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ABSTRACT
With simplified interactions and degrees of freedom, coarse-grained (CG) simulations have been successfully applied to study the transla-
tional and rotational diffusion of proteins in solution. However, in order to reach larger lengths and longer timescales, many CG simulations
employ an oversimplified model for proteins or an implicit-solvent model in which the hydrodynamic interactions are ignored, and thus, the
real kinetics are more or less unfaithful. In this work, we develop a CG model based on the dissipative particle dynamics (DPD) that can be uni-
versally applied to different types of proteins. The proteins are modeled as a group of rigid DPD beads without conformational changes. The
fluids (including solvent and ions) are also modeled as DPD beads. The electrostatic interactions between charged species are explicitly consid-
ered by including charge distributions on DPD particles. Moreover, a surface friction between the protein and fluid beads is applied to control
the slip boundary condition. With this model, we investigate the self-diffusion of a single globular protein in bulk solution. The translational
and rotational diffusion coefficients of the protein can be tuned by the surface frictional constant to fit the predictions of the Stokes–Einstein
(SE) relation. We find that both translational and rotational diffusion coefficients that meet with the prediction of the SE relation based
on experimental results of the hydrodynamic radius are reached at almost the same frictional constant for different types of proteins. Such
scaling behavior indicates that the model can be applied to simulate the translational and rotational diffusion together for various types of
proteins.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0025620., s

I. INTRODUCTION

The diffusion of proteins in solution is a type of thermal
motion that governs various phenomena such as adsorption at
the interface,1–6 molecular recognition,7–9 phoretic motion,10–12

and transport in nano-confined systems.13–22 When there is no
chemical potential gradient, the process reduces to the self-
diffusion of the protein, including the random redistribution
(i.e., translational diffusion) and the random reorientation (i.e., rota-
tional diffusion) in space. Accurate determination of the transla-
tional16,22–24 and rotational21,25–31 dynamics provides the basis for

the characterization of individual proteins and their complexes
and for the understanding of the transport of proteins in a non-
equilibrium system.

Experimentally, the translational and rotational dynamics of
proteins can be determined by fluorescence spectroscopy,32–34

nanopore sensing,7–9 nuclear magnetic resonance (NMR) relax-
ation,27,35,36 etc. However, the experimental results of the diffusion
coefficients for certain types of protein usually vary across litera-
ture studies, due in part to the difference in measuring conditions
(e.g., temperature, protein concentration, viscosity of the solvent,
and pH). For better understanding of the large variance of the
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experimental data and for the prediction of transport in more com-
plex media, we also entail numerical tools to determine the dif-
fusion coefficients of proteins. The simulated results are sensitive
to the choice of the model for the protein solution and the cor-
responding force field. For instance, based on the colloidal model,
the protein is deemed a single bead that ignores all internal struc-
tures.37 Such an approach is efficient in simulating the collective
diffusion in macromolecular crowding but too coarse-grained to
characterize the self-diffusion of a single protein in solution. All-
atom molecular dynamics27–29 is more suited for the determina-
tion of the local dynamics (including the redistribution and reori-
entation of all sub-domains), but it is computationally expensive
and normally limited in the regime of a small simulation box.
A more appropriate approach is to simulate the protein solu-
tion with a well-designed model at a certain degree of coarse-
graining.37,38

There have been reported some well-established methods
for simulating proteins in solution with coarse-grained molecu-
lar dynamics38–41 (CGMD). Yet, it is somehow difficult in CGMD
simulations to properly address hydrodynamic interactions as it
ignores the degrees of freedom that are responsible for dissipation.
The hydrodynamic interactions between coarse-grained particles are
introduced in forms of pairwise-additive approximation for Brown-
ian dynamics14,17,18 (BD). This technique can be applied to deter-
mining the equilibrium states but is not ideally suitable for problems
emphasizing specific transient behaviors or detailed hydrodynamic
interactions.

