
Aerospace Science and Technology 107 (2020) 106247

Contents lists available at ScienceDirect

Aerospace Science and Technology

www.elsevier.com/locate/aescte

Parameter-correlation study on shock–shock interaction using a 

machine learning method

Peng J. a,b, Luo C.T. a, Han Z.J. a,b, Hu Z.M. a,b,∗, Han G.L. a,b, Jiang Z.L. a,b

a State Key Laboratory of High-temperature Gas Dynamics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
b School of Engineering Science, University of Chinese Academy of Sciences, Beijing 100049, China

a r t i c l e i n f o a b s t r a c t

Article history:
Received 30 June 2020
Received in revised form 8 September 2020
Accepted 26 September 2020
Available online 7 October 2020
Communicated by Cheng Wang

Keywords:
Shock–shock interaction
Machine learning
Hypersonic flow
Impinging jet
Genetic programming
Triple point

To predict the maximum heating load induced by shock–shock interaction more reliably and accurately, 
the geometrical scale of the overall wave configuration of shock–shock interaction is very useful. 
However, it is hard to be solved with traditional shock theory due to its complexity. The results of 
numerical and experimental studies are case-by-case. Concise formulas correlating the geometrical scales 
of shock–shock interaction with the given flow parameters are desired but still unavailable. In the present 
work, a set of correlative formulas for the triple-points’ coordinates of type IVa, IV, and III shock–shock 
interaction are derived by multilevel block building algorithm, a functional machine learning method. The 
key flow structure of shock–shock interaction, i.e., the supersonic impinging jet, can be determined with 
the help of shock theories and the formulas. In addition, the transition criteria respectively for the overall 
wave configuration transitions of type IVa ↔ type IV and type IV ↔ type III shock–shock interaction can 
be obtained by the machine learning based method.

© 2020 Elsevier Masson SAS. All rights reserved.
1. Introduction

Shock-shock interaction (SSI) is a classical phenomenon in hy-
personic flows. It performs complex flow structures and can induce 
a tiny region with extremely high pressure and heating loads when 
type IV shock–shock interaction occurs. It may form a supersonic 
jet impinging directly upon the body surface, where the heating 
load might be ten times larger than that in the area slightly away 
from the impinging point. This would be a great challenge to the 
thermal protection of the vehicle. As for the engineering design, 
a quick way to acquire the magnitude and location of the maxi-
mum heating load is urgently needed. Such an extremum mainly 
depends on the jet impinging location and its width. However, the 
two key factors are hard to get systematically due to the lack of 
theoretical solutions to the overall configuration of the SSI. In this 
paper, we use machine learning to solve this problem.

Shock-shock interaction has attracted a lot of attention since 
the 1950s. Edney [1] is the first one to scientifically investigate 
the SSI between oblique and bow shock waves. He classified the 
shock–shock interactions into six types by the interacting pattern. 
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The overall interaction configurations alternate with the shock in-
tersecting point moving around the circumference of the cylinder. 
Hereinto, the type IV interaction occurs when the slip layers of 
triple points form a thin supersonic jet impinging upon the surface. 
It has been studied largely for the unique supersonic jet flow and 
the extraordinary heating load. Keyes [2] used the oblique shock 
relations and Prandtl–Meyer relations to solve the flow parame-
ters and predict the pressure peak and the heat transfer rate. He 
also pointed out that type III and IV interactions would cause the 
most serious heating load. Holden and Wieting [3,4]experimented 
with the oblique shock wave interacting with the bow shock wave 
over a cylinder. They measured the distribution of heat transfer 
and pressure in the peak heating regions around the cylinder. 
In addition, many numerical studies [5–8] reported the unsteady 
characteristics of the SSI, the interaction of shear-layers within the 
shock-layer, and acoustical feedback between the bow shock and 
the body. Furumoto [9] studied the real-gas effects on the hyper-
sonic shock-wave/boundary-layer interaction and found that type 
IV shock–shock interference heating flows with real-gas effects are 
inherently unsteady. Serge [10] performed an experiment of SSI 
in high Mach number flows and revealed an influence of incom-
ing disturbances on the stagnation line heat transfer. Xiao [11]
studied the SSI on a blunt body with a forward-facing cavity and 
found that the flow could be either quasi-steady or unsteady, de-
pending on the supersonic jet impingement location. Khatta [12]
experimentally investigated the interaction between oblique shock 
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Nomenclature

SSI shock–shock interaction
IS incident oblique shock
BS bow shock
SL shear layer
TS transmitted shock
NS a normal shock
DL deep learning
SR symbolic regression
GP genetic programming
BBP block building programming
MBB multilevel block building algorithm
HLLC Harten–Lax–van Leer contact
Ma Mach number
β the angle of the incident oblique shock
Ir non-dimensional location parameter

P pressure
T temperature
γ specific heat ratio
R radius of the cylinder
Nr number of radial grids
Nϕ number of circumferential grids
L the distance of the upper bow shock to the wall
r the distance of triple point A to the cylinder center

Subscripts

A the triple point A
B the triple point B
∞ the free stream
w the wall
and bow shock of a hemisphere and provided evidence of the un-
steady/non-steady nature inherent to the SSI phenomenon.

