioscience 
1233/5 

Acrylamide Sigma A3553 
Bis-acrylamide Sigma M1533 
Tetramethylethylenediamine Sigma T9281 
Potassium persulfate Sigma 216224 
Rat tail tendon collagen type I Shengyou 

Biotechnology 
200110–10 

N-succinimidyl Acrylamidoh-
exanoic acid 

VWR N/A 

Irgacure-2959 Sigma 410896 
Experimental Models: Organisms/Strains 
C57BL/6 N Vital River 

Laboratories 
213 

Software and Algorithms 
Matlab MathWorks https://www.mathworks.com/ 

products/matlab.html?s_tid=hp_ 
products_matlab 

Caffe Framework Berkeley 
Vision and 
Learning 
Center (BVLC) 

http://caffe.berkeleyvision.org/ 

Ubuntu Linux Canonical Ltd https://ubuntu.com/ 
NanoScope Analysis Bruker https://www.brukersupport.com/  

3. Results and discussions 

3.1. Visualizing the fenestrae of LSECs on culture dish 

We first visualized the fenestrae of LSECs on culture dish using AFM 
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assay. Here the same cell was scanned for 1–10 times to optimize 
scanning parameters (i.e., image size and resolution (sample/lines) 
determine scanning speed). Notably, the side effects of multiple scan-
ning such as tip wear or sample damage could be ignored since no 
difference in fixed LSECs was observed up to the 10th scanning (Fig. 
S1). Collected AFM images provided the elaborative information of 
surface morphology, cell height, as well as LSEC fenestrae and sieve 
plates (Fig. 1). Images at low magnification (50 × 50 μm) enabled the 
visualization of LSECs in contact mode at a speed of 8 min/picture with 
clear contrast between the cell membrane or nucleus and the back-
ground (Fig. 1A). Intermediate-magnification (16.6 × 16.6 μm) images 
at cell periphery were acquired efficiently at 256 × 256 sample/lines to 
obtain a single image within 4 min (Fig. 1B, C). Rescanning smaller 
observation window at higher resolution (Fig. 1D, E) provided similar 
information for visualizing fenestrae as zoom-in (Fig. 1F, G). Thus, the 
intermediate-magnification images (16.6 × 16.6 μm, 256 × 256 
sample/lines) were selected in the following fenestra recognition to 
balance the accuracy and the efficiency of data acquisition. Previous 
AFM measurements usually focused on the clarity of fenestra images 
and only covered several sieve plates in a single image (< 5 × 5 μm) 
[6,8,18]. While these pioneering works are able to demonstrate the 
existence of LSEC fenestrae, it is still hard to elaborate their biological 
relevance since the sieve plates on LSECs are unevenly distributed. 
Enlarging the image size is able to offer the global information over an 
entire cell for fenestra distribution in various conditions. 

In addition to the image size and resolution, loading force and tip 
apex radius were also assumed to affect the quality of AFM images for 
LSECs [6,8,18]. The MLCT-C cantilever was usually chosen, due to its 
low spring constant, to enable the visualization of the fenestrae in 
contact mode [8]. When the loading force was set to 0.89 nN, a clear 
fenestra structure was obtained (Fig. 2A, E). Increasing loading force 

enlarged the diameter of fenestrae observed (Fig. 2A–H) but reduced 
the cell height gradually (Fig. 2I). Setting the highest loading force of 
8.88 nN made it impossible to obtain a clear image (Fig. 2D, H). We also 
tested the applicability of another AFM cantilever, MSNL-10-C canti-
lever, with the same spring constant but a sharper tip. Consistently, 
applying MSNL-10-C cantilever exhibited the enlarged fenestra struc-
ture with higher loading force (Fig. S2) but was not able to map the 
fenestrae at 4.07 nN. This sharper tip increased the pressure applied to 
the cell surface, resulting in the potential disruption of fenestrae at 
same loading force. When the loading force was less than 1 nN, the 
acquired high-magnification images showed that MSNL-10-C cantilever 
was still able to map the clearer (arrows in Fig. 3) and larger (arrow-
heads in Fig. 3) fenestrae than MLCT-C cantilever. These enlarged fe-
nestrae were similar to those obtained at high loading force (cf. Fig. 2), 
suggesting that sharper tip and higher force could independently cause 
the image distortion. Moreover, the colored zone in the cross-section 
can be used to clarify the fenestra boundaries (Fig. 3C, F), where a 
smaller angle stood for the clearer fenestrae image for MSNL-10-C 
cantilever. Collectively, although the sharper tip contributed to higher 
resolution, the following fenestra imaging was performed using regular 
MLCT-C cantilever at loading force of 0.89 nN to prevent potential fe-
nestra structure damage induced by higher pressure with sharper tips. 

