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This paper is concerned with the interaction of vertically sheared currents with
two-dimensional flexural–gravity waves in finite depth. A third-order Stokes expansion
is carried out and fully nonlinear computations are performed for symmetric, steadily
travelling waves on a linear shear current. For upstream periodic waves, two global
bifurcation mechanisms are discovered. Both branches bifurcate from infinitesimal
periodic waves, with one stopping at another infinitesimal wave of different phase speed,
and the other terminating at a stationary configuration. Generalised solitary waves are
found for downstream waves. More surprisingly, the central pulse of the generalised
solitary wave can become wide and flat as the computational domain is enlarged. This
provides strong evidence for the existence of wave fronts in single-layer free-surface
waves. Particle trajectories and streamline structures are studied numerically for the
fully nonlinear equations. Two patterns, closed orbits and pure horizontal transport, are
observed for both periodic and solitary waves in moving frames. The most striking
phenomenon is the existence of net vertical transport of particles beneath some solitary
waves due to wave–current interactions. The streamline patterns alternate between net
vertical transport and a closed orbit, resulting in the formation of a series of nested
cat’s-eye structures.

Key words: shear waves, surface gravity waves, solitary waves

1. Introduction

There has been a long-standing scientific interest in flexural–gravity waves (also
called hydroelastic waves in the literature) due to their importance for marine structures
and sea transport. Flexural–gravity waves resulting from the interaction between
moving fluids and deformable sheets have a wide range of applications in the polar
regions where large floating ice sheets are used as roadways and landing strips. More
recently, very large floating structures, such as floating airports (e.g. the Maga-Float

† Email address for correspondence: zwang@imech.ac.cn
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project in Tokyo) and ultra-large merchant container vessels were thought to be
environmentally friendly and self-sustained for converting ocean waves into energy. A
better understanding of large-scale fluid–structure interactions, including flexural–gravity
waves, is of fundamental importance in the process of building and utilising these
engineering structures.

The study of flexural–gravity waves was initiated by Greenhill (1886, 1916), who
obtained the dispersion relation of this new type of wave and proposed the first
practical application. Thereafter, flexural–gravity waves and their applications in marine
engineering received growing attention from the scientific community. Research findings
before the 1990s, most of which are based on linear theories, are summarised in
the monograph by Squire et al. (1996). Observations of intense waves-in-ice events
reported by Marko (2003) indicate that nonlinearity may play an important role. The
first mathematical result on nonlinear flexural–gravity waves was the computation of
large-amplitude periodic waves carried out by Forbes (1986) via a high-order series
truncation method.

However, a key motivation to study nonlinear flexural–gravity waves is the generation
of waves as a load moves on an ice cover. The linear theory shows that there exists a
critical speed cmin such that, if the speed of the moving load is close to cmin , energy
can hardly radiate away from the load. Although the linear theory identifies the critical
speed, it fails to describe accurately the wave phenomenon near cmin , since it predicts
unlimited growth of wave amplitudes. Părău & Dias (2002) first performed the weakly
nonlinear normal-form analysis for both free and forced problems near cmin , which showed
the existence of envelope solitons in shallow fluids that are qualitatively similar to the
experimental measurements carried out at Lake Saroma in Hokkaido (Takizawa 1988).
However, their analysis and numerics cannot be generalised to the deep-water case, though
a similar critical phenomenon was observed at McMurdo Sound in Antarctica by Squire
et al. (1988). Milewski, Vanden-Broeck & Wang (2011) revisited the problem and showed
numerically from the full Euler equations that, even though small-amplitude localised
travelling wave solutions are not predicted to exist in deep water by standard perturbation
analyses, they do occur along a new type of bifurcation branch.

All the aforementioned nonlinear analyses are based on the nonlinear Kirchhoff–Love
plate theory, which has been widely used but does not have a clear conservation form
for the elastic potential energy. Most recently, Toland (2007) proposed a model for plates
based on the Cosserat theory of hyperelastic shells satisfying Kirchhoff’s hypotheses, with
the elastic energy being the total squared curvature. Since then, nonlinear flexural–gravity
waves with the Toland elastic model have attracted intensive attention. Of interest are the
following works: Guyenne & Părău (2012, 2014) searched for hydroelastic solitary waves
for the full Euler equations using the boundary integral method and performed unsteady
simulations by truncating the Dirichlet–Neumann operator in arbitrary depth; Gao &
Vanden-Broeck (2014) investigated the elevation generalised solitary waves in finite depth;
Gao, Wang & Vanden-Broeck (2016) studied the stability and dynamics of solitary waves
for the fully nonlinear equations via a time-dependent conformal mapping technique;
and Trichtchenko et al. (2019) carried out the linear spectral analysis for periodic waves
using the Fourier–Floquet–Hill method and compared the results with those obtained by a
modulational instability analysis.

Satellite measurements of ice cover displacements induced by moving vehicles reported
by van der Sanden & Short (2017) stress the need for continued efforts in research on
three-dimensional fully localised flexural–gravity waves, known as lumps. The nonlinear
elastic model in three dimensions was proposed by Plotnikov & Toland (2011) using the
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Willmore functional (namely the total squared mean curvature). Milewski & Wang (2013)
derived the Benney–Roskes–Davey–Stewartson system in the vicinity of the minimum
of the phase speed to predict the existence and elucidate the bifurcation mechanism of
hydroelastic lumps. Recently, hydroelastic lumps were found numerically for the full Euler
equations by Trichtchenko et al. (2018) using a boundary integral equation method.

The results mentioned above were obtained for irrotational flows. However, sea surface
waves are commonly accompanied by underlying currents, and sometimes the current
speed varies with depth (e.g. tidal currents and wind-driven currents). Early numerical
works in this direction were carried out by Simmen & Saffman (1985), Teles Da Silva &
Peregrine (1988), Milinazzo & Saffman (1990) and Vanden-Broeck (1994), who computed
surface gravity waves for the fully nonlinear equations with constant vorticity. Recently,
the cubic nonlinear Schrödinger equation was derived by Thomas, Kharif & Manna (2012)
for pure gravity waves and by Hsu et al. (2018) for capillary–gravity waves to investigate
the modulational instability of wave trains propagating on a linear shear current. Curtis,
Carter & Kalisch (2018) expanded the primitive equation to the next asymptotic order to
obtain the Dysthe equation with constant vorticity and investigated the motion and mean
properties of particle paths. In addition, Hsu et al. (2016) extended the Stokes expansion
to capillary–gravity waves and paid particular attention to the effect of vorticity on the
phase velocity, wave profile and Wilton-type waves. On the theoretical side, wave–current
interactions have received great attention since the pioneering work by Constantin &
Strauss (2004) on local and global bifurcations of periodic gravity waves propagating
on an arbitrary vorticity distribution. Subsequent research has focused on particle paths
and flow structures beneath free-surface waves in the presence of vorticity. The interested
reader is referred to Ehrnström & Villari (2008), Wahlén (2009) and Matioc (2014) and
references therein for more details.

There are relatively fewer studies on the interaction between an underlying current and
flexural–gravity waves. This is a special kind of wave–current–structure interaction. Peake
(2001, 2004) considered the nonlinear stability and the dynamics of a fluid-loaded elastic
plate interacting with a mean flow using the method of multiple scales. He showed that the
interaction gives interesting phenomena, including negative-energy waves and convective
instability. Xia & Shen (2002) studied flexural–gravity waves in river channels in the
presence of a mean flow, and derived the fifth-order Korteweg–de Vries (KdV) equation in
the weakly nonlinear shallow-water regime. Bhattacharjee & Sahoo (2009) examined the
effect of underlying shear currents on flexural–gravity waves in the linear shallow-water
approximation. Wave scattering and trapping by jet-like shear currents were both analysed.