However, to the authors’ knowledge, only two reports have es-
timated the shock geometry for the most interesting shock–shock 
interactions, type IV and III. In 2003, Grasso [13] reported that 
the most critical conditions occurred when the supersonic jet was 
nearly perpendicular to the body surface. In the report, he de-
scribed the shape of the detached bow shock in SSI with the 
hyperbola formula given by Billig [14] for a bow shock wave with-
out oblique shock interaction. Then he characterized the criterion 
for the type transition and estimated the aerothermal loads. How-
ever, the SSI would change the detached distance of the bow shock 
greatly, especially when type III and IV occurred. Therefore, such 
a shape assumption of bow shock might be unreliable. In 1997, 
Frame [15] reported a theoretical model to derive the length of 
the transmitted shock and jet geometry by calculating the shape 
of the bow shocks using a continuity methodology. However, too 
many simplifications in this theoretical model might affect its pre-
cision and the applied iterating algorithm is very complex to use 
by others. In the aforementioned studies, the proposed theoreti-
cal methods both have shortcomings. The reason why the shape 
of the detached bow shock of the SSI structure is hard to calcu-
late is that the shape of the bow shock and the location of the 
jet impinging the body surface affect each other. The standoff dis-
tance of the bow shock in an oblique-bow shock–shock interaction 
configuration is different from that of a bow shock alone without 
interaction. It is affected by the two downstream subsonic regions 
separated by the supersonic jet flow. However, the location and 
geometry of the jet also depend on the shock intersecting loca-
tion that is related to the standoff distance of the bow shock. The 
subsonic region can transmit the message upstream from the body 
to the bow shock, which makes the feedback mechanism possible. 
That is the reason why it is hard to estimate the shock geometry.

In recent years, the development of machine learning has made 
a lot of the impossible possible. Machine learning came to the 
forefront when AlphaGo defeated the best human go player. It 
is widely used in many fields, especially successful in image and 
speech recognition. It was also applied in fluid mechanics lately. 
Allison [16] presents a machine learning approach to wind veloc-
ity estimation based on quadcopter state measurements without a 
wind sensor. Yan [17] applied a machine learning technique in the 
aerodynamic shape optimization and significantly decreased the 
required CFD calls by over 62.5%. Yu [18] used machine learning 
to replace the aircraft dynamics simulation and found it could sig-
nificantly improve prediction performances and effectively reduce 
the training costs.
2

In this paper, we performed a lot of numerical simulations to 
get enough flow fields of shock interaction as the training samples. 
Then we chose a proper machine learning algorithm to obtain new 
formulas for shock intersecting points from these training samples. 
After a validation of the formulas we used them to predict the 
jet impinging location. In addition, we got a transition criteria of 
shock interaction types from the training samples with the devel-
oped method.

2. Methods

2.1. Theory analysis of shock–shock interaction

The type IV interaction presents the most complex shock struc-
ture and heating load (Fig. 1 (a)). The incident oblique shock (IS) 
intersects with the upper bow shock (BS1) induced by the cylinder 
at point A producing a shear layer (SL1) and a transmitted shock 
(TS). The intersecting point of the three shock waves is called the 
upper triple point labeled by A. The TS intersects with the lower 
bow shock (BS2) at the lower triple point labeled by B produc-
ing a shear layer (SL2) and a reflected shock that intersects with 
the SL1 at point C. The overall wave configuration of shock–shock 
interaction features two triple points and the supersonic jet flow 
surrounded by two shear layers between the subsonic regions, ④ 
and ⑥. The shock wave (BC) is successively reflected from the 
shear layers SL1 and SL2 resulting in a series of expansion waves 
and compression waves within the jet. At last, the jet hits the 
surface of the cylinder directly and induces a normal shock (NS) 
and a tiny region with high pressure and heating loads along the 
surface. It might occur the shock wave/boundary layer interaction 
[19,20]. The standoff distance of NS in supersonic impinging jet is 
also an unresolved issue. This kind of problem has been studied by 
Lim [21]. The flow field of type IV interaction is primarily divided 
into seven regions which are labeled by numbers from ① to ⑦ as 
schematically depicted in Fig. 1 (a). The flow parameters in the 
aforementioned regions can be theoretically solved by the oblique 
shock relations and Prandtl–Meyer relations when the condition of 
free stream and the shock angle β are known. However, the ac-
tual sizes of the jet and TS remain unknown until the locations of 
triple points A and B are known.

