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ABSTRACT
The mechanism underlying the magnitude-reverse phenomenon of the mean spanwise velocity with respect to an increasing rotation number
in a streamwise-rotating channel flow is investigated through a budget balance analysis of Reynolds shear stress ⟨u′2u′3⟩. It is found that
⟨u′2u′3⟩ imposes a negative feedback to itself through the production term, which prevents its magnitude from increasing monotonically with
an increasing rotation number. This behavior of ⟨u′2u′3⟩ further leads to the magnitude reverse in the spanwise wall shear stress and mean
spanwise velocity in the near-wall region.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0023695., s

I. INTRODUCTION

Turbulent channel flows subjected to streamwise system rota-
tion feature a distinct mean spanwise motion, of which the direction
changes three times between the two walls of the channel, forming a
“double S-shaped” profile1–9 (see Fig. 1). In laminar flows, the mean
spanwise velocity is found to be the primary secondary flow from
an instability analysis.10 In turbulent flows, the spanwise velocity is
correlated with the Reynolds shear stress ⟨u′2u′3⟩, which is zero in
non-rotating channel flows, but becomes non-trivial in streamwise-
rotating channel flows. In this paper, subscripts 1–3 denote the
streamwise, wall-normal, and spanwise directions, respectively, the
prime denotes the fluctuations, and a pair of angular brackets ⟨⋅⟩
denote averaging over time and homogeneous directions, i.e., the x1-
and x3-directions.

An important feature of the mean spanwise velocity ⟨u3⟩ in the
streamwise-rotating channel flow is the non-monotonic behavior of
its magnitude with respect to an increasing rotation number.4,11 To
be specific, at low rotation numbers, the magnitude of ⟨u3⟩ increases

with the rotation number. However, there exists a critical rotation
number, above which the magnitude of ⟨u3⟩ decreases as the rotation
number continues to increase. Although such a reverse effect of the
rotation number on the mean spanwise velocity is shown in many
previous studies, the investigation of the underlying mechanism is
limited.

The transport equations of Reynolds stresses, which reflect
the contributions of different physical processes to the budget bal-
ances of turbulent kinetic energy and momentum fluxes, are useful
for understanding the flow dynamics.12–16 For example, the sus-
taining mechanism of the large-scale roll cells in the streamwise-
rotating channel, namely, the Taylor–Görtler-like vortices, is eluci-
dated through the investigation of the energy transport processes.17

In this paper, we explore the underlying mechanism of the non-
monotonic behavior of the mean spanwise velocity. The remainder
of this paper is organized as follows. In Sec. II, the database used
for the present study is described. In Sec. III, the non-monotonic
behaviors of the magnitudes of ⟨u3⟩ and ⟨u′2u′3⟩ with respect to
the rotation number increase are demonstrated. The mechanism
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FIG. 1. Schematic of a turbulent channel flow subjected to a streamwise system
rotation. The red hollow arrow points to the streamwise direction. The angular
velocity of the system rotation is Ω. The streamwise system rotation induces
a mean spanwise secondary flow ⟨u3⟩, which changes its direction three times
between the two channel walls.

underlying the magnitude-reverse effect of the rotation number on
⟨u3⟩ and ⟨u′2u′3⟩ is investigated through the analyses of the balance
equation of mean spanwise shear stress and the transport equation
of ⟨u′2u′3⟩ in Sec. IV, followed by a summary of major conclusions in
Sec. V.

II. DATABASE OF STREAMWISE-ROTATING CHANNEL
FLOW

The present study is conducted based on the database of
streamwise-rotating channel flows established by Yang and Wang18

using direct numerical simulation (DNS). The governing equation
of the DNS is expressed as

∂ui
∂xi
= 0, (1)

∂ui
∂t

+ uk
∂ui
∂xk
= −1

ρ
∂p
∂xi

+ ν
∂2ui

∂xk∂xk
− 2εi1kΩuk −

Π
ρ
δi1, (2)

where ρ and ν represent the density and kinematic viscosity of the
fluid, respectively, p is the pressure, Ω is the angular velocity of the
streamwise system rotation, Π is a constant mean streamwise pres-
sure gradient that drives the flow, and εijk and δij are Levi–Civita
symbol and the Kronecker delta, respectively. A pseudo-spectral
method code is utilized to solve Eqs. (1) and (2). A detailed descrip-
tion of the numerical algorithm is given in the work of Yang and
Wang.18