For hydroelastic waves with constant vorticity, a cubic nonlinear Schrödinger equation
was derived by Gao, Wang & Milewski (2019), together with equations in the resonant
cases. Fully nonlinear computations of solitary waves and the study of Benjamin–Feir
instabilities were carried out to validate the weakly nonlinear models and to extend
their results. Based on the same physical setting (a schematic is shown in figure 1), we
focus in the present paper on asymptotics, global bifurcations, new steady solutions and
particle trajectories in both periodic and solitary waves, as well as flow structures beneath
solitary waves. The numerical computations used in this paper to solve the fully nonlinear
equations rely on a conformal mapping method. This is similar to the approaches of Choi
(2009), who studied the influence of a linear shear current on the Benjamin–Feir instability
of a gravity wave train, and of Ribeiro, Milewski & Nachbin (2017), who investigated the
flow structure as multiple stagnation points appear due to wave–current interactions.

The outline of the paper is as follows. The mathematical formulation of the problem is
given in § 2. The results for symmetric, periodic and steadily travelling waves, including
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Elastic sheet

FIGURE 1. Sketch of the flow configuration.

the third-order Stokes expansion, global bifurcations, generalised solitary waves and wave
fronts, and particle trajectories, are presented in § 3. The numerical results for solitary
waves are shown in § 4, with particular attention paid to particle paths and streamline
patterns beneath the free surface. Finally, § 5 contains our conclusions and further remarks.

2. Governing equations

We consider a two-dimensional incompressible and inviscid fluid of finite depth h
covered by an elastic sheet that provides a restoring force through its bending deformation.
We introduce Cartesian coordinates with the x-axis along undisturbed elastic sheet and the
z-axis directed vertically opposite to gravity. In non-perturbed states, the flow is assumed
to be a shear current varying linearly in z, namely U(z) = U0 +Ω0z, where U0 andΩ0 are
both constants and Ω0 is called the vorticity strength. There exists a frame of reference
where the velocity vanishes at the undisturbed free surface; therefore, without loss of
generality, we can let U0 = 0 throughout the paper. Flow perturbations superimposed
on the shear are assumed to be irrotational, with a potential function φ. Therefore, the
governing equations of the problem are

φxx + φzz = 0 for −h < z < η, (2.1)

ηt − φz + (φx +Ω0η)ηx = 0 at z = η, (2.2)

φt + 1
2
|∇φ|2 + gη +Ω0ηφx −Ω0ψ + p

ρ
= 0 at z = η, (2.3)

φz = 0 at z = −h, (2.4)

where η(x, t) is the elevation of the elastic sheet, ρ the density of the fluid, p the pressure
at the top surface and g the acceleration due to gravity. We denote by ψ the streamfunction
satisfying the Cauchy–Riemann equations ψz = φx and ψx = −φz. Following Toland
(2007), the pressure across the elastic sheet is assumed to be

p = Pa + D
(
∂ssκ + κ3

2

)
, (2.5)

where Pa is atmospheric pressure, D the flexural rigidity, κ = ηxx/(1 + η2
x)

3/2 the
curvature of the sheet and s the arclength parameter with ∂s = ∂x/

√
1 + η2

x .
We study longitudinal progressive waves translating at a constant wave speed c. Waves

become steady in a reference frame moving with the speed c, and the kinematic boundary
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Flexural–gravity waves with constant vorticity 905 A12-5

condition can be written as

ψ + 1
2Ω0η

2 − cη = const. or (φx +Ω0η − c)ηx − φz = 0. (2.6)

The pressure equation at z = η can be recast as

1
2

[(φx +Ω0η − c)2 + φ2
z ] + gη + D

ρ

(
κ3

2
+ ∂ssκ

)
= B, (2.7)

where B is the Bernoulli constant. It is noted that the bulk equation (2.1) and the bottom
condition (2.4) are unchanged by changing the reference frame.

3. Periodic waves

3.1. Stokes expansion
An exact solution of (2.1), (2.4), (2.6) and (2.7) is

φ = cx, ψ = cz, η = 0, B = c2

2
, (3.1a–d)

which is simply a uniform stream with velocity c and an undisturbed flat free surface.
Non-trivial travelling waves can be obtained by perturbing the solution (3.1a–d). To
achieve this, we introduce a small parameter ε, which is a measure of the amplitude of
the wave, and write the expansions

φ = cx + εφ1(x, z)+ ε2φ2(x, z)+ ε3φ3(x, z)+ · · · , (3.2)

η = εη1(x)+ ε2η2(x)+ ε3η3(x)+ · · · , (3.3)

c = c0 + εc1 + ε2c2 + ε3c3 + · · · , (3.4)

B = B0 + εB1 + ε2B2 + ε3B3 + · · · , (3.5)

where B0 = c2
0/2 and a precise definition of ε will be given later. This expansion was

pioneered by Stokes (1847) for pure gravity waves, and now bears the name of the
Stokes expansion. It was generalised to capillary–gravity waves by Wilton (1915) and to
flexural–gravity waves by Vanden-Broeck & Părău (2011). In the presence of a linear shear
current, the Stokes expansion was carried out by Kishida & Sobey (1988) for gravity waves
and by Hsu et al. (2016) for capillary–gravity waves.

The difficulty due to the unknown free surface can be overcome by writing the potential
function on the free surface as a Taylor series,

φ(x, η) = φ(x, 0)+ ∂φ

∂z
(x, 0)η + 1

2
∂2φ

∂z2
(x, 0)η2 + · · · , (3.6)

and expanding the kinematic and dynamic boundary conditions around z = 0. Substituting
the various expansions into (2.1), (2.4), (2.6) and (2.7) and equating the powers of ε leads
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to a succession of linear systems. The linear system obtained at order ε reads

φ1,xx + φ1,zz = 0 for −h < z < 0, (3.7)

c0η1,x + φ1,z = 0 at z = 0, (3.8)

(g −Ω0c0)η1 − c0φ1,x + D
ρ
η1,xxxx = B1 − c0c1 at z = 0, (3.9)

φ1,z = 0 at z = −h. (3.10)

If we assume a periodic surface elevation with a fundamental wavenumber k, the solution
to this system takes the form

η1 = A11 cos(kx), φ1 = c0A11
cosh(k(z + h))

sinh(kh)
sin(kx), (3.11a,b)

with B1 = c0c1, where c0 satisfies the linear dispersion relation

k coth(kh)c2
0 +Ω0c0 −

(
g + D

ρ
k4

)
= 0, (3.12)

and c1 will be determined at the next order in ε.
At the second order in ε, we have the following sequence of equations:

φ2,xx + φ2,zz = 0 for −h < z < 0, (3.13)

c0η2,x + φ2,z = −c1η1,x +Ω0η1η1,x + η1,xφ1,x − η1φ1,zz at z = 0, (3.14)

(g −Ω0c0)η2 − c0φ2,x + D
ρ
η2,xxxx = B2 − c2

1

2
− c0c2 +Ω0c1η1

− 1
2
Ω2

0η
2
1 − 1

2
φ2

1,x − 1
2
φ2

1,z + c1φ1,x −Ω0η1φ1,x + c0η1φ1,xz at z = 0, (3.15)

φ2,z = 0 at z = −h. (3.16)

Eliminating the secular term yields c1 = 0 and hence B1 = c0c1 = 0. Solving for other
modes yields

η2 = A22 cos(2kx), φ2 = C22 cosh(2k(z + h)) sin(2kx), (3.17a,b)