3.2. Visualizing the fenestrae of LSECs on biologically-relevant substrates 

The above optimization is not only critical to obtain high-quality 
fenestra images on culture dish, but it also serves as a prerequisite to 
implement the fenestra imaging on biologically-relevant substrates. 
Increasing evidence supports that mechanical stimuli regulate the 
morphology, proliferation, and differentiation of cells placed on PDMS 
or PA hydrogel substrates with pathophysiologically-mimicking 

Fig. 1. Morphology of fixed LSECs visualized using AFM contact mode. Typical low-magnification image of LSECs on culture dish (A). Thick white and black 
arrows indicated cell nucleus and artifact smears, respectively. Region in the white box in A was rescanned to generate intermediate-magnification morphology (B) 
and height (C) images. The selected sieve plate (thin white arrows in B and C) was seen clearly in rescanned (D, E) or direct zoomed-in (F, G) images of cell morphology 
(D, F) and height (E, G) in the white box in C. Image acquisition parameters were set as 50 × 50 μm and 512 × 256 sample/lines (A), 16.6 × 16.6 μm and 256 × 256 
sample/lines (B, C, F, G), and 5 × 5 μm and 256 × 256 sample/lines (D, E). MLCT-C cantilever was applied and loading force was 0.89 nN for all images. 
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stiffnesses [29,36]. In the liver, the consistent correlation between en-
hancement of hepatic tissue stiffness and development of liver fibrosis 
and cirrhosis implies that tissue stiffness might play a key role in he-
patic cell behaviors [16] and, thus, the fenestra formation. Technically, 
AFM imaging assay endows the ability to visualize nanoscale structures 
of LSECs on stiffness-varied substrates. Thus, we also tested the fenestra 
characteristics of LSECs placed on two stiffnesses. Here both clear 
morphology and height maps were obtained on PDMS substrate 
(1.86 MPa) (Fig. 4A, B). However, only clear morphology (Fig. 4C) but 
blurred height was observed on PA hydrogel (1050 Pa) (Fig. 4D). Here a 
low integral gain was required when imaging LSECs on PA hydrogel, 
otherwise the system became unstable presumably due to its low 

stiffness and high viscosity (data not shown). The gain value in the 
feedback panel determines the feedback on piezo height via error 
amendment and the feedback loop keeps the deflection signal constant 
by adjusting the height of piezo tube. To collect the optimal height map, 
the feedback gain value needs to be increased so that the tip could track 
the sample surface with minimal cantilever deflection. Thus, a low gain 
value could result in a blurred height map but not a morphology map. 
This speculation was verified in LSEC imaging on culture dishes. Clear 
height map (Fig. S3A, B) was obtained at high gain value but blurred 
one observed at low gain value (Fig. S3C, D), regardless of clear mor-
phology images in both cases. Since soft substrates favor the main-
tenance of LSEC phenotype [17], the application of AFM imaging in 

Fig. 2. Morphology of fixed LSECs visualized at various loading 
forces in contact mode. Loading force was set to 0.89 (A, E), 2.66 (B, 
F), 4.44 (C, G) and 8.88 nN (D, H), respectively. Fenestrae were visible 
both in morphology (A-D) and height images (E-G). The partially en-
larged images were presented in the inserted boxes. Height profiles at 
various loading forces (I) were plotted along the lines indicated in E-H. 
Image acquisition parameters were set as 16.6 × 16.6 μm and 
256 × 256 sample/lines for all images. Only partial images were en-
larged from original pictures and displayed for clarity. MLCT-C canti-
lever was applied. 

Fig. 3. Morphology of fixed LSECs visualized with different tip apex radii in contact mode. High-magnification morphology (A, D) and height (B, E) images of 
LSECs scanned by MLCT-C cantilever (tip apex radius = 20 nm) (A, B) or MSNL-10-C cantilever (tip apex radius = 2 nm) (D, E). The partially enlarged images were 
presented in the inserted boxes. Applying sharper tip increased the imaging resolution, especially for sieve plate with small fenestrae (arrows), but damaged the 
fenestrae (arrowheads). Height profiles (C, F) were plotted along the lines in B and E, in which the colored zone denoted the fenestra boundaries indicated by the thin 
arrows in A and D. Image acquisition parameters were set as 5 × 5 μm and 256 × 256 sample/lines for all images. The loading force was set to 0.89 (A, B) and 0.81 
nN (D, E), respectively. 
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fenestra identification on soft substrate is physiologically meaningful. 
Unfortunately, here we failed to obtain clear height map on PA hy-
drogel, despite of those feedback gain values tested, probably due to 
flexible deformation of the hydrogel on contact mode. Clear mor-
phology images on soft hydrogel provide sufficient information for fe-
nestra structures but are too difficult to analyze by adjusting intensity 

thresholds, making it necessary to develop the fenestra recognition 
program in the next subsection. 