Table I summarizes the key parameters of the DNS data. As
shown, the rotation number Roτ = 2Ωh/uτ ranges from 0 to 150,
where uτ =

√
Πh/ρ is the wall-friction velocity, while the Reynolds

TABLE I. Key parameters, computational domain, and grid resolution of DNS cases.

Roτ Roc Reτ Rec L1 × L2 × L3 N1 × N2 × N3

0 0 180 3263 16πh × 2h × 8πh 512 × 128 × 512
7.5 0.44 180 3068 32πh × 2h × 8πh 1 024 × 128 × 512
15 0.97 180 2784 64πh × 2h × 8πh 2 048 × 128 × 512
30 2.17 180 2488 128πh × 2h × 8πh 4 096 × 128 × 512
75 6.20 180 2177 256πh × 2h × 8πh 8 192 × 128 × 512
150 12.92 180 2090 512πh × 2h × 8πh 16 384 × 128 × 512

number is fixed at Reτ = uτh/ν = 180. The values of the corre-
sponding mean-velocity-based rotation number Roc = 2Ωh/Uc and
Reynolds number Rec = Uch/ν are also given in the table, where Uc
is the mean velocity at the channel center. The criteria for determin-
ing the computational domain size Li and number of grid points N i
are discussed in detail in the work of Yang and Wang.18 In sum-
mary, as the rotation number increases, a larger streamwise domain
size L1 with a larger number of grid points N1 is needed to capture
the streamwise-elongated vortex structures, of which the character-
istic streamwise scale extends as the rotation number increases. The
longest computational domain used in the DNS is L1 = 512πh for
the case of Roτ = 150. In contrast, the characteristic spanwise scale
of the large-scale vortices remains almost unchanged at various rota-
tion numbers such that L3 = 8πh with N3 = 512 is fixed in all cases. In
our previous studies, the DNS data were analyzed to investigate the
effect of streamwise system rotation on the pressure field19 and the
sustaining mechanism of large-scale vortices.17 In the present study,
we focus on investigating the non-monotonic dynamic behavior of
the magnitude of the cross-stream secondary flow in response to the
increase in the rotation number.

III. EFFECT OF ROTATION NUMBER ON MEAN
SPANWISE VELOCITY

Figure 2 compares the profiles of the mean spanwise veloc-
ity ⟨u3⟩+ at six rotation numbers. In this paper, the superscript “+”
denotes variables non-dimensionalized using ν/uτ and uτ as charac-
teristic length and velocity scales, respectively. Given that the profiles
of ⟨u3⟩+ are antisymmetric about the central plane (x2/h = 0) of the
channel, they are only displayed in the lower half of the channel (for
−1 ≤ x2/h ≤ 0). From the inset graph, which shows the profile of
⟨u3⟩+ at Roτ = 150 across the entire channel, it is seen that the sign
of ⟨u3⟩+ changes three times between two channel walls, resulting
in four distinct layers of opposite motions. The magnitude of the
near-wall negatively valued peak of ⟨u3⟩+ (located at x2/h = −0.96
to −0.89) reaches its maximum at Roτ = 30. The magnitude-reverse
phenomenon of ⟨u3⟩+ occurring atRoτ ≈ 30 observed in Fig. 2 is con-
sistent with the findings of Weller and Oberlack4 and Yang, Su, and
Wu,11 who reported that the magnitude of ⟨u3⟩+ reverses aroundRoτ
= 14–30 at similar Reynolds numbers.