When the oblique shock moves up, the jet will turn up and 
wipe along the surface of the cylinder, which forms type IVa 
shock–shock interaction (Fig. 1 (b)). When the oblique shock 
moves down, the SL1 will hit the surface of the cylinder with-
out jet impingement, which forms type III shock–shock interaction 
(Fig. 1 (c)). For the aforementioned three types of shock–shock 
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Fig. 1. The shock interacting patterns and three key factors.
interactions, there are three normalized factors mainly determin-
ing the shock geometry: the Mach number of the free stream Ma, 
the incident shock angle β , and the location parameter Ir (Fig. 1
(d)). We defined Ir as the ratio of the intercept of the incident 
shock wave on the vertical axis to the cylinder radius R. If Ma
of the freestream flow and the shock angle β are given, the state 
parameters in each flow region as labeled in Fig. 1 (a-c) can be the-
oretically obtained by solving the oblique shock relations. That is 
to say, Ir only affects the shock intersecting location and the scale 
of the overall wave structures rather than the flow state param-
eters. As for the configuration of SSI, when the three key factors 
are given, the coordinates of triple points A and B can be deter-
mined consequently. In this paper, we use the machine learning 
method to figure out the relationship between x coordinates of 
triple points and the three key factors Ma, β , and Ir

xA = f1(Ma, β, Ir), xB = f2(Ma, β, Ir). (1)

According to the fact that triple point A is on the line of IS, we can 
get

yA = tanβ · xA + Ir. (2)

Through the angle of TS acquired by solving the oblique shock 
relations, βTS, we can get

yB = tanβTS · (xB − xA) + yA. (3)

In the same way, we can get the coordinates of point C and 
the angles of SL1 and SL2. As a result, the starting boundary BC 
of the jet flow is known. Considering the deflecting effect of the 
expansion and compression waves, we can predict approximately 
the flow direction of the jet. At last, we can get the jet width and 
its impinging location for type IV interaction.

2.2. Numerical method and grid validation

Machine learning for aerodynamic problems needs sufficient 
data of samples which can be obtained by numerical simulations. 
3

In the present work, the two-dimensional compressible Navier–
Stokes equations are solved using the finite-volume method. The 
numerical flux through each cell face is evaluated using a second-
order TVD (total variation diminishing) scheme based on a non-
linear Riemann solver named HLLC (Harten–Lax–van Leer contact). 
The HLLC scheme can resolve the isolated shock and slip line ex-
actly while remaining positively conservative [22]. The minmod 
limiter is used to suppress spurious oscillations near the disconti-
nuities while high-order accuracy is retained away from the jumps. 
The temporal integration is performed with a second-order point-
implicit scheme. Considering the real-gas effect, the specific heat 
of air is modeled by a fourth-order fitting polynomial about tem-
perature for which the fitting coefficients can be taken from the 
report [23]. This computational code has been used in the previous 
work and validated by Zhang [24] and Lu [25] for the study of hy-
personic flows including the shock–shock interaction problems. In 
addition, because of the low accuracy of spatial discretization and 
poor grid, stochastic error [26] would accumulate with the time 
integration [27]. To get the accurate results, the grid independence 
study should be conducted carefully and will be discussed here-
after.

For the validation of the numerical method and the evaluation 
of grid independence, the experimental data of type IV interac-
tion over a cylindrical test model in the reported work [4] was 
take to compare with the numerical results we performed with 
three different levels of grid. This experiment was always taken 
as the numerical validation case in literatures [5,8,11,25]. The test 
conditions of the case are listed in Table 1 while the details of 
the three grids are exhibited in Table 2. The distributions of mean 
pressure on the circumferential angle of the cylinder ϕ are ob-
tained respectively from the present simulations and the reported 
experiment. They are combined in Fig. 2 (a) while the compari-
son of numerical and experimental heat fluxes is depicted in Fig. 2
(b). The squares denote the experiment data while the curves are 
the numerical results. For the numerical heat flux, it was obtained 
based on the temperature at the middle of first two layers of grid 
close the wall and the wall temperature Tw. Tyurenkova et al. [28]
proposed two methods to compute the heat flux on the wall and 
had made great progress in this field. Considering that the pres-
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Fig. 2. The comparison of the distribution of pressure and heat flux along the cylindrical model surface.
Table 1
The test conditions of the experiment on type IV shock–shock 
interaction [4].

Variables Value

Mach number Ma∞ 8.03
Temperature T∞ , K 111.56
Pressure P∞ , Pa 985.01
Shock angle β , ◦ 18.1114
Wall temperature Tw, K 294.44
Unit Reynolds number, m−1 6.7 × 106

Specific heat ratio γ 1.4
Cylinder radius R, m 0.038

Table 2
The details of three grids.