By contrast, dissipative particle dynamics (DPD) is developed
for simulating the hydrodynamic behavior of fluids and soft matter
by explicitly accounting for the drag and random forces between soft
coarse-grained beads.42–45 DPD provides an accurate bridge from
the atomic to the hydrodynamic scale by enabling various levels of
graining with simple algorithms, which serves as a practical choice
for the determination of the thermodynamic and kinetic proper-
ties of proteins in solution.34,46–50 For instance, models with the
backbone and side-chains are invented for DPD simulations46–48

based on the bottom-up approach to mimic the conformational
transformations of proteins. Simulations of the aggregation and self-
assembly of proteins at higher concentrations are carried out with
more coarse-grained models, with inter-particle potentials tuned
by experimental results.34,49 To our knowledge, however, there is a
lack of DPD simulations on the self-diffusion or transport of glob-
ular proteins. We still need a versatile coarse-grained method for
simulations with accurate electrostatics between charged species,
and proper slip-boundary conditions between the protein and the
fluid.

We, therefore, in this work introduce a DPD model with
explicit electrostatic interactions51,52 and tunable surface frictions53

to simulate the diffusion of globular proteins. The results show that
the method is effective to characterize both the translational and
rotational diffusion coefficients with the same DPD parameters for
different types of proteins. In the remainder of this paper, we first
introduce the model and the simulation methods and then pro-
ceed to analyze the results of the simulations. Taking lysozyme as
an example, we are, in particular, interested in the dependence of
its diffusion coefficients on the system size and the slip-boundary
condition. Comparisons with other globular proteins are then
presented.

II. SIMULATION METHOD
A. Model

We perform DPD simulations of the protein solution in a cubic
box. As shown in Fig. 1(a), the fluids, including water (w), cation
(c), and anion (a), are modeled as DPD beads. We set the coarse-
graining degree ξ = 4, with one fluid bead representing either four
water molecules (for a w bead) or three water molecules plus one
cation/anion (for a c or a bead). The mass of the water bead mw,
the cutoff radius of the water bead rw, the temperature of the sys-
tem T, the corresponding energy kBT (with kB being the Boltzmann
constant), and the unit charge qe are chosen as the reduced units,
which correspond to mw = 1.2 × 10−25 kg, rw = 0.71 nm, T = 298 K,
kBT = 4.1 × 10−21 J, and qe = 1.6 × 10−19 C in real units. The full
list of reduced and real units is presented in Table I. Unless speci-
fied, reduced units will be used in the remainder of this paper. The
protein is modeled as a group of rigid DPD beads (p) neglecting con-
formational changes, with each bead representing one amino acid
(see the supplementary material for more details). The beads can be
either the mono-sized model (MSM) or the poly-sized model (PSM),
as shown in Fig. 1(b). For the MSM, all protein beads are of the same
cutoff radius rc = 1.0 and mass m = M/Np, where M and Np, respec-
tively, denote the total mass and the number of amino acids of the
protein. For the PSM, the radius and mass of the beads depend on
the type of amino acid (see the supplementary material for more
details). The charge of the bead equals the sum of all atomic charges
of the corresponding amino acid, and the net charge of the protein
equals the sum of all charges of beads. See Table II for the full list of
properties for different types of beads.

All fluid beads (i.e., w, c, and a) interact with each other via
DPD interactions including a conservative force FC

ij , a dissipative
force FD

ij , and a random force FR
ij given by

FC
ij = Aij(1 − rij/rc)eij, for rij < rc;

FD
ij = −γij(1 − rij/rc)2(eij ⋅ vij)eij, for rij < rc;

FR
ij =
√

2kBTγij(1 − rij/rc)θij(δt)−1/2eij, for rij < rc,
(1)

FIG. 1. (a) Simulation box of the globular protein submerged in the fluid consisting
of solvent (cyan), cation (yellow), and anion (red) beads. (b) All-atomic protein
is represented by either the mono-sized model (MSM) or the poly-sized model
(PSM).
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TABLE I. Comparisons of quantities measured in reduced and real units.

Quantities In reduced unit In real unit

rw 1.0 0.71 nm
mw 1.0 1.2 × 10−25 kg
T 1.0 298 K
kBT 1.0 4.1 × 10−21 J
qe 1.0 1.6 × 10−19 C
ρ 3.0 997 kg/m3

δt 0.002 8 fs
Γ 12.65 3.7 × 10−29 J ⋅m
η 20.34 0.89 mPa ⋅ s
μ 6.78 8.9 × 10−7 m2/s

where rij is the center-to-center distance between beads i and j,
eij = rij/rij is the unit vector, Aij is the maximum repulsion, γij is the
dissipative constant, vij is the vector difference in velocities between
the two beads, θij is a Gaussian white noise variable with θij = θji,
and δt is the simulation time step. All these three forces vanish when
rij ≥ rc. To match the compressibility and viscosity of water, we set
Aij = 104 and γij = 630 between fluid beads (see the supplementary
material).

