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ABSTRACT
In this paper, the Richtmyer–Meshkov (RM) instability in spherical and cylindrical converging geometries with a Mach number of about
1.5 is investigated by using the direct numerical simulation method. The heavy fluid is sulfur hexafluoride, and the light fluid is nitrogen.
The shock wave converges from the heavy fluid into the light fluid. The main focus is on the energy transport characteristics in the mixing
layer during the entire development process from early instability to late-time turbulent mixing. First, the turbulence kinetic energy transport
equation is analyzed, and it is found that the production and dissipation mechanisms of the turbulence induced by the spherical and cylindrical
converging RM instabilities in the mixing layer are the same. The turbulent diffusion terms are crucial in the whole development processes
of the mixing layers. Before the reflected shock waves transit the interfaces, the dissipation terms can be ignored relative to other terms, and
after that, the dissipation terms are close to the production terms and play an important role. The compressibility terms are approximate to
the production terms and promote the production of turbulence kinetic energy in the later stage. The viscous diffusion terms can be ignored
throughout the process. Then, the enstrophy transport equation is researched, and it is found that, in the mixing layers, the baroclinicity terms
play a leading role in the early stage, while the vortex stretching terms play a leading role in the later stage, and the vortex stretching term of
the spherical converging geometry develops faster than that of the cylindrical converging geometry. The compressibility terms are positive in
the early stage, which promote the production of enstrophy. After the reflected shock waves transit the interfaces, the compressibility terms
become negative, which inhibit the production of enstrophy. In addition, the results of the present direct numerical simulation also show
that the density fluctuation spectra in the centers of the mixing layers of the spherical and cylindrical converging RM instabilities present the
obvious −5/3 scaling law.

© 2020 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0022280., s

I. INTRODUCTION

When the shock wave interacts with the material interface with
initial disturbance, because the direction of the pressure gradient
and the direction of the density gradient are not collinear, ∇P ⋅ ∇ρ
≠ 0, baroclinic vorticity is deposited on the disturbed interface and
induces the Richtmyer–Meshkov (RM) instability. The disturbance
on the interface experiences linear and nonlinear growth and then
leads to turbulent mixing. The RM instability is a very common flow
phenomenon, which plays a very important role in the fields of iner-
tial confinement fusion (ICF), supersonic combustion, and super-
nova explosion. For example, in ICF, the RM instability leads to
turbulent mixing of fuel and ablative layer in the capsule, which

further affects the compression of the capsule and the formation
of the hot spot in the center and then results in ignition failure. In
supersonic combustion, the shock wave passes through the interface
of fuel and oxidant and accelerates the mixing of fuel and oxidant,
which is beneficial to the combustion. In supernova explosion, when
the shock wave caused by the outward projectile of matter converges
toward the center and passes through the interface of different den-
sities, the RM instability is induced and then affects the life evolution
of stars.

Studies on the RM instability can date back to the 1950s. Mark-
stein1 first discovered this phenomenon. Richtmyer,2 based on the
analytical method of Rayleigh–Taylor (RT) instability,3,4 was the
first to conduct theoretical research on a sinusoidal single-mode
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disturbed interface accelerated by a plane shock and put forward
the impact model of disturbance growth. Later, Meshkov’s5 shock
tube experiment result verified the accuracy of Richtmyer’s the-
oretical model to some extent. Different from the RT instability,
the RM instability occurs whether the shock wave is incident from
heavy fluid into light fluid or from light fluid into heavy fluid. How-
ever, the development process of the interface disturbance is dif-
fers greatly in these two cases. If the shock wave is incident from
a heavy fluid into a light fluid, the baroclinic vorticity deposited on
the interface will first make the interface disturbance decrease grad-
ually and then increase reversely. If the shock wave is incident from
a light fluid into a heavy fluid, the baroclinic vorticity deposited on
the interface will directly make the interface disturbance increase
continuously.