Grid Nr × Nϕ Surface cell thickness, m Grid stretching ratio

Grid 1 200 × 336 1 × 10−5 1.3
Grid 2 500 × 476 1 × 10−6 1.2
Grid 3 600 × 696 1 × 10−6 1.2

sure and heat flux appear fluctuations with time on the cylindrical 
wall due to the unsteady characteristic of the SSI, we output the 
transient value every 10 computational steps. The transient value 
was varied with the time increase and so do their mean value. But 
over enough time, the mean value would converge to a fixed value 
and we used this fixed value as the mean value. Here, the mean 
pressure and heat flux are respectively normalized by the stagna-
tion pressure P0 and heating flux Q0 at the stagnation point of the 
cylindrical model without oblique shock–shock interaction in the 
same free stream. The Mach number contours obtained by three 
grids are drawn in Fig. 3 for detailed comparison.

Just as mentioned above, the poor grid would make the 
stochastic errors accumulate and the refined grid is really needed. 
In Fig. 2 (a), the pressure distributions of numerical simulations al-
most coincide with the experiment data. In addition, the heat flux 
distributions obtained respectively with grid 2 and grid 3 both ap-
proximately agree with the experiment as can be seen from Fig. 2
(b) while grid 1 fails to capture the peak value. In the present 
study, we focus on the overall wave configuration of SSI. Therefore, 
we compared the locations of triple points A and B respectively 
simulated with three different grids in Fig. 3. We can see the shock 
configurations of different simulations almost overlap each other. 
Considering the failure in capturing peak heat flux of grid 1 and 
the unsteady characteristic of the SSI, we conclude that grid 2 and 
grid 3 are both acceptable for the present study. Since machine 
4

learning requires a large number of samples, we chose grid 2 to 
perform all the numerical simulations in the coming sections.

2.3. Machine learning method

Many machine learning methods have been proposed in the last 
decades. Among them, deep learning (DL) is the most popular one. 
It is very powerful because it has the ability to extract features au-
tomatically. However, the training of DL needs a large amount of 
data, and its target model involves many hidden coefficients. This 
means it is very expensive to get a reliable DL model. Even if the 
DL model is properly identified, its application is still inconvenient 
because it is a gray/black-box type model with a large number of 
coefficients, not to mention its questionable generalizability with 
the limited training set. In fact, every machine learning method 
has its own pros and cons. For our specific task, detecting concise 
formulas (as donated in Section 2.1) that can describe the config-
uration of shock–shock interaction with a limited number of data, 
it is obvious that DL does not work well.

Symbolic regression (SR) is a special machine learning tech-
nique (reinforcement learning). What sets it apart from other 
methods is its free-form expressions. It does not impose prior 
assumptions on the structure of the target model, and let the opti-
mization process search potential formulas such that it best fits the 
training/validation data and be as concise as possible. Compared to 
deep learning, SR requires much less training data and can get con-
cise models with explicit mathematical expressions. This makes SR 
a good candidate for modeling the overall wave configuration of 
shock–shock interaction.

Genetic programming (GP) is the most popular method for 
symbolic regression. The idea behind GP is to apply Darwin’s the-
ory of natural evolution, survival the fittest, to the artificial world 
of computers and modeling. Theoretically, GP can get the best re-
sult provided that the computation time is long enough. However, 
the convergence speed of GP could be very slow for large scale 
problems with a large number of variables. This limited its prac-
tical applications. To improve efficiency, a number of techniques 
have been proposed. State-of-the-art SR methods include block 
building programming (BBP) [29], evolutionary feature synthesis 
[30], multilevel block building (MBB) [31], and multiple regres-
sion genetic programming [32]. Luo et al. [33] has compared their 
performance on hypersonic aerodynamic data modeling, and find 
that MBB performs the best. In MBB, the target model is decom-
posed into several blocks and then into minimal blocks and factors 
(Fig. 4). x1, x2, and x3 are independent variables, ϕ(x) is the ba-
sic function, and f (x) is the target function. The minimal factors 
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Fig. 3. Numerical contours of Mach number obtained with three grids.

Fig. 4. Illustration of MBB [31].
are relatively much easier to determine for most conventional GP 
or other non-evolutionary algorithms. Thus, MBB is more effec-
tive and efficient. Therefore, MBB is selected as the data modeling 
method in this study.

3. Numerical and machine learning results

3.1. The numerical results and the correlation

Series simulations of shock–shock interactions are conducted to 
get adequate sample data. The conditions of these cases are listed 
in Table 3. We choose the atmospheric parameters, e.g., the static 
pressure and temperature, at an altitude of 30 km as the free 
5

stream flow conditions. In addition, the range of the Mach num-
ber covers the hypersonic flight regime, i.e., M6∼10. The shock 
angle β and the location parameter Ir is also chosen in a suitable 
range for the type IV, IVa, and III interactions.