On the other hand, force vs. distance curves are also applied in high- 
speed mapping of morphology of fixed and live LSECs [6,8,18,37]. The 
advantage of this imaging mode is to provide both the fenestra mor-
phology and the mechanical features at the same time. PF-QNM mode is 

Fig. 4. Morphology of fixed LSECs on various soft substrates vi-
sualized using contact mode. Intermediate-magnification mor-
phology (A, C) and height (B, D) maps of LSECs placed on PDMS 
(1.86 MPa) (A, B) or PA hydrogel (1050 Pa) (C, D). The partially-en-
larged images were presented in the inserted boxes. Image acquisition 
parameters were set as 16.6 × 16.6 μm and 256 × 256 sample/lines. 
MLCT-C cantilever was applied and loading force was 0.89 nN for all 
images. 

Fig. 5. Comparisons of fenestra recognition capability of FCN 
models after once or twice training. OI and Label groups denoted the 
original AFM images and manually annotated images of LSEC fenes-
trae, respectively. Also plotted were the trained results at given area 
thresholds of 0, 0.2, and 0.3. Red circles indicated those non-fenestra 
objects with the area below area threshold in that case. Green arrows 
denoted the performance of two neighboring fenestrae in two training 
sessions. Images were acquired in contact mode (OI group) and ac-
quisition parameters were set as 16.6 × 16.6 μm and 256 × 256 
sample/line. MLCT-C cantilever was applied and loading force was 
0.89 nN. OI: Original images. 

Table 1 
Summaries of fenestra recognition by FCN.             

pixel acc. mean acc. mean IU F.W.IU La·Na Ob.Nb Mat.Nc Dice F1 score  

FCN1 0.977 0.660 0.616 0.959 996 713 (914)d 641 (750) 0.727 (0.668) 0.751 (0.786) 
FCN2 0.980 0.688 0.658 0.963 996 967 (1236) 813 (884) 0.773 (0.739) 0.831 (0.785) 

a : Label number of fenestrae in 14 images. 
b : Object number by FCN recognition in 14 images. 
c : Matching number of fenestrae between manual labeling and FCN in 14 images. 
d : Numbers with or without parentheses denoted the objects by setting 0 or 0.2 area threshold.  
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a similar mode released by Bruker Corporation, which can be used for 
mapping the cell height, topography, and elasticity simultaneously 
[31,38]. Evidently, applying PF-QNM mode here enabled to visualize 
fenestrae of fixed LSECs (Fig. S4) and monitor the time-lapsed fenestra 
evolution in live LSECs (Fig. S5) on culture dish, mainly attributed to 
the stiffness difference between the stiff dish bottom inside the pene-
trating fenestrae and the soft cell body itself. However, this mode is not 
workable for fenestra imaging of LSECs on soft substrates, since the 
stiffness difference between dish bottom and cell body disappeared in 
this case (data not shown). Meanwhile, the two imaging methods of 
contact mode and PF-QNM mode cost similar time at same resolution 
and have their own advantages for fenestra visualizing (Table S2). The 
former favors the fenestra identification on soft substrate while the 
latter facilitates the visualization of the dynamic fenestra morphology 
in live LSECs. Since the fenestra imaging on stiffness-varied substrates is 
the focus of this work, only the LSEC morphology images collected from 
contact mode were utilized in subsequent deep-learning studies. 

Moreover, to apply this AFM imaging assay of LSEC fenestrae in 
various biological issues, acquiring high-resolution images in a confined 
cell region should be balanced with collecting global information over 
the entire cell as possible. The high-resolution images (Fig. 3B) provides 

clear visualization of fenestrae and favors the fenestra recognition upon 
high contrast between fenestrae and the surrounding membrane. By 
contrast, the large-area imaging in LESC morphology (Fig. 4A, C) dis-
plays global distribution of LSEC fenestrae and facilitates the under-
standing of regulatory mechanisms. Thus, those intermediate-magnifi-
cation images of LSEC morphology on various substrates were used for 
developing the fenestra recognition program upon deep-learning below. 