To further investigate the non-monotonic behavior of the mean
spanwise velocity, we perform time and plane averaging on the
third-component of Eq. (2) and integrate the resultant equation in
the x2-direction, leading to the following balance equation of the
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FIG. 2. Profiles of mean spanwise velocity ⟨u3⟩
+ at various rotation numbers. In

order to demonstrate the structures of secondary mean flow, the profile of mean
spanwise velocity ⟨u3⟩

+ at Roτ = 150 is also displayed across the entire channel
(−1 ≤ x2/h ≤ 1) in an inset graph, which shows a characteristic pattern of four
distinct layers of opposite motions.

spanwise shear stress:

d⟨u3⟩+

dx+
2
= ⟨u′2u′3⟩+ + τwall+

23 , (3)

where τwall+
23 = (d⟨u3⟩+/dx+

2)x+
2=−h

+ represents the spanwise wall
shear stress. Equation (3) shows a linear relationship between
d⟨u3⟩+/dx+

2 and ⟨u′2u′3⟩+, suggesting that it would be helpful to
examine the profiles of ⟨u′2u′3⟩+ to understand the non-monotonic
behavior of the magnitude of ⟨u3⟩+.

Figure 3 compares the profiles of Reynolds stresses ⟨u′2u′3⟩+ at
six rotation numbers. As expected, the variation in the peak value of
⟨u′2u′3⟩+ is also non-monotonic with respect to an increasing rota-
tion number. The magnitude of ⟨u′2u′3⟩+ is the largest at Roτ = 30
among all cases under investigation. The reverse effects of the rota-
tion number on the magnitudes of ⟨u3⟩+ and ⟨u′2u′3⟩+ are intriguing.

FIG. 3. Profiles of Reynolds stresses ⟨u′2u
′

3⟩
+ at various rotation numbers.

In Sec. IV, these phenomena are further investigated by seeking their
physical explanations through the budget analysis of the Reynolds
shear stress ⟨u′2u′3⟩+.

IV. SELF-CONSTRAINT MECHANISM OF REYNOLDS
SHEAR STRESS ⟨u′2u′3⟩+

In this section, the non-monotonic behaviors of ⟨u3⟩+ and
⟨u′2u′3⟩+ are further investigated through the analysis of the transport
equation of the Reynolds stress ⟨ui′uj′⟩, expressed as

∂⟨u′iu′j⟩
∂t

= 0 = Pij + Ceff
ij + Πc

ij + εij + Tij + Dij. (4)

Here, Pij, Ceff
ij , Πc

ij, εij, Tij, and Dij denote the production term,
effective rotation term, convection-induced pressure term, dissi-
pation term, turbulent diffusion term, and viscous diffusion term,
respectively, defined as

Pij = −(⟨u′iu′k⟩
∂⟨uj⟩
∂xk

+ ⟨u′ju′k⟩
∂⟨ui⟩
∂xk
), (5)

Ceff
ij = 2Ω(ε1ik⟨u′ju′k⟩ + ε1jk⟨u′iu′k⟩)

− 1
ρ
⟨u′i

∂p′r
∂xj

+ u′j
∂p′r
∂xi
⟩, (6)

Πc
ij = −

1
ρ
⟨u′i

∂p′c
∂xj

+ u′j
∂p′c
∂xi
⟩, (7)

εij = −2ν⟨∂u
′

i

∂xk

∂u′j
∂xk
⟩, (8)

Tij = −
∂⟨u′iu′ju′k⟩

∂xk
, (9)

Dij = ν
∂2⟨u′iu′j⟩
∂xk∂xk

. (10)

In Eq. (6), the effective rotation term consists of two parts, namely,
the Coriolis term Cij and the rotation-induced pressure term Πr

ij,
which are defined, respectively, as

Cij = 2Ω(ε1ik⟨u′ju′k⟩ + ε1jk⟨u′iu′k⟩), (11)

Πr
ij = −

1
ρ
⟨u′i

∂p′r
∂xj

+ u′j
∂p′r
∂xi
⟩. (12)

The Coriolis term Cij, as noted in many previous studies of rotating
flows,18,20–24 represents the effect of the system rotation on the trans-
port equations of Reynolds stresses. The rotation-induced pressure
term, which is usually absorbed into the pressure term in previous
studies, should be also regarded as a direct consequence caused by
the imposed system rotation. This point can be explained by the
definition of the rotation-induced pressure given below.