Zhou6,7 gave a detailed introduction to the research progress
of plane RT and RM instabilities and a brief introduction to the
flows with converging geometries in recent years. It can be seen
that previous studies on the RM instability, whether experimen-
tal, theoretical, or numerical, have mostly focused on the relatively
simple case of plane shock interacting with the disturbed interface.
However, in nature or practical engineering applications, the RM
instability is basically converging, such as the spherical converg-
ing shock wave–spherical interface or cylindrical converging shock
wave–cylindrical interface. Compared with the plane case, the con-
verging RM instability will be more complex due to the influences
of the stronger compressibility, RT effect, and Bell–Plesset (BP)
effect.

In terms of numerical research, Lombardini8 used the large-
eddy simulation (LES) method to study in detail the turbulent and
mixing characteristics of the cylindrical converging RM instability
in the turbulent mixing layer and compared these characteristics
with the planar RM instability. Lombardini found that the turbu-
lence was weakly compressible in the later mixing stage, and the
inertial sub-region of the energy spectrum at the center of the cylin-
drical turbulent mixing layer presented a −5/3 scaling law, and the
probability density function of the mixing fraction showed a weak
bimodal characteristic. Then, Lombardini9,10 introduced the spheri-
cal harmonic function disturbance and conducted LES on the spher-
ical converging RM instability. It was found that, when the initial
disturbance is a high wave number, the baroclinicity term played
a major role, and the compressibility term had greater influence
than the geometric converging effect. In the center of the turbu-
lent mixing layer, the inertial sub-region of the kinetic energy and
density spectrum also showed the −5/3 scaling law. Rafei11 con-
ducted three-dimensional high-resolution large-eddy simulations
of turbulence mixing in spherical implosions with different initial
perturbations. Wang et al.12 carried out the numerical simulation
of the spherical converging RM instability and found that there
was strong anisotropy in the turbulent mixing layer, and energy
was transported mainly in the radial direction. The radial veloc-
ity fluctuation energy spectrum presented an obvious −4/3 scal-
ing law, and the velocity fluctuation energy spectra in the other
two directions showed an obvious −1 scaling law. Zhai’s13 two-
dimensional numerical simulation studied in detail the RT effect
on the cylindrical converging RM instability. Mankbadi solved one-
dimensional equations and studied the effects of viscosity and heat
conduction on the spherical converging RM instability,14 as well as
the disturbance amplitude growth rate of the spherical converging

RM instability with different initial pressure ratios and temperature
ratios.15

In terms of experimental research, Hosseini16 measured in
detail the pressure evolution of the cylindrical converging RM insta-
bility during the shock wave implosion and reflection from the cen-
ter. The influence of the BP effect on the growth of disturbance
amplitude of the cylindrical converging RM instability was studied
experimentally by Vandenboomgaerde’s17 shock tube experiment.
Luo et al.18–26 designed a semi-annular shock tube and conducted a
lot of experiments on the cylindrical converging RM instability. By
analyzing experimental data and taking into account the RT effect
and compressibility effect, respectively, Luo et al. proposed two new
disturbance amplitude growth models on the cylindrical converging
RM instability based on the Bell model.

In terms of theoretical research, Mikaelian27,28 analyzed the lin-
ear stability of the spherical and cylindrical converging RT and RM
instability and derived the interface evolution equation. Based on the
formal perturbation expansion and potential flow theory, Liu29 pro-
posed a simple method to study the influence of nonlinear effects on
the development of the cylindrical converging RM instability. Later,
starting from the Pade′ approximation and perturbation expansion
directly on the perturbed interface, Liu30 developed a nonlinear
theory for the cylindrical converging RM instability under incom-
pressible, inviscid, and irrotational assumptions, and obtained the
fourth-order explicit solution in the weakly nonlinear region.

In previous studies, Schilling31 and Thornber32 have studied
in detail the turbulence kinetic energy transport and mixing char-
acteristics of planar RT and RM instabilities, respectively. In this
paper, two direct numerical simulations for the spherical and cylin-
drical converging RM instabilities with a Mach number of about
1.5 are conducted using the high precision finite difference solver
code, named as OpenCFD − Comb, developed by our group for
the multicomponent flows. The heavy fluid is sulfur hexafluoride
(SF6), the light fluid is nitrogen (N2), and the incident shock wave
converges from the heavy fluid into the light fluid. The turbulence
kinetic energy transport equation and enstrophy transport equation
in the mixing layer of the spherical and cylindrical converging RM
instabilities are analyzed and compared in detail.