3.3. FCN-aided fenestra recognition 

Even with the optimized AFM imaging assay as above, it is still 
labor-consuming to summary the statistics of LSES fenestra distribution 
via manual recognition since several-hundred fenestrae usually exist in 
a single LSEC. We thus developed a FCN-aided fenestra recognition 
program upon deep-learning to conduct automatic recognition. 
Evidently, the FCN model was converged quickly as the number of 
epoches was increased beyond 15 (Fig. S6). The FCN model after twice 
training with testing set images was able to recognize accurately the 
majority of fenestrae in the localized images of LSEC morphology 
(Fig. 5). This trained model was further validated using validating set 
images, which returned the enhanced four parameters of FCN criteria 

Fig. 6. Recognition readouts of FCN from twice-trained FCN models. (A, B) Violin plots of Dice and F1 score. Data were presented as the median values with 25th 
and 75th percentiles of sample size inserted (A) and 14 images tested (B). Statistical analysis was conducted by Kruskal-Wallis test followed by Dunn's test. 
P  <  0.05⁎, 0.01⁎⁎, and 0.001⁎⁎⁎. (C, D, E) Fluctuation of the estimated porosity (C), number of fenestrae (D), and distribution of fenestra diameter (E) between 
manual annotation and FCN recognition. Label indicated the fenestra annotated manually. The values of 0, 0.2, and 0.3 indicated the given area thresholds. 
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(Table 1). That is, the values of pixel acc., mean acc., mean IU, and 
F.W.IU were raised to 0.980, 0.688, 0.658, and 0.963, respectively, in 
this validated FCN2 model. 

Specifically, applying the FCN1 was able to recognize 914 objects in 
the testing set of 996 fenestrae manually labeled, of which 750 objects 
matched those manual labels to yield a Dice of 0.668 and a F1 score of 
0.786 (Table 1). Those non-fenestra objects so recognized were then 
eliminated by optimizing the object area threshold via setting the 
threshold gradients. Results indicated that the Dice and F1 score reached 
highest values at the threshold of 0.2 and 0.3 and the effective fenestra 
information was retained at the threshold of 0.2 (data not shown). Set-
ting the optimized threshold of 0.2 returned 713 recognized objects, of 
which 641 objects matched the manual labels to yield the enhanced 
Dice of 0.727 (Table 1). After the second-run training, the number of 
objects recognized by FCN2 and the matched fenestra number increased 
to 967 and 813, respectively, resulting in the higher Dice (0.773) and F1 

score (0.831) than FCN1. As a result, the median and quartile of Dice 
and F1 score were higher in FCN2 than FCN1 with concentrated dis-
tributions, and F1 score was slightly higher at the threshold of 0.2 than 
those at 0 and 0.3 (Fig. 6A, B). This program enabled us to recognize the 
majority of fenestrae from AFM images after second training at an ac-
curacy of 81.6% (= # of FCN recognition at 0.2 area threshold / # of 
manual labels). 

More biologically, the estimated porosity, number of fenestrae, and 
fenestra diameter distribution were compared between manual anno-
tation and FCN recognition given by the diameter of those fenes-
trae < 500 nm. Similar fluctuating patterns of the three parameters 
were observed between the two methods, and the data from FCN2 
model were most likely overlapped with those data from label group. 
Here lower porosity and number and higher peak fenestra diameter 
were presented after first FCN training but the three values quickly 
converged to those in label group after second training, consistent with 
those in the literatures (i.e., 140 nm of peak fenestra diameter) [8,18]. 
In fenestra diameter distributions, numerous fenestrae less than 60 nm 
were first presented at the threshold of 0 but removed at threshold of 
0.2 or 0.3, resulting in similar lower limit of 60 nm of fenestra diameter 
in label group. This analysis further confirmed the necessity of setting a 
reasonable area threshold. Additional advantage for FCN model was to 
save time on recognizing the fenestrae. As an example, the average time 
of manual recognition in a single localized image of LSECs was 15 min, 
which spent 210 min for total 14 images. By contrast, it took 8.6 min to 
complete the entire recognition using FCN2 model. 

Collectively, the FCN models demonstrated, for the first time, au-
tomatic recognition and quantitation of fenestrae in localized images of 
LSEC morphology. Technically, the current segmentations performed 
well on tracing fenestrae and reached the average levels of existing FCN 
models (Tables S3, 4, 5) [21,34,39,40]. As shown in Fig. 5, the number, 
shape and size of fenestrae were comparable to those in the original 
images and label group after second FCN training, further supporting 
their performances. In addition, the neighboring fenestrae can be seg-
mented as independent individuals but not a merged ensemble (green 
arrows in Fig. 5). Moreover, these FCN-aided readouts can be employed 
directly to estimate the biologically-relevant porosity, number of fe-
nestrae, and diameter frequency, since they were quite similar to those 
in label group with a majority of overlapping between the two data sets 
(Fig. 6C–E). 

4. Conclusions 

Optimized AFM imaging was able to visualize accurately the fene-
strated morphology of LSECs. Large-area acquisition of morphology 
images (16.6 × 16.6 μm) displayed global fenestra information over an 
entire cell especially on soft substrate. A fenestra recognition program 
upon FCN training was developed to recognize fenestrae at comparable 
accuracy with manual annotation on reduced time. FCN-aided auto-
matic recognition favored the statistical calculations of the porosity, 

number of fenestrae and distribution of fenestra diameter. 
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