B2 = c0c2 + 1
4

[
Ω2

0 + 2kΩ0c0 coth(kh)+ k2c2
0

sinh2(kh)

]
A2

11, (3.18)

where

A22 = coth(2kh)c0F22 + G22

g + 16Dk4/ρ −Ω0c0 − 2k coth(2kh)c2
0
, (3.19)

C22 = (g + 16Dk4/ρ −Ω0c0)F22 + 2kc0G22

2k sinh(2kh)[g + 16Dk4/ρ −Ω0c0 − 2k coth(2kh)c2
0]
, (3.20)
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Flexural–gravity waves with constant vorticity 905 A12-7

with

F22 = −
[

kΩ0

2
+ c0k2 coth(kh)

]
A2

11, (3.21)

G22 = − 1
4 [Ω2

0 + 2c0k coth(kh)Ω0 + c2
0k2 coth2(kh)− 3c2

0k2]A2
11. (3.22)

It is noted that the Stokes expansion is valid provided that the denominators of A22 and C22
are non-zero. However, if

g + ( jk)4D/ρ −Ω0c0 − ( jk) coth( jkh)c2
0 = 0 for j /= 1, (3.23)

then the expansion needs to be modified to include two modes: k and jk (the interested
reader is referred to Vanden-Broeck & Părău (2011) for more details). This was first
achieved by Wilton (1915) for capillary–gravity waves, who provided evidence for the
non-uniqueness of periodic water waves.

In the same vein, by collecting the terms of O(ε3) we obtain

φ3,xx + φ3,zz = 0 for −h < z < 0, (3.24)

c0η3,x + φ3,z = −c2η1,x +Ω0η1,xη2 +Ω0η2,xη1 − φ1,zzη2 − φ2,zzη1

− 1
2φ1,zzzη

2
1 + φ1,xη2,x + φ2,xη1,x + φ1,xzη1,xη1 at z = 0, (3.25)

(g −Ω0c0)η3 − c0φ3,x + D
ρ
η3,xxxx = B3 − c0c3 +Ω0c2η1 −Ω2

0η1η2 − φ1,zφ2,z

− φ1,zφ1,zzη1 + c2φ1,x −Ω0φ1,xη2 −Ω0φ2,xη1 − φ1,xφ2,x −Ω0φ1,xzη
2
1 + c0φ1,xzη2

− φ1,xφ1,xzη1 + c0φ2,xzη1 + 1
2

c0φ1,xzzη
2
1 at z = 0, (3.26)

φ3,z = 0 at z = −h. (3.27)

Eliminating the secular term yields

c2 =
{[

2Ω2
0 + 4c0kΩ0 coth(kh)+ 2c2

0k2

sinh2(kh)

]
A22

+ [3c0k2Ω0 + 4c2
0k3 coth(kh)]A2

11 + 4[2c0k2 cosh2(kh) coth(kh)

+ kΩ0 cosh(2kh)]C22

} /
[4Ω0 + 8c0k coth(kh)]. (3.28)

Solving for non-resonant modes gives

η3 = A33 cos(3kx), (3.29)

φ3 = C31 sin(kx) cosh(k(z + h))+ C33 sin(3kx) cosh(3k(z + h)), (3.30)
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where

C31 = c2A11 − 3
8 k2c0A3

11 − 1
2 kc0A11A22 coth(kh)− kA11C22 cosh(2kh)− 1

2Ω0A11A22

sinh(kh)
,

(3.31)

A33 = coth(3kh)c0F33 + G33

g + 81k4D/ρ −Ω0c0 − 3k coth(3kh)c2
0
, (3.32)

C33 = (g + 81k4D/ρ −Ω0c0)F33 + 3kc0G33

3k sinh(3kh)[g + 81k4D/ρ −Ω0c0 − 3k coth(3kh)c2
0]
, (3.33)

with

F33 = − 3
2 [kΩ0 + c0k2 coth(kh)]A11A22 − 3

8 c0k3A3
11 − 3k2 cosh(2kh)A11C22, (3.34)

G33 = −Ω
2
0

2
A11A22 − kΩ0

4
[c0kA2

11 + 2c0 coth(kh)A22 + 4 cosh(2kh)C22]A11

+ c0k2

8
[16 sinh(2kh)C22 − 8 coth(kh)C22 + c0k coth(kh)A2

11 + 4c0A22]A11. (3.35)

In addition, B3 = c0c3 and the next order of ε gives B3 = c3 = 0.
Upon noticing that

η(x) = εA11 cos(kx)+ ε2A22 cos(2kx)+ ε3A33 cos(3kx)+ · · · , (3.36)

we denote by a the first Fourier coefficient of η(x), i.e.

a = 2
λ

∫ λ/2

−λ/2
η(x) cos(kx) dx = εA11. (3.37)

Following Vanden-Broeck (2010), if we define the parameter ε as ε = a/λ, it then follows
that A11 = λ.

In the discussion above, we carried out the Stokes expansion to the third order, which
results in a correction to the linear speed of wave propagation since c1 = 0 and c2 /= 0.
This procedure was previously applied by Kishida & Sobey (1988) and Hsu et al. (2016)
in different contexts. As a check, we compare c2 with the value from Hsu et al. (2016)
when only gravity is considered (i.e. taking p = const. in (2.3)). It turns out that, under
this circumstance, (3.28) can be reduced to

c2 = kc2
0

8[2 +Ω0σ ]

[
Ω4

0

k4c4
0

+ (6 + 2σ 2)Ω3
0

k3c3
0σ

+ (15 + 3σ 2)Ω2
0

k2c2
0σ

2

+(18 − 4σ 2 + 2σ 4)Ω0

kc0σ 3
+ 9 − 10σ 2 + 9σ 4

σ 4

]
, (3.38)

where σ = tanh(kh) and we have used 1/k, Ω0
√

gk and c0
√

g/k to replace A11, Ω0 and
c0, respectively, for comparison purpose. Equation (3.38) is exactly the same as (3.32) in
Hsu et al. (2016) when surface tension is neglected, providing a partial verification for our
calculation.
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3.2. Validation
We start with comparing the asymptotic results of the Stokes expansion with numerical
solutions of the full Euler equations. To seek travelling waves for (2.1)–(2.4), we first
non-dimensionalise the system by choosing

[
D
ρg

]1/4

,

[
D
ρg5

]1/8

and
[

gD3

ρ3

]1/8

(3.39a–c)

as the units of length, time and potential, respectively. Therefore, the coefficients g and
D/ρ are equal to 1 in (2.7), andΩ0 in (2.6) and (2.7) can be replaced by a non-dimensional
vorticity strength Ω defined as

Ω =
(

D
ρg5

)1/8

Ω0. (3.40)

Following Gao et al. (2019), the problem can be handled by using a conformal
transformation that maps the physical fluid domain to a strip in a complex plane. For
travelling waves, after the transformation the unknown free surface can be parametrised
by η(ξ), which satisfies an integro-differential equation

1
2J
(Ωηxξ +ΩT [ηηξ ] − c)2 + η + 1

2

[
κξξ

J
+

(κξ
J

)
ξ

+ κ3

]
= B, (3.41)

where xξ = 1 − T [ηξ ], J = x2
ξ + η2

ξ is the Jacobian of the map, and the curvature κ in the
new plane is of the form

κ = ηξξ xξ − xξξηξ
J3/2

. (3.42)

It is noted that the translating speed c and the Bernoulli constant B are also unknowns and
need to be determined together with η(ξ). The detailed derivation of (3.41) can be found,
for example, in Gao et al. (2019).