II. COMPUTATIONAL SETUP
In the OpenCFD − Comb code, three-dimensional multi-

component Navier–Stokes (N–S) equations, including the mass
conservation equation, momentum conservation equation, energy
conservation equation, and component conservation equation, are
discretely solved in the Cartesian coordinate system,

∂ρ
∂t

+
∂(ρui)
∂xi

= 0,

∂(ρui)
∂t

+
∂(ρuiuj)

∂xj
= − ∂P

∂xi
+
∂τij
∂xj

,

∂E
∂t

+
∂[(E + P)uj]

∂xj
= ∂[uiτij + qj]

∂xj
,

∂ρk
∂t

+
∂(ρkui)
∂xi

= ∂

∂xi
[ρDkm

∂Yk

∂xi
],

(1)

where ρ is the density of the mixture, ρk = ρYk is the density
of species k, Yk is the mass fraction of species k, ui is the fluid
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velocity in the i direction, P is the static pressure, E = ρ(e + uiui/2) is
the total energy per unit volume, Dkm is the mixture diffusion coef-
ficient of species k, τij is the viscous stress tensor, and qj is the heat
flux in the j direction,

τij = μ(
∂ui
∂xj

+
∂uj
∂xi
− 2

3
δij

∂uk
∂xk
), (2)

qj = λ
∂T
∂xj

+ ρ
N

∑
k=1

hkDkm
∂Yk

∂xi
, (3)

where μ is the viscosity coefficient of the mixture, λ is the heat con-
duction coefficient of the mixture, hk = CpkT is the enthalpy of
species k, and T is the temperature of the mixture. In this paper, it
is assumed that each component is a calorically perfect gas with γN2
= 1.4, γSF6 = 1.09.

The viscosity and heat conduction coefficients of each species
are calculated using the fitting polynomial method as in the
CHEMKIN,33

ln(μk) =
N

∑
n=1

bn,k(lnT)n−1, (4)

ln(λk) =
N

∑
n=1

cn,k(lnT)n−1. (5)

The viscosity coefficient and heat conductivity coefficient of the
mixture are calculated by using the Wilke formula,34

μ =
N

∑
k=1

Xkμk
N
∑
j=1

Xjϕkj
, (6)

ϕkj =
1√
8
(1 +

Wk

Wj
)
−1/2⎡⎢⎢⎢⎢⎣

1 + (Wj

Wk
)

1/4
(μk
μj
)

1/4⎤⎥⎥⎥⎥⎦

2

, (7)

λ = 1
2

⎛
⎜⎜⎜⎜
⎝

N

∑
k=1

Xkλk+
1

N
∑
k=1

Xkλk

⎞
⎟⎟⎟⎟
⎠

, (8)

where Wk is the molecular weight of species k and Xk is the volume
fraction of species k and is defined as

Xk =
YkW
Wk

, (9)

W =
N

∑
k=1

XkWk =
1

N
∑
k=1

Yk/Wk

. (10)

The mixture diffusion coefficient of species k is calculated using the
Schmidt number Sck = μ/ρDkm. The Schmidt numbers of SF6 and
N2 are both assigned the value of 1. The sixth-order monotonicity-
preserving optimized scheme (OMP6)35 is employed to discretize
the convective terms, and the eighth-order central difference scheme
is adopted for the viscous terms. The third-order Runge–Kutta
approach is used for the time advancement.

The initial conditions of a flow field have a significant impact
on flows induced by RT and RM instabilities. A detailed description
about the initial conditions can be found in the paper of Zhou.36 In
the present paper, the spherical harmonic function, same as that of
Lombardini, is used to generate the initial perturbed interface,

ψ(r, θ,φ) = 1
2
{1 − tanh[ r − ξ0(θ,φ)

Lr
]},

ξ0(θ,φ) = R0 − a0∣f (R0, θ,φ)∣,

f (R0, θ,φ) =
M

∑
l=0

l

∑
m=−l

flmYlm(θ,φ),

flm =
√
(2l + 1)Cl

cos(2πωm
l )¿

ÁÁÀ l
∑
i=−l

cos(2πωi
l)

,

Cl =
1

4(2l0 + 1)
1

σ0
√

2π
exp[−(l − l0)

2

2σ02 ].