In Eqs. (7) and (12), the pressure p is decomposed into a
convection-induced part pc and a rotation-induced part pr . The
convection-induced pressure pc is governed by the following Poisson
equation and boundary conditions:

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1
ρ

∂2pc
∂xi∂xi

= −∂ui
∂xj

∂uj
∂xi

,

with
∂pc
∂x2
= ρν∂

2u2

∂x2
2

at x2 = ±h,
(13)
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while the Poisson equation and boundary condition for the rotation-
induced pressure pr are expressed as

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1
ρ

∂2pr
∂xi∂xi

= 2Ωω1,

with
∂pr
∂x2
= 0 at x2 = ±h.

(14)

The above decomposition of pressure was proposed in our previ-
ous study of the effect of system rotation on the pressure field.19

This method for pressure decomposition is not only rigorous in
mathematics but also conceptually clear in flow physics by separat-
ing the non-rotating and rotating effects on the pressure field. The
rotation-induced pressure pr is a direct consequence of the imposed
streamwise system rotation, and therefore, the Coriolis term Cij and
the rotation-induced pressure term Πr

ij are combined as an effec-
tive rotation term Ceff

ij in Eq. (6) for the analysis of the budget of
Reynolds stresses. In our previous study of the sustaining mecha-
nism of Taylor–Görtler-like vortices,17 similar transport equations
of energy spectra were investigated. A similar definition of the effec-
tive rotation term was found to be more appropriate than either the
Coriolis term or rotation-induced pressure term for representing
the effect of the streamwise system rotation on the flow dynamics.
Different from our previous study, which focuses on the normal
components of energy spectra, the present study aims to investigate
the reversal behavior of Reynolds shear stress ⟨u′2u′3⟩ by analyzing its
budget balance in the physical space.

Figure 4 compares the profiles of budget terms in the transport
equation of Reynolds shear stress ⟨u′2u′3⟩+ at Roτ = 7.5 (the lowest
rotation number for the rotating channel flow under investigation),
Roτ = 30 (the critical rotation number at which the magnitude of
⟨u′2u′3⟩+ reverses, see Fig. 3), and Roτ = 150 (the highest rotation
number under investigation). To ensure that the flow is developed
to a statistically stationary state, it is useful to examine the residual
of the summation of all budget terms in Eq. (4), which is found to
be smaller than 1% of the dominant source terms in all cases under
investigation. Furthermore, the time averaging in the present study
is conducted over a time duration of T = 50h/uτ . We have also calcu-
lated the budget terms by reducing the averaging time duration to T
= 25h/uτ , which does not cause any increase in the residual magni-
tude. This indicates that the averaging time is sufficiently long, and
the error is mainly attributed to the spatial discretization, but not the
assumption that the flow is statistically stationary. From Fig. 4(a), it
is clear that the convection-induced pressure term Πc+

23 and effective
rotation term Ceff+

23 are two dominant sources of ⟨u′2u′3⟩+ at Roτ = 7.5.
At all three rotation numbers, the convection-induced pressure term
Πc+

23 acts as an important source, and its effect becomes increasingly
dominant as the rotation number increases. Furthermore, by com-
paring Figs. 4(a)–4(c), it is seen that the effect of Ceff+

23 (as a gain for
⟨u′2u′3⟩+) is the most apparent at Roτ = 30.

To further investigate the effective rotation term Ceff+
23 , we com-

pare its profiles at various rotation numbers, together with the Cori-
olis term C+

23 [Eq. (11)] and rotation-induced pressure term Πr+
23

[Eq. (12)] in Fig. 5. It is seen from Fig. 5(b) that the Coriolis term C+
23

FIG. 4. Profiles of budget terms in
the transport equation of Reynolds
shear stress ⟨u′2u

′

3⟩
+ in the streamwise-

rotating turbulent channel flow at (a) Roτ
= 7.5, (b) Roτ = 30, and (c) Roτ = 150.
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FIG. 5. Profiles of (a) effective rotation
term Ceff+