The pseudo-differential operator T is defined as

T [ f ] = 1

2h̃

∫ λ/2

−λ/2
f (ξ ′) coth

[
π

2h̃
(ξ ′ − ξ)

]
dξ ′, (3.43)

where λ is the wavelength and h̃ is the thickness of the fluid in the transformed plane
defined as

h̃ = h + 1
λ

∫ λ/2

−λ/2
η(ξ) dξ. (3.44)

We approximate η(ξ) by the truncated Fourier series

η(ξ) =
N∑

n=−N

an exp(i2πnξ/λ), (3.45)

where an are real and an = a−n due to symmetry. We introduce collocation points
uniformly distributed along the ξ -axis. This provides discrete algebraic equations by
projecting (3.41) onto each Fourier mode. The equations are solved by Newton’s method
with the classical pseudo-spectral algorithm. To obtain solutions with high accuracy,
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FIGURE 2. Comparison of surface profiles between the Stokes theory and numerical solutions
of the fully nonlinear equations. The computed solutions are shown by solid lines, and the
third-order approximate solutions are plotted by dashed lines. (a,c) Wave profiles when the
parameters are chosen as h = 5, λ = 4π and Ω = 1 with (a) ε = 0.0118 and (c) ε = 0.0444.
(b,d) Wave profiles when the parameters are chosen as h = 1, λ = 4π and Ω = 7 with
(b) ε = 0.0275 and (d) ε = 0.0565.

a large number of Fourier modes is used in the computation (typically 1024 modes are
sufficient for periodic waves) and solutions are considered exact if increasing the number
of Fourier modes does not change the solutions within graphical accuracy. The solution
was considered to have converged when the l∞-norm of the residual error is less than
10−10.

The parameter space consists of four dimensionless parameters: the vorticity strength
Ω , the fluid depth h, the wave speed c, and the wavelength λ (or, equivalently, the
wavenumber k). To obtain more solutions or complete bifurcation curves, we use
continuation methods where one previously computed solution is used as an initial guess
to compute a new solution for slightly perturbed values of the parameters. The validity and
accuracy of such schemes have been checked by several groups, and the interested reader
is referred to Vanden-Broeck (1994), Choi (2009) and Gao et al. (2019) and references
therein for more details.

We now use both numerical results for the full Euler equations and asymptotic
predictions from the Stokes expansion to compare periodic travelling wave solutions. The
asymptotic solutions can be obtained by substituting the expressions of φi, ηi, ci and Bi
into (3.2)–(3.5), choosing A11 = λ, and varying the value of ε. Figure 2 illustrates the
comparison between the asymptotic and numerical solutions for different values of ε. As
expected, the difference between asymptotic predictions and numerical results increases
as the wave steepness increases. As opposed to downstream waves (Ωc > 0, shown in
figure 2a,c), steeper waves exist in the upstream case (Ωc < 0, shown in figure 2b,d), and
the third-order approximation still works well for moderate-amplitude waves. It is observed
that the downstream waves have a flat and wide crest while the upstream waves feature a
narrow crest.

To second order, the Stokes expansion predicts that the wave speed is independent
of the wave amplitude since c1 = 0. At third order, the asymptotic expansion gives a
correction c2 to the linear phase velocity. In figure 3, wave speeds predicted by the
third-order Stokes theory (dashed lines) and the fully nonlinear numerical computations
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FIGURE 3. Speed–amplitude diagram for different values of Ω . The figure shows the
comparison of the wave speed between the Stokes theory and the numerical solutions of the
fully nonlinear equations. The computed solutions are shown by solid lines, and the third-order
approximate results are given by dashed lines. The parameters are chosen as h = 4 and λ = 4π.
From top to bottom,Ω = −2, −1, 0, 0.5, 1 and 2, and the wave slopes of the computed solutions
(defined by 2[η(0)− η(λ/2)]/λ) at the termination points read 0.1273, 0.1464, 0.0875, 0.1194,
0.1210 and 0.1114, respectively.

(solid lines) are compared. Six solution branches for various values of Ω are presented. It
is shown that the asymptotic wave speeds match the numerical results very well for small-
and moderate-amplitude waves. We stop continuing the branches when Newton’s method
diverges or oscillates and fails to reach the desired accuracy. Wave profiles corresponding
to the right endpoints of these curves are presented in figure 4, where the numerical results
are shown as solid lines and the asymptotic predictions are shown as dashed lines. In
general, the Stokes expansion works well for moderate-amplitude waves except for the case
of zero vorticity, where the third-order solution is a poor approximation of the numerical
solution, as shown in figure 4(c). If we check the denominator of A22, it is found that
1 + 16k4 − 2 coth(2kh)c2

0 ≈ −0.05 and the situation is very close to resonant harmonics
or Wilton ripples, which explains the poor performance of the Stokes expansion in such a
case.

3.3. Global bifurcation
In this subsection we study the global bifurcation of periodic waves of the fully nonlinear
equations. To avoid taking into account the effects of all the parameters, we fix Ω , h
and k, where Ω is chosen to be non-zero to include vorticity effects, and explore the
wave speed–amplitude relationship. We start from the flat state and compute a branch of
solutions until it returns to a trivial or stationary solution, termed a global bifurcation in
the current paper. It is obvious that changing the signs ofΩ and c simultaneously in (3.41)
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FIGURE 4. Wave profiles corresponding to the right endpoints of the curves shown in figure 3.
The computed solutions are shown by solid lines and the third-order approximate results
are plotted by dashed lines for h = 4, λ = 4π and: (a) Ω = −2, ε = 0.0318; (b) Ω = −1,
ε = 0.0365; (c) Ω = 0, ε = 0.023; (d) Ω = 0.5, ε = 0.0285; (e) Ω = 1, ε = 0.0285; and
( f ) Ω = 2, ε = 0.0249.

results in the same equation, hence we only need to consider positive Ω . Furthermore,
numerical evidence shows that the profiles and the bifurcations are much richer for
upstream waves (waves propagating against the background shear). Therefore, we choose
Ω > 0 and c < 0 in the following numerical calculations.

A small-amplitude monochromatic wave with propagating speed satisfying the linear
dispersion relation is used as the initial guess for Newton’s method. After iterating to a
solution of the nonlinear integro-differential equation (3.41) within a desired tolerance,
a continuation method is used to search for more solutions along the same branch by
perturbing the previously computed solution by a small amount in some bifurcation
parameter. The translating speed c, the value of the centre point of the free-surface
displacement η(0), and the wave amplitude, which is defined as

H := η(0)− η(λ/2), (3.46)

are used as bifurcation parameters to complete the bifurcation curves. It is noted that
solutions with an overhanging structure are allowed in our computations due to the
formulation of water waves in holomorphic coordinates. We stop the computation when
the solution reaches the boundary of the speed–amplitude diagram (i.e. the wave becomes
either a free stream or a stationary profile).

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

75
0

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 In

st
itu

te
 o

f M
ec

ha
ni

cs
, C

AS
, o

n 
13

 Ja
n 

20
21

 a
t 0

6:
33

:1
1,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.

https://doi.org/10.1017/jfm.2020.750
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


Flexural–gravity waves with constant vorticity 905 A12-13

–2.5

2

3

1

4

–2.0 –1.5 –1.0 –0.5 0
c

–3.0

–2.5

–2.0

–1.5

–1.0

–0.5

0

H

–2 0 2
–0.5

0

0.5

–2 0 2
–2

–1

0

1

–2

–1

0

–2

–1

0

1

3

1 2

4

FIGURE 5. Amplitude–speed bifurcation diagram for periodic waves with h = 5, λ = 2π and
Ω = 1. Typical wave profiles labelled 1©– 4© on the bifurcation curve, corresponding to c =
−2.05, −2.73, −1.91 and −0.74, respectively, are also plotted.