(11)

Here, ωm
l is the random number between 0 and 1, which is the

same for all direct numerical simulations in this paper. The radial
distribution of the mass fraction of the light fluid is YN2 = ψ.
For the spherical converging RM instability, r =

√
x2 + y2 + z2,φ

= a tan 2(z, x), θ = a tan 2(
√
x2 + z2, y). For the cylindrical converg-

ing RM instability, r =
√
x2 + y2,φ = a tan 2(y, x), θ = π(k − 1)/(nk

− 1), where nk is the grid number in the k direction. In addition, R0
= 7 mm, a0 = 0.375 mm, Lr = 0.2 mm, M = 40, l0 = 20, σ0 = l0/15.
The position of the shock wave at the initial time is located at Rsp
= 8.5 mm. The main computation domains for the present spherical
and cylindrical converging RM instabilities in the Cartesian coor-
dinate system are Lx = Ly = Lz = L = 20 mm. In order to avoid
the influence of the boundary, a nonuniform coarse grid sponge
layer with a length of 40L is added at each nonperiodic boundary.
It is worth noting that only the spanwise direction of the cylindri-
cal converging RM instability is periodic. Table I records the flow
field parameters at the initial time, and Fig. 1 is a schematic of the
two-dimensional middle section at the initial time. The shock and
interface positions are marked in Fig. 1.

In order to verify the mesh convergence, three sets of meshes
are designed for the cylindrical converging RM instability. The total
structured node number in the main computation domain is 5123,
7683, and 10243, respectively. In the subsequent processing of the
data, the spherical or cylindrical shell averaging method is used.
When processing data in the following paper, unless otherwise spec-
ified, the density of light fluid ρl, radial velocity after the shock
wave Ur , and radius of light fluid R0 at the initial time are used to

TABLE I. Flow parameters at the initial time, where Ur is the radial velocity.

Pre-shock Post-shock

N2 SF6 SF6

P (Pa) 101 325 101 325 233 435.425
ρ (kg/m3) 1.145 5.971 12.748
Ur (m/s) 0 0 108.456
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FIG. 1. Schematic of the two-dimensional middle section at the initial time.

normalize the present numerical results. Figure 2(a) describes the
temporal variations of inner and outer radii of the cylindrical con-
verging RM instability, where the inner radius, denoted by r1, is the
position of YSF6 = 0.01 and the outer radius, denoted by r2, is the
position of YN2 = 0.01. It can be found that the inner and outer radii
of the three sets of meshes are almost identical. Figures 2(b)–2(d),
respectively, show the radial distributions of densities, turbulence

kinetic energy [see Eq. (12)], and density-weighted root mean square
of radial velocities at the final time, i.e., t = 0.2 ms. It can be seen
that the results of the three sets of meshes have some slight differ-
ences near the convergence center due to the fewer grid points of
shell averaging, and the results of other positions are also almost
identical. In order to ensure the reliability of our direct numerical
simulation (DNS), the results on the mesh of 10243 is selected for
subsequent analysis of the cylindrical converging RM instability, and
the same mesh is used directly for DNS of the spherical converging
RM instability.

III. RESULTS AND DISCUSSIONS
The isosurfaces of the light fluid mass fraction YN2 = 0.1 for

the spherical and cylindrical converging RM instabilities at differ-
ent times are displayed, respectively, in Figs. 3 and 4. By comparing
these isosurfaces, it can be found that the development processes
of interface disturbances of the spherical and cylindrical converging
RM instabilities are basically the same. First of all, because the shock
waves are incident from heavy fluid into light fluid, the amplitudes of
interface disturbances are first flattened by the incident shock waves
after the first transmission of the shock waves at t = 0.01 ms and then
increase in reverse, resulting in the so-called phase inversion. In this
process, the flow fields are dominated by large-scale bubbles. Sub-
sequently, after the reflected shock waves pass through the material
interfaces at t = 0.04 ms, large-scale bubbles are quickly broken by