Totally, we conduct simulations of 5 × 9 × 5 = 225 cases and 
record the coordinates of the triple points A and B (xA, yA, xB, yB) 
and the interaction types for each case. The simulation results in-
dicate that the unsteady characteristic of the SSI concentrates on 
the free part of the supersonic jet flow which is surround by two 
shear layers and does not influence the triple point location dis-
tinctly. So, uncertainties induced by the unsteady behavior of the 
SSI to the present method are negligible. The data structure of the 
output is shown in Table 4 where ten cases out of 225 are listed 
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Table 3
Cases of numerical simulation.

Variables Value

Pressure, P/Pa 428
Temperature, T/K 200
Mach number, Ma 6, 7, 8, 9, 10
Shock angle, β/◦ 15, 16, 17, 18, 19, 20, 21, 22, 23
Location parameter, Ir 0.3, 0.4, 0.5, 0.6, 0.7

Table 4
Data structure of the output of numerical simulations: coordinates of triple points 
and the interaction types.

Ir Ma β/◦ xA yA xB yB Type

. . . . . . . . . . . . . . . . . . . . . . . .

0.7 6 19 −1.8160 0.0881 −1.5547 −0.0772 IVa
0.6 6 19 −1.7832 −0.0019 −1.5048 −0.1793 IVa
0.5 6 19 −1.7297 −0.0845 −1.4392 −0.2754 IVa
0.4 6 19 −1.7346 −0.1866 −1.2131 −0.5270 IV
0.3 6 19 −1.7528 −0.2973 −1.0404 −0.7385 III
0.7 6 20 −1.8579 0.0347 −1.5500 −0.1407 IVa
0.6 6 20 −1.8151 −0.0510 −1.4991 −0.2344 IVa
0.5 6 20 −1.7682 −0.1340 −1.4214 −0.3442 IV
0.4 6 20 −1.7749 −0.2371 −1.1844 −0.6093 IV
0.3 6 20 −1.7936 −0.3455 −0.9863 −0.8061 III
. . . . . . . . . . . . . . . . . . . . . . . .

as examples. For concision, the output data for all the 225 com-
puted cases are not given here. The coordinates in the table are 
normalized by the radius of the cylinder. In the record, most are 
type IV interaction and the rest are type IVa or III. When the Mach 
number and shock angle are constant, as shown in Fig. 5, with 
the decrease of Ir, the interaction type changes from IVa to IV and 
then to III successively. Furthermore, as described in Section 2.1, 
the flow state parameters such as the static pressure, the local flow 
Mach number, and the flow direction in each flow region as la-
beled in Fig. 1 are determined respectively if the shock angle and 
the Mach number of the freestream flow are given. Therefore, all 
the five transmitted shock waves, as labeled by TS or line segment 
AB in Fig. 1, parallel to each other in each frame of Fig. 5. So do 
all the reflected shock waves as labeled by BC and all the slip lay-
ers as labeled by SL1 or AC in each frame. We can see that the five 
triangles consisted of points A, B, and C as depicted in Fig. 5 (a) 
or (b) are similar to each other. At the same time, in Fig. 5 (a), the 
upper triple points of three type IVa interactions (Ir = 0.5, 0.6, 0.7) 
seem to be approximately in a straight line and those of the two 
type IV interactions (Ir = 0.3, 0.4) are in a different straight line. 
It can also be seen in Fig. 5 (b) that the upper triple point of the 
type III interaction (Ir = 0.3) seems to diverge from the approxi-
mately straight line including the upper triple points of the other 
four cases which are type IV interactions. Therefore, the relation-
ship functions between the coordinates of the upper triple point A 
and Ir should be different for different interaction types, i.e., IVa, 
IV, and III, respectively. As the boundaries among the three interac-
tion types cannot be determined and input to the machine learning 
process, combining three different functions into one will bring a 
challenge to the machine learning part. It seems that separating 
the data by the interaction type and getting the different formulas 
for the different interaction type might be a good idea. However, 
considering the application of these formulas, we always do not 
know the interaction type beforehand as only the three key factors 
Ma, β and Ir are given. It is difficult for us to choose which for-
mula to use. Therefore, we think that general formulas would be 
better from the applying perspective.

With the output data of numerical simulations, a preliminary 
try of machine learning using block building programming (BBP) 
[29], a former version of the MBB algorithm, fails to work out the 
6

relationship functions of the triple-points coordinates with respect 
to the three key factors. Then the latest version of MBB algo-
rithm [31] can learn the data and achieve a number of meaningful 
explicit formulas for xA and xB as listed in Tables 5 and 6, respec-
tively.