An example of a global bifurcation branch of waves, which terminates in one endpoint
at c = 0 and another at H = 0, is shown in figure 5. We start from small-amplitude waves
and increase H to trace the branch. Then η(0) is used as the continuation parameter to
traverse the very sharp turning point labelled 2© on the curve. Finally, we vary the wave
speed to complete the bifurcation diagram. The most striking phenomenon observed in
this example is the closing of the overhanging structure and its reopening. Akers et al.
(2016) and Akers, Ambrose & Sulon (2017) numerically investigated the global bifurcation
of interfacial hydroelastic waves based on the Birkhoff–Rott integral and arclength
parametrisation. Their formulation for water-wave problems also allows multivalued wave
profiles. However, they had to stop the computation at a limiting configuration where a
self-intersecting point appears, enclosing a pendant-shaped bubble. In this situation, in
contrast to their results, we can still continue the branch by changing some bifurcation
parameter (speed or amplitude), taking advantage of conformal mapping, even though
solutions with multiple intersecting points are non-physical (see 3© in figure 5).

A global bifurcation curve can connect two trivial solutions with different propagating
speeds. It is shown in figure 6 that a branch of waves with a wavelength of π (dashed
line) intersects with the 4π-period branch (solid line) at point 4© on the curve. Following
the path 1©– 4© and starting from point 1©, figure 7 provides a sequence of profiles that
illustrate how a profile with four crests gradually emerges. We compute the solution with
the period of π at the same speed (circles in figure 7d), which is exactly on top of the
4π-period solution (solid line in figure 7d), confirming our observations. It is also found
in figure 6 that the 4π-period branch forms a closed loop. Waves on one half of the branch
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FIGURE 6. Bifurcation diagrams of hydroelastic periodic waves with h = 5 and Ω = 1, but
with different wavelengths. The 4π-period solution branch is shown by solid curves, while the
π-period branch is plotted as a dashed curve. These two branches both bifurcate from zero
amplitude (labelled with stars) and intersect each other at point 4©, where they have exactly
the same wave profiles.

are the same as those on the other half but with a phase shift of 2π. One-and-a-half
periods of solutions 3© and 5© are plotted together in figure 7(c) to clearly demonstrate
the phenomenon of phase shift.

3.4. Generalised solitary waves and fronts
Generalised solitary waves are nonlinear non-periodic travelling waves with a central
core similar to a classical solitary pulse and a non-decaying train of ripples extending
up to infinity. Generalised solitary waves were previously computed by, among others,
Hunter & Vanden-Broeck (1983) and Champneys, Vanden-Broeck & Lord (2002) for
capillary–gravity waves and by Gao & Vanden-Broeck (2014) for flexural–gravity waves;
all the computations were carried out in periodic domains (in other words, the generalised
solitary waves were approximated by long periodic waves in numerics). Proofs of the
existence of generalised capillary–gravity solitary waves were provided by Beale (1991)
and others.

We now compute periodic waves with non-decaying oscillatory tails akin to generalised
solitary waves for downstream flexural–gravity waves. We take a long small-amplitude
cosine function (k ≈ 0.1 say) as the initial guess for the Newton–Raphson iteration and
use the amplitude or speed as the bifurcation parameter. As the amplitude increases, the
solution gradually approaches the configuration of a solitary pulse in the middle with
several periodic waves in the tails (see figure 8). Further numerical experiments show
that the algorithm appears to converge well if we add more and more oscillations to the
obtained profile as the initial guess. It is shown in figure 8(a) that the profile obtained for
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FIGURE 7. Typical wave profiles that correspond to 1©– 5© shown in figure 6. The solid curves
in (a–d) correspond to 1©– 4©, respectively. Point 5© is shown by a dashed curve in (c), which is
the same as 3© except for a phase shift of 2π. The π-period solution on the dashed curve at point
4© in figure 6 is shown by circles in (d), which exactly matches the 4π-period solution.

the wavelength λ = 96.96 is almost exactly on top of the profile for λ = 127.19, which
provides strong evidence for the existence of true generalised solitary waves.

On the other hand, when we use the wavelength as the bifurcation parameter, the
broadening phenomenon of the central core is found. It is observed in figure 8(b) that
the central core is flat and becomes broader as λ increases. This solution can even serve
as a good approximation for a true solitary wave if we split the wave profile down
the middle and glue the two endpoints together, considering the periodic nature of the
computational domain (see figure 9a,b). As we enlarge the domain, the coexistence of the
two phenomena, namely, the increase in the number of periodic waves in the tails and the
broadening of the main core, implies the existence of wave fronts, which were previously
only found in interfacial waves in multilayer fluid systems.

Wave fronts in hydrodynamics often occur in the flow of contiguous homogeneous fluids
of different densities, which are usually called internal fronts. Interfacial gravity solitary
waves under the rigid-lid approximation were computed by Turner & Vanden-Broeck
(1988), and the most striking feature found in their work is the broadening of the wave,
namely, the midsection of the interface develops a plateau, which becomes infinitely long
when the wave speed approaches a limiting value. This numerical result provides evidence
for fronts, since broad solitary waves can be viewed as the superposition of two fronts. Dias
& Vanden-Broeck (2003) later showed that, in the limiting configuration, the flow in the
far field and the flow in the middle can be referred to as parallel conjugate flows, and the
wave indeed becomes a front. Fochesato, Dias & Grimshaw (2005) proposed a coupled
KdV system for multilayer fluids to combine generalised solitary waves and fronts, and
they found that ripples can appear on one side of the wave front.
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FIGURE 8. Numerical evidence for the existence of generalised solitary waves. The parameters
are chosen as h = 10 and Ω = 2 with: (a) λ = 96.96, c = 0.5180 (thick line) and λ = 127.19,
c = 0.5358 (thin line); and (b) λ = 132.28, c = 0.4766 (thick line) and λ = 209.44, c = 0.4346
(thin line). Panel (b) shows the broadening of the central core leading to a table-top structure.
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FIGURE 9. Solitary waves with oscillating pulse and wave fronts with various sets of
parameters. For h = 5 and Ω = 3, small-amplitude solutions are shown in (a,c), while
moderate-amplitude solutions are shown in (b,d). The computational domains and wave speeds
are as follows: (a) λ = 604.15, c = 0.3237 (thick line) and λ = 604.15, c = 0.3268 (thin line);
(b) λ = 314.16, c = 0.2 (thick line) and λ = 314.16, c = 0.2038 (thin line); (c) λ = 339.63,
c = 0.3237 (thick line) and λ = 502.65, c = 0.3338 (thin line); and (d) λ = 223.60, c = 0.2
(thick line) and λ = 276.79, c = 0.2593 (thin line).
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According to the above argument, we consider these solutions as solitary waves with
many oscillations in the central core. In figure 9, the possibility of an increase in the
number of ripples in the midsection of solitary waves is shown for both small- and
moderate-amplitude solutions (see figure 9a,b). More obviously, if we consider half of
the solutions, figure 9(c,d) provides strong evidence for the existence of wave fronts, since
both flat tails and oscillations in the centre can be extended. The wave profiles shown in
figures 8 and 9 are qualitatively similar to the travelling dispersive shock waves (TDSWs)
found by Hoefer, Smyth & Sprenger (2019) and Sprenger & Hoefer (2017, 2020) in the
fifth-order KdV equation and related models. As pointed out in their papers, TDSWs
feature a partial non-monotonic solitary wave at the trailing edge connected with a periodic
travelling wave train, and can be interpreted as nonlinear resonance between different types
of nonlinear waves moving with the same speed. However, to the best of the authors’
knowledge, this is the first time that wave fronts in the free-surface Euler equations have
been reported.