FIG. 2. Mesh convergence verification
of the cylindrical converging RM insta-
bility: (a) temporal variation of inner and
outer radii; (b) distribution of density at
t = 0.2 ms; (c) distribution of turbulence
kinetic energy at t = 0.2 ms; and (d) dis-
tribution of density-weighted root mean
square of radial velocity at t = 0.2 ms.
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FIG. 3. Isosurfaces of YN2 = 0.1 for
the spherical converging RM instability at
t = 0 ms, 0.01 ms, 0.02 ms, 0.04 ms,
0.08 ms, and 0.2 ms.

the reflected shock waves, and the flow fields are dominated by the
small-scale structures. Figures 5 and 6, respectively, show the density
fields on the middle sections of the three directions in the Cartesian
coordinate system for the spherical and cylindrical converging RM
instabilities at t = 0.2 ms. It can be seen that, at the final time of
simulation, the small-scale structures of the flow fields are particu-
larly abundant, and the light/heavy fluids enter the stage of turbulent
mixing.

Figure 7(a) describes the temporal variation processes of the
main shock wave positions for the spherical and cylindrical con-
verging RM instabilities, in which the shock wave positions are
identified by the absolute maximum of velocity divergence ∇ ⋅V.

On the whole, the main shock waves travel uniformly with differ-
ent velocities in different materials. Before the main shock waves
hit the material interfaces for the first time, the spherical and cylin-
drical converging shock waves move at the same speed. However,
after that, the spherical converging/reflected shock wave moves
significantly faster than the cylindrical converging/reflected shock
wave.

The mixing width is one of the most important physical quan-
tities in practical engineering applications. For RT and RM insta-
bilities, there are several different definitions to describe the mix-
ing.37,38 The most common definition for numerical simulations of
miscible fluid is the threshold mixing width. Figure 7(b) shows the

FIG. 4. Isosurfaces of YN2 = 0.1 for the
cylindrical converging RM instability at
t = 0 ms, 0.01 ms, 0.02 ms, 0.04 ms,
0.08 ms, and 0.2 ms.
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FIG. 5. Density fields on middle sections for the spherical converging RM instability at t = 0.2 ms.

FIG. 6. Density fields on the middle sections for the cylindrical converging RM instability at t = 0.2 ms.

temporal variations of inner radii, outer radii, and the widths of
mixing layers for the spherical and cylindrical converging RM insta-
bilities. The widths of mixing layers are defined as h = r2 − r1. It
can be found from Fig. 7(b) that the widths of the mixing layers for

the spherical and cylindrical converging RM instabilities have both
reached asymptotic saturation, and the widths of the mixing layers of
the spherical converging RM instability are significantly larger than
those of the cylindrical converging RM instability. The development

FIG. 7. (a) Temporal variations of shock wave positions. (b) Temporal variations of the spherical/cylindrical inner and outer radii and the widths of mixing layers.
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FIG. 8. Density (a) and radial velocity (b) fluctuation spectra of the spherical/cylindrical converging RM instability in the centers of mixing layers at different times.

of inner radii is basically the same, but the outer radii differ greatly.
The main reason is that the cylindrical interface is more severely
compressed by the incident shock wave than the spherical inter-
face under the same incident shock wave Mach number. Because
the spherical interface converges from three directions to the center
point, and the cylindrical interface converges from two directions

to the centerline, the pressure and light fluid density in the spheri-
cal interface are greater than those in the cylindrical interface, which
restrains the outer radius of the spherical interface from converging
to the center point.

Figure 8 displays the density and radial velocity fluctuation
spectra of the spherical and cylindrical converging RM instabilities

FIG. 9. Turbulence kinetic energy transport equation in the mixing layer of the spherical converging RM instability: (a) t = 0.01 ms, (b) t = 0.04 ms, (c) t = 0.08 ms, and
(d) t = 0.2 ms.
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in the centers of mixing layers at different times. Here, the centers
of mixing layers are the position of h0.5 = (r1 + r2)/2. It can be
seen that the density and radial velocity fluctuation spectra of the
spherical and cylindrical converging RM instabilities are basically
overlapped by using the h0.5 to normalize the wave numbers at any
given moment. In addition, the inertial sub-region of density spec-
tra for spherical and cylindrical converging RM instabilities in the
centers of mixing layers present an obvious −5/3 scaling law all the
time, which is the same as the result of Lombardini. However,
the −5/3 scaling law of the inertial sub-region of radial velocity fluc-
tuation spectra is narrow. With the turbulence decaying, the inertial
sub-region of radial velocity fluctuation spectra becomes less and
less obvious.