A series of formulas for xA and xB were obtained by MBB ma-
chine learning algorithm with the corresponding coefficient of de-
termination R2. Here, R2 is referred to as the goodness of fit and 
represented as a value between 0.0 and 1.0. A value of 1.0 indicates 
a perfect fit and the highest reliability of the correlation model. 
The output formulas for xA and xB with the top three R2 are given 
in Tables 5 and 6, respectively. The formula in the first line of each 
table is rewritten as

xA = −0.692693 + 5.01495Ir2 − 0.819079Ir2
√

Ma

− 0.235192
√

β − 0.732974Ir2
√

β,
(4)

xB = −0.111626 − 2.37697
√

Ir + 0.244051Ma

− 0.2628Ma cos Ir + 0.00110349β2 cos Ir.
(5)

Using Eqs. (2) and (3) in Section 2.1 respectively, we can get the 
other coordinates of triple points A and B, i.e., yA and yB.

3.2. Precision evaluation

The precision of the formulas worked out in Section 3.1 by us-
ing the MBB machine learning algorithm needs to be evaluated. 
Preliminarily, we can compare the locations of the triple points A 
and B respectively drew according to the formulas with the nu-
merical results. The machine learning outputs and the numerical 
results are combined in Fig. 6 for a direct comparison. In each 
frame of the figure, the purple curves represent the machine learn-
ing outputs for the upper and the lower triple points which vary 
with Ir when Ma and β are fixed. The overall wave configura-
tions obtained by numerical simulations are depicted according to 
the Mach number contours of cases with different Ir. It can be 
seen that the consistency is acceptable except that the deviation 
of the triple point A of case Ir = 0.4 (red) in Fig. 6 (a) is relatively 
large. The reason for such a deviation is that the interaction pat-
tern is within the transitional region between type IV and type III. 
As mentioned in Section 3.1, the relationship functions between 
the coordinates of triple point A with Ir are different for differ-
ent interaction types. Therefore, the deviation in the vicinity of the 
transitional region is a reflection of the underlying physics. Obvi-
ously, this multilevel block building algorithm can only output the 
continuous formulas and it is hard to avoid a little deviation within 
the transitional parameter region of the interaction types.

With the computational outputs of 225 cases and the machine 
learning formulas, a statistical analysis of the formula error is per-
formed and listed in Table 7. As donated in Fig. 7 (a), r means 
the distance of triple point A to the cylinder center while L is 
the standoff distance of the upper bow shock, i.e., L = xA-R . The 
operator δ indicates the difference between the two variables re-
spectively obtained from the machine learning formula and the 
numerical simulation. In the table, the relative error of the stand-
off distance of the upper bow shock δL/L is the largest and we 
used it to estimate the precision of the machine learning formula. 
Its maximum error is 13.16% while the average error is 2.72%. The 
error distribution is given in Fig. 7 (b) by a sector diagram. For-
tunately, we can find that over 80 percent of cases have relative 
errors lower than 5%. On the other hand, only 2 percent of cases 
have relative errors larger than 10% which most likely fall in the 
transition parameter space of shock–shock interactions. Consider-
ing the unsteady nature of the shock–shock interactions, we can 
conclude that the precision of the machine learning formula is ac-
ceptable.
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Fig. 5. The overall wave structures with different Ir.

Table 5
Formulas for xA achieved by MBB machine learning.

Order Formulas xA = R2

1 −0.692693 + 5.01495Ir2 − 0.819079Ir2
√

Ma − 0.235192
√

β − 0.732974Ir2√
β 0.9569

2 −1.84972 + 4.37143Ir + 0.0306653Ma − 0.141673IrMa − 0.855294Ir
√

β 0.9547

3 7.18154 − 0.145304Ir2Ma − 0.243041
√

β − 0.703906Ir2√
β − 7.86041 cos Ir 0.9544

. . . . . . . . .

Table 6
Formulas for xB achieved by MBB machine learning.

Order Formulas xB = R2

1 −0.111626 − 2.37697
√

Ir + 0.244051Ma − 0.2628Ma cos Ir + 0.00110349β2 cos Ir 0.9447

2 −0.514993 − 2.75902Ir + 1.2891
√

Ma + 0.000949431β2 − 1.38203
√

Ma cos Ir 0.9367

3 0.301781 − 0.477088
√

Ma + 0.884133Ir
√

Ma + 0.0003355
√

Maβ2 − 3.89177 sin Ir 0.9347

. . . . . . . . .

Fig. 6. The Mach number contours and the track of triple points with different Ir.
7



J. Peng, C.T. Luo, Z.J. Han et al. Aerospace Science and Technology 107 (2020) 106247

Fig. 7. The donation of L and r and the distribution of the relative error, δL/L.
Table 7
The statistical data for all cases.