Note that Eq. (1) cannot be applied to interactions between
fluid and protein beads, since it overestimates both the translational
and rotational diffusion coefficients of the protein without well-
controlled slip velocity at the interface (see the supplementary mate-
rial for more details). To solve this, we employ forces for tunable-slip
DPD (TDPD) to describe interactions between protein beads (p) and
fluid beads, including a conservative force FC

ij , a frictional force FF
ij ,

and a random force FR
ij with the latter two depending on the relative

velocity between protein and fluid beads, which are given by

FC
ij = Aij(1 − rij/rc)eij, for rij < rc;

FF
ij = −νij(1 − rij/rc)vij, for rij < rc;

FR
ij =
√

2kBTνij(1 − rij/rc)θij(δt)−1/2vij/vij, for rij < rc,
(2)

with νij being the frictional constant. In this work, νij is varied to
test the effect of the frictional force on the diffusion coefficient.
Parameters for the conservative force (i.e., Aij and rc) between the
protein and the fluid are derived and scaled from the less coarse-
grained DPD model.48 See Table III for the full list of interaction
parameters used in this paper (unless otherwise specified) and the
supplementary material for more discussions.

The electrostatic interaction between charged beads
(i.e., p, c, and a) is described by the smeared-charge Coulombic
potential (SCC), which is written as

Ucol
ij (rij) =

Γzizj
4πrij
[1 − (1 + rij/λ)e−2 rij/λ], (3)

where Γ = q2
e/(ε0εw) = 12.65 is the permittivity coupling param-

eter (with ε0 being the dielectric constant for the vacuum and
εw = 78.3 being the relative permittivity of water). zi and zj are the
valence of beads i and j, respectively. λ denotes the effective smear-
ing length that is determined by the charge density distribution as
ρ(r) = (q/πλ3) exp(−2r/λ), where the charge of the bead q = zqe. A
cutoff rcolc = 3.5 is used for Ucol

ij , while long-range Coulombic inter-
actions including contribution from periodic images are computed
with the particle–particle particle–mesh (PPPM) method. For the
ionic beads, we have q = 1.0 for cations and q = −1.0 for anions.

B. Simulation details
We simulate the submerged protein in an L × L × L cubic box

with periodic boundary conditions implemented in all three dimen-
sions. A total number of N f fluid beads (w, c, and a) are maintained
at the fixed density ρ = 3.0 (or 997 kg/m3 in real units) and tempera-
ture T = 1.0 in the NVT ensemble. Counter-ions are added to ensure
the whole system is neutral. All simulations are carried out by using
the parallel software package LAMMPS.54 The velocity-Verlet algo-
rithm with a time step of δt = 0.002 is used to integrate the equations
of motion.

All initial configurations are prepared as follows. First, all water
beads are uniformly distributed on a FCC crystal lattice, and the pro-
tein (consisting of Np beads) is placed at the center of the simulation

TABLE II. Comparisons of different types of DPD beads.

Bead type Mass Charge Corresponding molecules or amino acids

w 1.0 0.0 Four water molecules
c 1.0 1.0 Three water molecules + one cation
a 1.0 −1.0 Three water molecules + one anion

MSM
ph M/Np −1.0−1.0 ASP GLU ASN PRO GLN SER THR LYS ARG
pm M/Np 0.0 ALA GLY CYS HIS TYR
pt M/Np 0.0 ILE LEU VAL PHE MET TRP

PSM

phs mhs −1.0−1.0 ASP ASN PRO SER THR
phl mhl −1.0−1.0 LYS ARG GLU GLN
pms mms 0.0 ALA GLY CYS
pml mml 0.0 HIS TYR
pts mts 0.0 ILE LEU VAL
ptl mtl 0.0 PHE MET TRP

J. Chem. Phys. 153, 234902 (2020); doi: 10.1063/5.0025620 153, 234902-3

Published under license by AIP Publishing

https://scitation.org/journal/jcp
https://www.scitation.org/doi/suppl/10.1063/5.0025620
https://www.scitation.org/doi/suppl/10.1063/5.0025620
https://www.scitation.org/doi/suppl/10.1063/5.0025620
https://www.scitation.org/doi/suppl/10.1063/5.0025620
https://www.scitation.org/doi/suppl/10.1063/5.0025620


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

TABLE III. Parameters for DPD, TDPD, and SCC interactions between different types
of beads (unless otherwise specified).