Turbulent mixing induced by the converging RM instability in
the mixing layer plays a very important role in ICF. Therefore, the
analysis of the turbulence kinetic energy budget is helpful to deepen
the understanding of the converging RM instability and to build a
new turbulence model or improve existing turbulence models. The
turbulence kinetic energy k and its transport equation can be derived
from the compressible N–S equations (1),

k = 1
2
⟨ui′′ui′′⟩, (12)

∂ρk
∂t

+
∂ρk⟨uj⟩
∂xj

= − ∂

∂xj
[1

2
ρ⟨ui′′ui′′uj′′⟩ + P′uj′′]

+
∂

∂xj
[ui′′τji′′] − ρ⟨ui′′uj′′⟩

∂⟨ui⟩
∂xj

− τji′′
∂ui′′

∂xj

+ [P′ ∂ui
′′

∂xi
− uj′′

∂P
∂xj

+ ui′′
∂⟨τji⟩
∂xj
]. (13)

Here, for any variable f, an overbar denotes the Reynolds averaging,
and

⟨f ⟩ = ρf /ρ, (14)

f ′′ = f − ⟨f ⟩, (15)

f ′ = f − f . (16)

FIG. 10. Turbulence kinetic energy transport equation in the mixing layer of the cylindrical converging RM instability: (a) t = 0.01 ms, (b) t = 0.04 ms, (c) t = 0.08 ms, and
(d) t = 0.2 ms.
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On the right-hand side of the turbulence kinetic energy trans-
port equation (13), the first term is the turbulent diffusion term T,
reflecting the transport of turbulent kinetic energy due to the tur-
bulence effect. The second term is the viscous diffusion term V,
reflecting the turbulent kinetic energy diffusion due to molecular
viscosity. The third term is the production term P, reflecting the con-
version of average energy to turbulence kinetic energy. The fourth
term is the dissipation term ε, reflecting the dissipation of turbulence
kinetic energy into internal energy. The last term is the compress-
ible term K, reflecting the change in turbulence kinetic energy due
to compressibility.

Figures 9 and 10 show the radial distributions of all the terms
of the turbulence kinetic energy transport equation in the mixing
layer of the spherical and cylindrical converging RM instabilities at
different times, respectively. By comparing the two figures, it can
be found that the turbulent diffusion term T has a very important
effect on the development of the mixing layer. Before the mixing
layer reaches the converging center, in the mixing layer, the turbu-
lent diffusion term T is negative in the middle position and positive
on both sides, which indicates that the turbulence kinetic energy dif-
fuses from the mixing layer to both sides. After that, the turbulence
kinetic energy diffuses slowly to the outer boundary. In the whole

development process of the mixing layer, the viscous diffusion term
V can be ignored relative to other terms. The dissipation term ε is
negligible before reshock. However, at the later stage, it is close to
the production term P and plays an important role. The compress-
ible term K is close to the production term P and is non-negligible
at the later stage of turbulent mixing, which means that, similar to
Lombardini’s conclusion, the turbulent mixing layer is compressible
in the later stage. In addition, the compressible term K mainly regu-
lates the radial distribution of turbulence kinetic energy in the early
stage and promotes the production of turbulence kinetic energy in
the later stage. In general, the trends of the turbulence kinetic energy
transport equations for the spherical and cylindrical converging RM
instabilities are basically the same in the whole development process
of the turbulent mixing layer, which indicates that the generation
mechanism of the turbulence for the mixing layer of the spherical
and cylindrical converging RM instabilities is the same. The main
mechanisms of turbulence decaying in the later stage of the mixing
layer are turbulent diffusion and dissipation.