23 , (b) Coriolis term C+
ij , and (c)

rotation-induced pressure term Πr+
ij at

various rotation numbers.

is positively valued in the near-wall region, while in the core region
of the channel, the value of C+

23 is negative at high rotation num-
bers (Roτ = 75 and 150). The sign of C+

23 can be understood from its
definition, expressed as

C+
23 = Roτ(⟨u′3u′3⟩+ − ⟨u′2u′2⟩+). (15)

In the near wall region, due to the restriction of the wall, the magni-
tude of ⟨u′2u′2⟩+ is smaller than that of ⟨u′3u′3⟩+, leading to the positive
value of C+

23. At high rotation numbers, the occurrence of intensive
large-scale Taylor–Görtler-like vortices enhances the wall-normal
velocity fluctuation u2

′ in the core region of the channel,17 and
consequently, the sign of C+

23 becomes negative there. The rotation-
induced pressure termΠr+

23 depicted in Fig. 5(c) almost form a mirror
image of C+

23 at all rotation numbers under investigation. This indi-
cates that these two rotation-induced terms C+

23 and Πr+
23 mostly can-

cel the effect of each other, leaving a significantly smaller net effect
of the imposed system rotation on the budget balance of ⟨u′2u′3⟩+.
As a result, although the magnitudes of both C+

ij and Πr+
ij increase

approximately in a linear approach with respect to the rotation num-
ber (a phenomenon that can be understood from the definitions of
C+
ij and Πr+

ij ), the net effect of the system rotation on ⟨u′2u′3⟩+ as rep-
resented by the effective rotation term Ceff+

23 is non-monotonic. As
shown in Fig. 5(a), the peak value of Ceff+

23 reaches its maximum at
Roτ = 75. This rotation number is higher than the critical reversal
rotation number of ⟨u′2u′3⟩+ (Roτ = 30 as shown in Fig. 3), indicating
that the effect of Ceff+

23 is important, but meanwhile not primary, in
the non-monotonically behavior of ⟨u′2u′3⟩+.

Another term that plays a crucial role in the magnitude-reverse
phenomenon of ⟨u′2u′3⟩+ is the production term P+

23. As shown in
Fig. 4, the profiles of the production term P+

23 are complex. From
Eq. (5), we obtain

P+
23 = −⟨u′2u′2⟩+

d⟨u3⟩+

dx+
2

, (16)

from which it can be inferred that the profile of P+
23 must cross zero

six times in the wall-normal direction of the channel (for −1 ≤ x2/h
≤ 1) or, equivalently, three times in the lower half of the channel (for
−1 ≤ x2/h ≤ 0), as shown in Fig. 4. Owing to the wall restriction, P+

23
= 0 holds at the two walls (i.e., at x2/h = ±1). Furthermore, as shown
in Fig. 2, there are four layers of opposite mean spanwise motion
⟨u3⟩+. In each layer, there exists a wall-normal position x2 where the
magnitude of the spanwise velocity ⟨u3⟩+ reaches its local maximum,
where d⟨u3⟩+/dx+

2 = 0 holds. Therefore, the other four zero points
of P+

23 collocate with the four peaks of ⟨u3⟩+. In summary, given the
four distinct layers of the opposite mean spanwise motion, the sign
of P+

23 must change four times in the entire channel.
It is seen from Fig. 4 that the value of P+

23 is mostly negative
across the wall-normal direction (e.g., at Roτ = 30, P+

23 < 0 holds in
the region for −0.92 ≤ x2/h ≤ −0.27). This indicates that P+

23 serves as
a sink in the transport equation of ⟨u′2u′3⟩+, which tends to suppress
the magnitude of this Reynolds shear stress component. By compar-
ing Figs. 4(a)–4(c), it is clear that the magnitude of the negatively
valued peak of P+

23 is the largest at Roτ = 30 among the three rotation
numbers. To demonstrate this trend more clearly, the profiles of P+

23
at six rotation numbers are compared in Fig. 6. Similar to ⟨u′2u′3⟩+,
the magnitude of the negatively valued peak of P+

23 also reverses at
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FIG. 6. Profiles of the production term P+
23 at various rotation numbers.