3.5. Particle trajectories
In this subsection, we calculate particle trajectories numerically for the fully nonlinear
equations and compare the results with asymptotic approximations. The particle paths
under nonlinear and periodic water waves were initially considered by Stokes (1847) in his
seminal work for irrotational flows and pure gravity waves. He showed that, in contrast
to the linear theory, the particle path in the laboratory frame is not a closed loop but
features a slight forward drift in the horizontal direction after a wave period has elapsed.
This is known as the Stokes drift. A recent breakthrough on the theoretical side of this
topic was made by Constantin (2006), who generalised Stokes’ asymptotic work to steep
waves to gain a qualitative understanding of the transport properties of arbitrary Stokes
waves based on a rigorous mathematical argument. However, considering the boundary
layers at the bottom and at the free surface, recirculation orbits (a phenomenon similar
to the particle dynamics of a Gerstner wave) were shown to exist by the asymptotic
work of Longuet-Higgins (1953) and the experimental research of Grue & Kolaas (2017).
The existence of closed orbits was also proved by Constantin & Strauss (2010) when an
underlying mean flow exists, which is intuitively understandable since the forward Stokes
drift can be eliminated by the counter-propagating uniform current.

When a linear sheared current is added, theoretical studies on particle paths under
periodic gravity waves have only been carried out for waves of arbitrarily small amplitude
(Ehrnström & Villari 2008; Wahlén 2009). On the numerical side, Ribeiro et al. (2017)
investigated particle trajectories under nonlinear periodic travelling waves with multiple
stagnation points in a frame moving with the wave speed, and two dynamic behaviours of
fluid particles were observed: periodic transport trajectory and closed orbit.

We start by describing the numerical scheme used to trace the trajectory of a fluid
particle. In the frame of reference moving with the wave, particle trajectories can be
obtained by solving the following ordinary differential equations:

dx

dt
= φx +Ωz − c,

dz
dt

= φz. (3.47a,b)

For the fully nonlinear equations, the physical space can be conformally mapped to the
ξ–ζ plane and the equations in the new plane read

dξ
dt

xξ + dζ
dt

xζ = 1
J
(xξφξ + xζ φζ )+Ωz − c, (3.48)
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FIGURE 10. Particle trajectories in upstream waves for t ∈ [0, 2π/c], obtained by direct
numerical calculations of the full Euler equations (solid curve) and by the asymptotic expansion
(dashed curve) when h = 5, λ = 2π and Ω = 1, with: (a) ε = 0.02, H = 0.25 and c = 0.99
(Euler); and (b) ε = 0.04, H = 0.5 and c = 0.97 (Euler). The trajectories are shown in the
laboratory frame, while the stars represent the initial positions.

dξ
dt

zξ + dζ
dt

zζ = 1
J
(zξφξ + xξφζ ). (3.49)

Solving for ξt and ζt yields

dξ
dt

= φξ + (Ωz − c)xξ
J

,
dζ
dt

= φζ − (Ωz − c)zξ
J

. (3.50a,b)

Equations (3.50a,b) can be integrated numerically by the fourth-order Runge–Kutta
method and particle positions off the grid points can be obtained by interpolating the
mesh grid data. Particle trajectories in a laboratory frame can be calculated by a simple
Galilean transformation.

For the first numerical computation, we compare particle paths resulting from
calculations of the full Euler equations with those obtained from the asymptotic expansion.
The particle paths based on the Stokes approximation are also computed numerically
using a fourth-order Runge–Kutta method but in the physical space (3.47a,b). The
velocity potential is given in (3.2) with appropriate φi. Two examples of particle
trajectories for upstream waves with ε = 0.02 (H = 0.25) and ε = 0.04 (H = 0.5) are
shown in figure 10(a) and (b), respectively. Numerical simulations (solid curves) and
theoretical predictions (dashed curves) show a very good agreement for small- and
moderate-amplitude waves, partially demonstrating the validity of the numerical algorithm
and confirming the asymptotic findings. It is noted that, in the shallow-water regime,
long-wave models can also be used to reconstruct the velocity field beneath the free surface
so as to compute particle trajectories (see Borluk & Kalisch (2012) for particle dynamics
in the KdV approximation for irrotational gravity waves).

Figure 11 shows numerical results of particle trajectories of a downstream wave in
figure 11(a) and of an upstream wave in figure 11(b) in the moving frame. Two different
patterns, periodic transport trajectories and closed loops, are both found. However, the
figure illustrates the difference in the location of closed orbits between downstream and
upstream waves. If we consider waves in the laboratory frame, this phenomenon actually
indicates that, when Ω and c are of the same sign, the wave carries fluid particles beneath
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FIGURE 11. (a) Particle trajectories of a downstream wave with parameters c = 0.35, h = 1,
λ = 2π and Ω = 2 in the moving frame. The uppermost curve is the displacement of the free
surface, and both periodic transport trajectory and closed orbit are shown beneath it. Calculations
are done in the time interval [0, λ/c] and stars represent initial positions. (b) Particle trajectories
of an upstream wave for t ∈ [0, 3λ/c] with parameters c = −5.65, h = 5, λ = 20π and Ω = 1
in the moving frame.

its crests, while, on the other hand, the upstream wave moves forward with fluid particles
near the bottom. It is remarked that the frequency of the particle motion in the periodic
transport regime is not uniform due to the shear current, which provides a non-uniform
velocity distribution over water depth.

4. Solitary waves

The existence and stability of hydroelastic solitary waves propagating on a linear sheared
current were investigated by Gao et al. (2019). Solitary waves were computed numerically
and envelope equations near to and away from resonance were derived to assist stability
analyses. We follow their numerical techniques, and focus on the flow structure beneath
solitary waves. The algebraic decay of hydroelastic solitary waves usually requires a long
computational domain with a large number of grid points. Long periodic waves with flat
tails are usually considered to be a good approximation of solitary waves. Here we take
λ = 200 as the domain side, and 4096 Fourier modes are used in most of the computations
to achieve a sufficient accuracy.

Two fundamental branches of symmetric solitary waves, including one family of waves
with a positive free-surface elevation at the centre (denoted waves of elevation) and the
other family of waves with a negative free-surface elevation at the centre (denoted waves
of depression) are shown in figure 12 for downstream waves and in figure 13 for upstream
waves. All the branches presented bifurcate from the minimum of the phase speed shown
by a vertical dashed line where the group velocity is equal to the phase velocity. The
interested reader is referred to Gao et al. (2019) for more details on the bifurcation
mechanism and its connection to the nonlinear Schrödinger equation. It is noteworthy
that a smooth transition between upstream and downstream solitary waves along the same
bifurcation curve is possible as the wave speed passes through zero (see figure 12a).
Typical wave profiles are found to be similar to other wavepacket-type solitary waves (e.g.
gravity–capillary waves in deep water). Hydroelastic solitary waves with constant vorticity
are also characterised by oscillatory decaying tails.
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FIGURE 12. Speed–amplitude bifurcation diagrams of hydroelastic solitary waves for Ω = 1
and h = 5, together with typical wave profiles: (a) elevation branch and (b) depression branch.
Waves corresponding to circles are plotted in the physical space, and the bifurcation point (c =
0.7652) is shown by a dashed vertical line.
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FIGURE 13. Speed–amplitude bifurcation diagrams and typical wave profiles of hydroelastic
solitary waves in upstream flows: (a) elevation branch with Ω = 3 and h = 2 bifurcates from
c = −3.195; (b) depression branch with Ω = 3 and h = 3 bifurcates from c = −3.215. Wave
profiles corresponding to circles are plotted in the physical space, and bifurcation points are
shown by dashed vertical lines.