DPD for fluids Aij γij rc

w/c/a − w/c/a 104 630 1.0

TDPD for the MSM Aij νij rc

w/c/a − ph 104 0–200 1.0
w/c/a − pm 111 0–200 1.0
w/c/a − pt 127 0–200 1.0

TDPD for the PSM Aij νij rc

w/c/a − phs 104(rw/rhsc ) 0–200 rhsc
w/c/a − phl 104(rw/rhlc ) 0–200 rhlc
w/c/a − pms 111(rw/rms

c ) 0–200 rms
c

w/c/a − pml 111(rw/rml
c ) 0–200 rml

c
w/c/a − pts 127(rw/rtsc ) 0–200 rtsc
w/c/a − ptl 127(rw/rtlc ) 0–200 rtlc

SCC Γ λ rcolc

c/a/p − c/a/p 12.65 0.25 3.5

box. To keep ρ = 3.0 constant in bulk, water beads are randomly
added or deleted in the next 4 × 106 simulation steps. ∣Qp/qe∣ water
beads are randomly chosen and replaced by cation or anion beads
to neutralize the system, where Qp is the net charge of the protein.
Subsequently, a long run (at least 2 × 107 steps) is performed to
obtain the diffusion coefficients, which are determined by averag-
ing at least five independent runs. The trajectories are collected over
4 × 103 configurations separated by 5 × 103 simulation steps. We
note that this coarse-grained system has a particle number at least
one order of magnitude smaller than that of the all-atomic model,
see Table IV.

The translational diffusion coefficient Dt of the protein is mea-
sured from the mean squared displacement (MSD) of the center of
mass (COM), which is written as

Dt = lim
t→∞

1
6t
⟨(r(t) − r(0))2⟩, (4)

where r(t) denotes the COM position of the protein at time t. Since
the long-wavelength hydrodynamic modes are affected by the peri-
odic images, the magnitude of Dt measured from Eq. (4) should
increase with the box size. By summing over all periodic images
of the Oseen tensor,16,24 theoretically, the translational diffusion
coefficient in bulk D∞t (with the non-slip boundary condition) is
predicted as

D∞t = Dt(L) +
2.837kBT

6πηL
, (5)

where η represents the shear viscosity of the solvent.

TABLE IV. Comparison of simulation sizes for DPD and all-atom simulations. Rh and
L, respectively, denote the experimental hydrodynamic radius of the protein and the
side length of the simulation box (in units of rw ). Np and Nf , respectively, denote the
number of DPD beads for the protein and fluid. Naa

p and Naa
f are the corresponding

number of atoms in all-atom simulations. The values of Nf and Naa
f are for systems

with lysozyme.

Protein beads (p)

Protein type PDB code Rh [rw] Np Naa
p

Ubiquitin 1ubq 2.10–2.2116,22,55 76 602
Lysozyme 253l 2.63–2.8956–58 164 1306
β-Lactoglobulin 1beb 3.80–4.2259,60 312 2981
Streptavidin 4jo6 3.97–4.547,16 531 3984

Fluid beads (w/c/a)

L [rw] N f Naa
f

16 12 131 145 554
20 23 843 286 098
24 41 315 495 762
32 98 147 1 177 746
40 191 843 2 302 098

The rotational diffusion coefficients Dri of the protein can be
derived from the angular mean squared displacement61,62 (AMSD),
which is expressed as

Dri = lim
t→∞

1
2t
⟨(φi(t) − φi(0))2⟩, (6)

where φi(t) denotes the angular position about the axis i at time
t, with i ∈ [x, y, z] corresponding to principal axes of inertia in
the decreasing order of eigenvalues of the inertia tensor. The mean
rotational diffusion coefficient Dr can then be estimated as61,62

Dr = (Drx + Dry + Drz)/3. (7)

By assuming Drx < Dry < Drz , the anisotropy Λ and rhombicity Ω of
the rotational diffusion tensors27 are, respectively, defined as

Λ = 2Drz

Drx + Dry
and Ω = 1.5(Dry −Drx)

Drz − 0.5(Drx + Dry) . (8)