It is well known that the RM instability is mainly caused by
baroclinic vorticity, so the analysis of the equations related to vortex
dynamics can reveal the intrinsic mechanism of the spherical and
cylindrical RM instabilities more clearly and directly. Consider the

FIG. 11. Enstrophy transport equation in the mixing layer of the spherical converging RM instability: (a) t = 0.01 ms, (b) t = 0.04 ms, (c) t = 0.08 ms, and (d) t = 0.2 ms.
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vortex dynamics equation

dω⃗
dt
= ω⃗ ⋅ ∇V⃗ − ω⃗(∇ ⋅ V⃗) −∇ ⋅ (1

ρ
) ×∇P + λ∇2ω⃗. (17)

Enstrophy is defined as follows:

Ω = 1
2
ω⃗ ⋅ ω⃗. (18)

The enstrophy can be understood as the quantity directly related to
the kinetic energy in the flow model that corresponds to dissipation
effects in the fluid. It is particularly important in the study of tur-
bulent flows. The enstrophy transport equation can be derived from
the vortex dynamics equation (17),

dΩ
dt
= ω⃗ ⋅ (ω⃗ ⋅ ∇V⃗) − ω⃗ ⋅ [ω⃗(∇ ⋅ V⃗)]

− ω⃗ ⋅ [∇ ⋅ (1
ρ
) ×∇P] + ω⃗ ⋅ (λ∇2ω⃗). (19)

Referring to the definition of the right-hand side terms of the vor-
tex dynamics equation (17), it is still defined here that the first term
at the right-hand side of Eq. (19) is the vortex stretching term,

the second term is the compressibility term, the third term is the
baroclinicity term, and the fourth term is the viscous dissipation
term.

Figures 11 and 12 show the radial distributions of all terms
of the enstrophy transport equation in the mixing layers of the
spherical and cylindrical converging RM instabilities at different
times, respectively. By comparing Figs. 11 and 12, it can been found
that the viscous dissipation terms can be ignored compared with
other terms in the whole development processes of the mixing lay-
ers for the spherical and cylindrical converging RM instabilities.
The baroclinicity terms play a leading role in the early stage, while
the vortex stretching terms play a leading role in the later stage.
Moreover, the vortex stretching terms of the spherical converging
RM instability develop faster than those of the cylindrical converg-
ing RM instability. When the reflected shock waves pass through
the interfaces, i.e., t = 0.04 ms, the vortex stretching term of the
spherical converging RM instability has been far larger than the
baroclinicity term. However, at this moment in time, the baro-
clinicity term of the cylindrical converging RM instability is still
much larger than other term. The compressibility terms are pos-
itive in the early stage, which promote the production of enstro-
phy. After the reflected shock waves pass through the interfaces,

FIG. 12. Enstrophy transport equation in the mixing layer of the cylindrical converging RM instability: (a) t = 0.01 ms, (b) t = 0.04 ms, (c) t = 0.08 ms, and (d) t = 0.2 ms.
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the compressibility terms become negative and the enstrophy is
suppressed.

IV. CONCLUSIONS
In this paper, the converging RM instability at the spher-

ical shock wave–spherical interface and cylindrical shock wave–
cylindrical interface is studied by means of the direct numerical
simulation method, and the turbulence kinetic energy transport
equation and enstrophy transport equation in the entire develop-
ment process of the RM mixing layer are analyzed. First of all, our
numerical results show that the density fluctuation spectra in the
centers of the spherical and cylindrical converging RM instability
mixing layers present the obvious −5/3 scaling law. Then, the con-
verging shock waves compress the cylindrical interface more seri-
ously than the spherical interface. In addition, the analysis of the
turbulence kinetic energy transport equation shows that the mech-
anisms of turbulent production and dissipation in the mixing lay-
ers of the spherical and cylindrical converging RM instabilities are
the same, and the turbulent diffusion and dissipation are the main
mechanisms of turbulence decaying in the later stage. The analysis of
the enstrophy transport equation shows that, in the early stage of the
developments of the spherical and cylindrical converging RM insta-
bility mixing layers, the baroclinicity terms play a leading role, but
after the reflected shock waves pass through the interfaces, the vortex
stretching terms gradually exceed the baroclinicity terms and play a
leading role. Moreover, the vorticity stretching term of the spher-
ical converging RM instability develops faster than the cylindrical
converging RM instability.
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