δxA (δL) δyA δr δr/r δL/L

maximum 0.0788 0.0386 0.0805 0.0487 0.1316
minimum 0.0000 0.0000 0.0031 0.0017 0.0000
average 0.0222 0.0108 0.0259 0.0141 0.0272

Table 8
The parameter range of interpolative cases.

Variables Value

Mach number, Ma 6.5, 7.5, 8.5, 9.5
Shock angle, β/◦ 16.5, 19.5, 22.5
Location parameter, Ir 0.35, 0.45, 0.55, 0.65

Table 9
Error analysis using interpolative cases.

δxA (δL) δyA δr δr/r δL/L

maximum 0.1054 0.0312 0.1099 0.0511 0.0915
minimum 0.0003 0.0007 0.0015 0.0007 0.0004
average 0.0187 0.0089 0.0214 0.0113 0.0211

Table 10
The parameter range of extrapolative cases.

Variables Value

Mach number, Ma 5, 11, 12
Shock angle, β/◦ 15, 20
Location parameter, Ir 0.3, 0.5

The aforementioned error analysis is based on the numerical 
data which are the machine learning samples in the meantime. 
The formula precision should be further evaluated by additional 
cases that are different from the samples already used. Therefore, 
further simulations containing 4 × 3 × 4 = 48 cases as given in 
Table 8 by interpolating from the parameter space of the samples 
are conducted and the statistical error analysis using the output 
data of these cases is summarized in Table 9.

The maximum relative error of the bow shock standoff distance 
δL/L is 9.15% while the average error is 2.11%. It indicates that the 
machine learning formula of the triple point location is reasonable 
and reliable in the coverage of the samples.

Further simulations of 3 × 2 × 2 = 12 cases where the param-
eters as listed in Table 10 go beyond the sample space are con-
ducted to evaluate the extrapolation capability of machine learning 
formulas. The obtained maximum value of δL/L is 7.93% and the 
average is 3.43% as summarized in Table 11. Such an evaluation 
indicates that the formulas obtained by MBB machine learning al-
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Table 11
Error analysis using extrapolative cases.

δxA (δL) δyA δr δr/r δL/L

maximum 0.0801 0.0224 0.0817 0.0389 0.0793
minimum 0.0006 0.0001 0.0049 0.0028 0.0008
average 0.0277 0.0107 0.0320 0.0176 0.0343

gorithm are applicable and reliable with a certain extrapolation 
capability within the hypersonic regime.

3.3. Prediction of the impinging location and the width of the jet flow

The complex and unsteady characteristics of SSI give rise to 
great challenges in the design of hypersonic vehicles especially 
when aerodynamic heating is concerned. For the practical need 
during the initial phase of engineering design, the jet impinging 
location and the scale of the impinging spot are the key factors for 
the quick estimation of the maximum heating load and its loca-
tion. The formulas obtained by MBB machine learning algorithm in 
the present work can be helpful and useful in solving such prob-
lems.

The formulas obtained by MBB can determine the locations of 
the triple points A and B. As analyzed in Section 2.1, with the 
inclinations of SL1 and the reflecting shock (BC) which can be the-
oretically calculated by the oblique shock theory, the intersecting 
location (point C) of the shear layer and reflect shock can be fur-
ther solved. In addition, the expansion wave emitting from point 
C and the successive reflected waves between the shear layers can 
be solved by the Prandtl–Mayer relation. Therefore, we have the 
coordinates of points A, B, and C and the inclinations of SL1 and 
SL2. The intersecting points of SL1 and SL2 with the cylinder sur-
face identify the jet impinging location while the distance between 
the two points approximately defines the scale of jet impinging 
spot. The overall shock–shock interaction configuration solved by 
the MBB machine learning algorithm and the numerical results are 
combined in Fig. 8 for a direct comparison.

From Fig. 8, we can see that the machine learning method can 
predict the shock intersecting locations and the starting part of 
the jet for three types of shock–shock interactions with accept-
able precisions. Fig. 8 (a) describes a type IV interaction in which 
the jet flow hits the wall perpendicularly. The predicted imping-
ing location and width of the jet are both in agreement with the 
numerical results. In Fig. 8 (b), it is type IVa interaction in which 
the jet flow turns upward along the cylinder surface. As can be 
seen in the numerical contours, the unsteady interaction between 
the shear layer and the boundary layer makes the jet bend. Such 
a phenomenon is not taken into account in the machine learning 
and theoretical analysis, and thus the deviation in predicting SL2 
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Fig. 8. The prediction of the jet configuration.

Fig. 9. The 3D distribution of the interaction types in the space of (Ma, β , and Ir).
in a type IVa interaction is reasonable. In Fig. 8 (c), it is a type 
III interaction in which the shear layer impinges on the surface. In 
summary, the machine learning method can predict the impinging 
location and jet width for type IV and III interactions with accept-
able precisions. However, due to the unsteady interaction between 
the jet and the body surface, a slight deviation appears in the type 
IVa interaction.