For hydroelastic solitary waves propagating against a non-uniform flow, particle
trajectories show interesting patterns in the frame of reference moving with the wave,
the most notable being the net displacement in the vertical direction indicating that the
interaction between a solitary wave and a linear shear current can result in vertical mass
transport (see figure 14). This is not observed in periodic waves. We take the particle on
the left of the wave which experiences a net vertical displacement as an example. First the
particle is chased by the solitary wave and swept downwards. Because the shear velocity
increases with the water depth, the particle moves faster in deeper water and finally leaves
the solitary wave far behind. It is worth noting that particles can also be swept upwards and
never catch up with the solitary wave. In addition, figure 14 shows two other possibilities
of particle trajectory patterns: closed orbits and pure horizontal transport. We remark that
the calculations are carried out for large time periods.
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FIGURE 14. Typical particle trajectories in an upstream elevation solitary wave with h = 2,
Ω = 3 and c = −2.95. The uppermost curve without a circle is the free-surface displacement,
while the others represent particle trajectories with different starting points denoted by circles.
Three trajectory patterns are observed in the frame of reference moving with the surface wave:
closed orbit, pure horizontal transport, and net vertical displacement.

For a better understanding of the structure of the flow field, we plot a set of streamlines
which represent different particle paths in a time-independent system. We show the
flow structure resulting from an upstream elevation solitary wave in figure 15(a) with
parameters c = −2.95, h = 2 and Ω = 3. Only the active part of the horizontal domain
near the main pulse is shown for better visibility. It turns out that, in the moving frame, the
flow field can be divided into three layers in which streamlines and the dynamic behaviours
of fluid particles are significantly different. For convenience, thick solid lines are used to
show important streamlines separating different areas, while other streamlines are plotted
as dashed curves.

In the layer between curve A and the free surface, particles overall keep moving from
left to right and oscillate when they are swept by the solitary wave, and the path profile is
in general qualitatively similar to the wave profile. In the region between curve B and the
bottom, particles are less affected by the free surface and move from right to left due to
the large horizontal speed of the shear current. In the region between curve A and curve
B, particles can either move along closed orbits or move vertically when they are swept by
the solitary wave but finally move in the opposite horizontal direction. Under each crest of
surface oscillations, there is a family of closed trajectories which is bounded by another
family of vertical-transport curves and eventually form a series of cat’s-eyes nested from
large to small. These families of closed orbits are located in a fluid layer where the shear
speed is nearly equal to the wave speed, and the cat’s-eye structure gradually shrinks when
it stays away from the middle pulse of the solitary wave.
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FIGURE 15. Classification of streamlines under solitary waves with constant vorticity in
the moving frame. Thick solid lines represent boundaries between different regions. Closed
orbits and vertical-transport trajectories are intertwined and eventually form complex cat’s-eye
structures. (a) Streamlines beneath an upstream elevation solitary wave with c = −2.95, h = 2
and Ω = 3. (b) Streamlines beneath an upstream depression solitary wave with c = −3.03,
h = 3 and Ω = 3.

Similar structures and trajectories can also be found in depression solitary waves, and a
typical example is shown in figure 15(b) with parameters c = −3.03, h = 3 and Ω = 3.
It is remarked that closed streamlines were also computed in weakly nonlinear models
for rotational gravity waves at much lower computational costs (see, for example, the
numerical studies on the Benjamin equation by Segal et al. (2017)). However,richer flow
structures, such as nested cat’s-eyes, can be expected in the fully nonlinear equations and
beneath complicated wave profiles.

In the subsequent analyses, we explore the conditions under which the vertical-transport
layer exists. Since there is no wave in the far field, the shear velocity should coincide with
the wave speed in the horizontal centreline of the vertical-transport layer. It follows that
the existence of vertical-transport zones requires a critical depth hc such that −Ωhc = c.
This condition is twofold: For positive Ω , c should be negative and no vertical-transport
zone exists if c < −Ωh, which provides the two boundaries shown in figure 16, namely
c = 0 and c = −Ωh (dashed lines). On the other hand, for fixed Ω and h, there exists
cmin < 0 such that hydroelastic solitary waves of the wavepacket type can exist only for
c > cmin , which gives another boundary shown as solid lines in figure 16 for different
values of h. In the Ω–c plane for fixed h, these boundaries form a semi-infinite region
where vertical-transport zones exist (namely the right-hand side of the solid/dashed curve
shown in figure 16).

Figures 17–19 show how the vertical-transport layer varies when the parameter set
approaches each boundary for h = 5. Since hc decreases along with the absolute value
of c, the vertical-transport layer moves upwards. It is observed in figure 17(a) that the
layer of right-going trajectories first disappears, and the closer c is to zero, the thinner
the vertical-transport layer becomes (compare figure 17a and 17b). It turns out that the
vertical-transport layer totally vanishes as c becomes zero. Figure 18 compares the flow
structures between two parameter sets sitting on both sides of the dashed line, which
correspond to the black dot and asterisk in the inset of figure 16. As hc increases, the
vertical-transport layer moves towards the bottom (figure 18a) and completely disappears
when hc exceeds the upper bound h (figure 18b). Finally, figure 19 shows the trend of the
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FIGURE 16. Parameter region for the existence of a vertical-transport layer. The boundary of
the region is composed of c = 0, c = −Ωh (dashed line) and cmin (solid line). The regions are
shown in theΩ–c plane for h = 1, 2, 5, and vertical-transport layers exist only on the right-hand
side of the solid/dashed line. Flow structures according to the black dot and asterisk in the inset
are shown in figure 18(a) and (b), respectively.

vertical-transport layer as the amplitude of the solitary wave decreases (or, equivalently, c
approaches cmin). The layer stays in the middle since hc ≈ −Ω/cmin , while the thickness
of the layer narrows as the surface wave decreases from 0.2 to 0.08 in amplitude.
Whether the middle layer will completely disappear depends on the bifurcation mechanism
of hydroelastic solitary waves. More precisely, if the associated nonlinear Schrödinger
equation is of focusing type at cmin , indicating that hydroelastic solitary waves bifurcate
from infinitesimal periodic waves (Gao et al. 2019), then the vertical-transport layer will
vanish as the wave speed reaches cmin , but not vice versa.

5. Concluding remarks

In this paper the Stokes expansion up to third order has been carried out for
flexural–gravity waves with a constant vorticity so that the nonlinearity manifests itself not
only in the generation of higher-order harmonics but also in the correction of translating
speeds. The full Euler equations were solved numerically using a conformal mapping
technique, and travelling wave solutions, including periodic waves, bright solitary waves
and generalised solitary waves, were computed. The Stokes expansion was used to
validate the numerical algorithm by comparing periodic wave profiles, as well as particle
trajectories, and very good agreements were found.