Roτ = 30. From Eq. (5), we obtain

P+
23 = −⟨u′2u′2⟩+

d⟨u3⟩+

dx+
2

. (17)

Substituting Eq. (3) into (17) results in

P+
23 = −⟨u′2u′2⟩+(⟨u′2u′3⟩+ + τwall+

23 ). (18)

Given the fact that ⟨u′2u′2⟩+ is positive semi-definite, Eq. (18) indi-
cates that ⟨u′2u′3⟩+ always imposes a negative net feedback to itself
through its production term P+

23. To be specific, as the rotation
number increases from 0 to 30, accompanied with the magnitude
increase in ⟨u′2u′3⟩+, the suppression effect of the production term
P+

23 becomes stronger. This “self-constraint” mechanism prevents
the magnitude of ⟨u′2u′3⟩+ from monotonically increasing as the rota-
tion number continues to increase, and as a result, the magnitude of
⟨u′2u′3⟩+ shows a non-monotonic behavior in Fig. 3.

The magnitude reverse phenomenon of the near-wall peak of
⟨u3⟩+ with respect to an increasing rotation number is coupled with
that of ⟨u′2u′3⟩+. To demonstrate it, we integrate Eq. (3) from −h+

to h+. Further considering the no-slip condition at the two walls and
the symmetry in the profile of ⟨u′2u′3⟩+ about the channel center (x2/h
= 0), we obtain

τwall+
23 = − 1

h+ ∫
0

−h+
⟨u′2u′3⟩+dx+

2 . (19)

From Eq. (19), it is understood that the value of τwall+
23 is proportional

to the integration of ⟨u′2u′3⟩+ over the lower half of the channel. Fig-
ure 3 shows that the magnitude of ⟨u′2u′3⟩+ reverses at Roτ = 30, and
consequently, τwall+

23 also reverses at Roτ = 30. In the near-wall region,
the mean spanwise velocity can be expanded into Taylor series as

⟨u3⟩+ =
d⟨u3⟩+

dx+
2
∣
x+

2=−h
+

y+ + O(y+2) = τwall+
23 y+ + O(y+2), (20)

indicating that the behaviors of the near-wall peak of ⟨u3⟩+ and τwall+
23

must synchronize in response to an increasing rotation number. As
a result, the near-wall peak of ⟨u3⟩+ also reverses at the same rotation
number (see Fig. 2).

V. CONCLUSIONS
In this paper, we investigate the mechanism underlying the

non-monotonic behavior of the cross-stream secondary flow ⟨u3⟩
with respect to an increasing rotation number in the streamwise-
rotating turbulent channel flow. Using the DNS data, it is demon-
strated that the magnitudes of both ⟨u3⟩ and ⟨u′2u′3⟩ reverse at Roτ
= 30. Through the analysis of the transport equation of ⟨u′2u′3⟩, it
is found that ⟨u′2u′3⟩ imposes a negative feedback to itself through
the production term P23. This self-contraint mechanism prevents the
magnitude of ⟨u′2u′3⟩ from increasing monotonically in response to
an increasing rotation number. The effective rotation term plays a
secondary role in the magnitude reverse of ⟨u′2u′3⟩. The two compo-
nents of the effective rotation term, namely, the Coriolis term and
rotation-induced pressure term, both increase approximately in a
linear approach with respect to the rotation number. However, their
effects mostly cancel each other, leaving a significantly smaller net
effect on the budget balance of ⟨u′2u′3⟩ as represented by the effec-
tive rotation term. The peak value of the effective rotation term
reverses at Roτ = 75, larger than the critical reversal rotation number
of ⟨u′2u′3⟩. Due to the linear relationship between the spanwise wall
shear stress τwall

23 and the integration of ⟨u′2u′3⟩, the value of τwall
23 also

reverses at Roτ = 30. Furthermore, through a Taylor-series analysis,
it is shown that the near-wall behavior of ⟨u3⟩ depends linearly on
that of τwall

23 . As such, the magnitude-reverse phenomenon of ⟨u3⟩ is
explained.
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