3.4. The transition criteria

The shock–shock interaction type of each computed case is 
given in Table 4. Combining the interaction types and their cor-
responding input parameter, i.e., Ma, β , and Ir, we may construct 
a 3D distribution of the interaction type in the three-dimensional 
(3D) space of (Ma, β , Ir) as depicted in Fig. 9. Here, the occupied 
space of type IVa, IV, and III interactions are represented by red, 
green, and blue respectively. It can be seen that the distribution 
space is divided into 3 parts by two 3D surfaces corresponding to 
the two transition criteria of IVa ↔ IV and IV ↔ III. For the data 
shown in Fig. 9 that are discrete points, we used the interpolation 
of boundary points to get the center surfaces of these two bound-
aries as the transitional criteria. The two surfaces of transitional 
criteria are shown in Fig. 10, which appear irregular and strong 
three-dimensional. With the MBB machine learning algorithm, we 
learned the approximate equations of the two transitional surfaces 
based on their coordinates. They can be respectively expressed as

sin

([
Ma − β

β

]2)
− Ir = 0 (6)

cos
(
sin(

√
Ma + β)

) − Ir = 0. (7)
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Fig. 11 shows the transition criteria obtained by MBB machine 
learning algorithm. The red surface corresponds to Eq. (6) repre-
senting type IV ↔ III transition criterion while the blue surface 
defined by Eq. (7) is for type IVa ↔ IV transition criterion. When 
the three key factors Ir, Ma and β are given, according the Eq. (6)
and Eq. (7), the space where the coordinate (Ir, Ma, β) is located 
can be known. Then we can know which interaction type would 
occur. We can see from Fig. 11 that the two surfaces are approx-
imately perpendicular to the Ir-axis, which means the transition 
criteria of interaction type are much more sensitive to the factor 
Ir than the other two. Moreover, the room between the two sur-
faces gets bigger with the increase of the Ma. That is to say, type 
IV interaction is more likely to appear at higher Mach numbers.

3.5. Conclusions

The overall wave configuration of a shock–shock interaction is 
hard to be theoretically solved through traditional shock theories 
due to its complexity. Such a solution, if available, is useful for the 
prediction of aerodynamic heating load during the initial design 
phase of a hypersonic vehicle. A machine learning algorithm, i.e., 
multilevel block building algorithm, is introduced into the present 
work to correlate the overall shock–shock interaction configura-
tion with given flow parameters, such as Ma, β , and Ir. Here, the 
freestream flow Mach number Ma, the incident shock angle β of 
the oblique shock wave, and the geometric parameter Ir domi-
nate the wave configuration of the shock–shock interaction, which 
was studied in the present work. The samples needed for machine 
learning are obtained by numerical simulations of 225 cases in the 
parameter space of (Ma, β , Ir). Based on the numerical samples, 
the multilevel block building algorithm is used to learn the formu-
las of the triple-points’ coordinates which define the overall wave 
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Fig. 10. The two 3D surfaces of the transition criteria.

Fig. 11. The two faces of transition criteria obtained by MBB.
configuration of a shock–shock interaction. The formulas are fur-
ther validated by using 48 numerical cases interpolated inside the 
sample parameter space and 12 cases extrapolated, respectively. 
The validation of the aforementioned formulas indicates perfect 
applicability and extrapolation capability for the shock–shock in-
teractions in the present work.

With the coordinates of the triple points which are solved by 
multilevel block building algorithm and the flow parameters which 
can be solved by shock theories, the location of the jet impinging 
spot on the surface and its scale can be predicted. These two pa-
rameters obtained by the aforementioned machine learning based 
method are useful for the estimation of the peak value of heat 
flux induced by jet impingement. Tests indicate that the afore-
mentioned machine learning based method works well for type IV 
interactions with perfect precision. On the other hand, due to the 
interaction of shear layers with the boundary layer along the sur-
face, the deviation is relatively large for the type IVa interaction. 
However, the precision of this method for this type of interaction 
is still acceptable. Based on the numerical samples, what’s more, 
the machine learning algorithm can achieve the approximate tran-
sition criteria in the parameter space of (Ma, β , Ir) respectively 
for type IVa ↔ IV transition and type IV ↔ III transition. The re-
sult indicates that the transition criteria are much more sensitive 
to the parameter Ir than the other two and type IV interaction is 
more likely to appear at higher freestream flow Mach numbers.

The application of the multilevel block building algorithm in 
predicting the triple-points’ coordinates of a shock–shock interac-
tion indicates that the introduction of the machine learning into 
the traditional shock dynamics may bring new ideas and new 
methods to solve complex shock dynamic problems.
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