Further numerical calculations for the fully nonlinear equations focused on three topics:
global bifurcation mechanisms of periodic waves, the existence of wave fronts, and flow
structures beneath solitary waves. For upstream periodic waves, we showed that the global
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FIGURE 17. Streamline patterns beneath upstream hydroelastic solitary waves in the moving
frame. Two distinct layers are observed. (a) Flow structure in an elevation wave withΩ = 1, h =
5 and c = −0.37. (b) Flow structure in a depression wave with Ω = 1, h = 5 and c = −0.01.
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FIGURE 18. Streamline patterns beneath upstream hydroelastic solitary waves in the moving
frame. (a) The nested cat’s-eye structure is observed at the bottom with Ω = 0.31, h = 5 and
c = −1.51. (b) Flow structure with Ω = 0.29, h = 5 and c = −1.49.

bifurcation includes a curve joining two infinitesimal periodic waves of different phase
speeds, and a curve starting from an infinitesimal periodic wave and ending with a
stationary state (c = 0). For downstream waves, the key finding of the broadening of the
middle table-top structure of generalised solitary waves strongly suggests the existence
of wave fronts characterised in the far field by a uniform state on one side and a train of
waves on the other. To the best of the authors’ knowledge, it is the first example of wave
fronts discovered in the full Euler equations in single-layer fluid problems. For particle
trajectories beneath solitary waves, in the frame of reference moving with the wave, three
patterns, including pure horizontal transport, net vertical displacement and closed orbit,
are possible due to wave–current interactions. For upstream waves, a nested cat’s-eye
structure of streamlines was observed for both elevation and depression solitary waves.

Our numerical results raise further questions. A natural question is whether or not
there are other global bifurcation mechanisms. On the theoretical side, the global
bifurcation of pure gravity waves with arbitrary vorticity was initially investigated by
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FIGURE 19. Vertical-transport layer beneath upstream depression solitary waves in the moving
frame for h = 5 and Ω = 2, with: (a) η(0) = −0.2, c = −2.6267; and (b) η(0) = −0.08,
c = −2.6361. The zone shrinks as the amplitude of the free surface decreases.

Constantin & Strauss (2004). They showed three bifurcation mechanisms. Apart from two
cases presented in § 3.3, an unbounded bifurcation is also a possibility. Akers et al. (2016)
and Akers et al. (2017) investigated the global bifurcation of interfacial capillary–gravity
waves and interfacial hydroelastic waves, respectively, using analytical and numerical
tools. They provided some numerical evidence for the existence of unbounded bifurcation
curves on which the wave amplitude increases without limit. Therefore, one can ask
whether or not there are unbounded branches of hydroelastic periodic waves propagating
on a linear shear current.

The discovery of wave fronts also introduces questions. Since all the wave-front
solutions were found in downstream waves in the present paper, a first question is if we
can also find wave fronts for upstream waves. With respect to the asymptotic models
for this phenomenon, the fifth-order KdV equation with non-convex dispersion, which
admits TDSWs (Sprenger & Hoefer 2017), is a reduced model for flexural–gravity waves
in the shallow-water regime for potential flows (Xia & Shen 2002). Therefore, it is also
expected to be an appropriate model in the presence of a linear shear current so as to
explain the wave-front phenomenon found in this paper. A comparative study of wave-front
solutions between the asymptotic model and the primitive equations, as well as numerical
simulations of the generalised Riemann problem for the full Euler equations, will be
reported elsewhere in the near future. Another direction of extension related to TDSWs is
to generalise the Whitham modulation equations (see Whitham (1974) for details) to waves
with vorticity. In order to use Whitham’s argument for slowly varying wave trains, the
Lagrangian formulation of the problem is a prerequisite. Therefore, it is of great interest
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to find an explicit Lagrangian density for unsteady water waves with vorticity and extend
Whitham’s ‘averaged variational principle’ to these waves.
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Z.W. would like to thank Dr E. Vărvărucă (University Alexandru Ioan Cuza) for helpful
discussions on matters relating to this article. Z.W. and X.G. were supported by the
National Natural Science Foundation of China (no. 11772341), the Key Research Program
of Frontier Sciences of CAS (no. QYZDBSSW-SYS015), and the Strategic Priority
Research Program of the Chinese Academy of Sciences (no. XDB22040203). They would
also like to acknowledge the support from CAS Center for Excellence in Complex System
Mechanics. J.M.V.-B. was supported in part by EPSRC under grant EP/N018559/1.

Declaration of interests

The authors report no conflict of interest.

REFERENCES

AKERS, B. F., AMBROSE, D. M., POND, K. & WRIGHT, J. D. 2016 Overturned internal capillary–gravity
waves. Eur. J. Mech.-B/Fluids 57, 143–151.

AKERS, B. F., AMBROSE, D. M. & SULON, D. W. 2017 Periodic traveling interfacial hydroelastic waves
with or without mass. Z. Angew. Math. Phys. 68, 141.

BEALE, T. J. 1991 Exact solitary water waves with capillary ripples at infinity. Commun. Pure Appl. Maths
44 (2), 211–257.

BHATTACHARJEE, J. & SAHOO, T. 2009 Interaction of flexural gravity waves with shear current in shallow
water. Ocean Engng 36, 831–841.

BORLUK, H. & KALISCH, H. 2012 Particle dynamics in the KdV approximation. Wave Motion 49,
691–709.

CHAMPNEYS, A. R., VANDEN-BROECK, J.-M. & LORD, G. J. 2002 Do true elevation gravity-capillary
solitary waves exist? A numerical investigation. J. Fluid Mech. 454, 403–417.

CHOI, W. 2009 Nonlinear surface waves interacting with a linear shear current. Maths Comput. Simul. 80
(1), 29–36.

CONSTANTIN, A. 2006 The trajectories of particles in Stokes waves. Invent. Math. 166, 523–35.
CONSTANTIN, A. & STRAUSS, W. 2004 Exact steady periodic water waves with vorticity. Commun. Pure

Appl. Maths 57 (4), 481–527.
CONSTANTIN, A. & STRAUSS, W. 2010 Pressure beneath a Stokes wave. Commun. Pure Appl. Maths 63,

533–557.
CURTIS, C. W., CARTER, J. D. & KALISCH, H. 2018 Particle paths in nonlinear Schrödinger models in

the presence of linear shear currents. J. Fluid Mech. 855, 322–350.
DIAS, F. & VANDEN-BROECK, J.-M. 2003 On internal fronts. J. Fluid Mech. 479, 145–154.
EHRNSTRÖM, M. & VILLARI, G. 2008 Linear water waves with vorticity: rotational features and particle

paths. J. Differ. Equ. 244, 1888–1909.
FOCHESATO, C., DIAS, F. & GRIMSHAW, R. 2005 Generalized solitary waves and fronts in coupled

Korteweg-de Vries systems. Physica D 210, 96–117.
FORBES, L. K. 1986 Surface waves of large amplitude beneath an elastic sheet. Part 1. High-order series

solution. J. Fluid Mech. 169, 409–428.
GAO, T. & VANDEN-BROECK, J.-M. 2014 Numerical studies of two-dimensional hydroelastic periodic

and generalised solitary waves. Phys. Fluids 26 (8), 087101.
GAO, T., WANG, Z. & MILEWSKI, P. A. 2019 Nonlinear hydroelastic waves on a linear shear current at

finite depth. J. Fluid Mech. 876, 55–86.
GAO, T., WANG, Z. & VANDEN-BROECK, J.-M. 2016 New hydroelastic solitary waves in deep water and

their dynamics. J. Fluid Mech. 788, 469–491.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

75
0

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 In

st
itu

te
 o

f M
ec

ha
ni

cs
, C

AS
, o

n 
13

 Ja
n 

20
21

 a
t 0

6:
33

:1
1,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.

https://doi.org/10.1017/jfm.2020.750
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


Flexural–gravity waves with constant vorticity 905 A12-27

GREENHILL, A. G. 1886 Wave motion in hydrodynamics. Am. J. Maths 9 (1), 62–96.
GREENHILL, A. G. 1916 Skating on thin ice. Phil. Mag. 31, 1–22.
GRUE, J. & KOLAAS, J. 2017 Experimental particle paths and drift velocity in steep waves at finite water

depth. J. Fluid Mech. 810, R1.
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