Both Λ and Ω measure the degree of directional asymmetry of
the diffusion tensor. While Λ measures the difference between the
largest diffusion tensor and the other two, Ω gives information
on the difference between the smallest and second-smallest diffu-
sion tensors. The periodic boundary conditions may also affect the
rotational diffusion. Linke et al.25,26 expect the rotational diffusion
coefficient in bulk D∞r depends on the box size as

D∞r = Dr(L) +
kBT
6ηL3 . (9)
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Dr can also be determined from the re-orientational time cor-
relations,21,63 angular momentum autocorrelations,29 Einstein–
Smoluchowski relation,61 or time-dependent covariance of the
quaternions.25,27 The values of Dr are compared with that deter-
mined from re-orientational time correlations in the supplemen-
tary material to check if the motion can be described as small-step
diffusion in our simulations.62,63

We note that the diffusion coefficients can also be predicted
from the hydrodynamic radius of the protein based on the Stokes–
Einstein (SE) relation,

DSE
t = kBT

6πηRh
and DSE

r = kBT
8πηR3

h
, (10)

where DSE
t and DSE

r , respectively, denote the translational and rota-
tional diffusion coefficients predicted by the SE relation. Rh denotes
the hydrodynamic radius of the protein (i.e., the mean value of
experimental results shown in Table IV). We then define the dimen-
sionless translational diffusion coefficient in bulk D̃∞t and the
dimensionless rotational diffusion coefficient in bulk D̃∞r as

D̃∞t = D∞t
DSE

t
= 6πηRhD∞t

kBT
and D̃∞r = D∞r

DSE
r
= 8πηR3

hD
∞
r

kBT
. (11)

The translational and rotational diffusion coefficients predicted by
the SE relation are obtained at D̃∞t = 1 and D̃∞r = 1, respectively.

The Green function Gi(θi, t), with θi being the angular position
of the axis i, is used to probe the time evolution for the orienta-
tions accessed by the protein during the simulation,64,65 which can
be calculated as

Gi(θi, t) = ⟨δ{cos−1[ui(0) ⋅ ui(t)] − θi}⟩, (12)

where δ denotes the delta function and ui is a unit vector along the
inertial axis i.

III. RESULTS AND DISCUSSION
A. Effects of box size

Figure 2 presents the dependence of the dimensionless trans-
lational diffusion coefficient D̃t = Dt/DSE

t and dimensionless rota-
tional diffusion coefficient D̃r = Dr/DSE

r of lysozyme in the finite
system on Rh/L (with Rh = 2.76 being the hydrodynamic radius of
lysozyme and L being the side length of the simulation box). For
both the MSM and the PSM, as shown in Fig. 2(a), we observe the
linear decrease in D̃t with the inverse of the box length. The slope
of the fitting lines st varies from −2.89 to −2.68 at different values of
the fluid–protein frictional constant ν, in accord with the theoretical
prediction of Eq. (5) (i.e., st = −2.837). The dimensionless transla-
tional diffusion coefficient in bulk D̃∞t can then be derived from the
intercept of the fitting curve.

Similar to previous determinations of Dr by re-orientational
time correlations,21 we do not obtain the obvious size effect on the
rotational diffusion coefficient for both the MSM and the PSM, as
shown in Fig. 2(b). This is because Dr scales with 1/L3 rather than
1/L according to Eq. (9). The decay of Dr due to hydrodynamics with
periodic images is thus negligibly small even in the smallest box used

FIG. 2. Size effects on the (a) dimensionless translational diffusion coefficient D̃t
and (b) dimensionless rotational diffusion coefficient D̃r of lysozyme in the finite
system. The solid (for the MSM) and dashed (for the PSM) lines are linear fittings.

in this work (i.e., L = 16). We estimate the dimensionless rotational
diffusion coefficient in bulk D̃∞r as the average value of D̃r calculated
at different box sizes.

We do not observe the size effect on the Green function
G(θi, t), anisotropy Λ, or rhombicity Ω of the rotational diffusion
tensors, see the supplementary material for more details.

B. Effects of boundary condition
The effect of the slip boundary condition on the diffusion coef-

ficient in bulk is presented in Fig. 3. It is found that both D̃∞t
and D̃∞r decay exponentially with the fluid–protein frictional con-
stant ν, which can be written as D̃∞t = Ate−λtν + D̃0

t and D̃∞r
= Are−λrν + D̃0

r , respectively. At fixed ν, D̃∞t and D̃∞r determined
from the PSM (black) are always slightly smaller than those deter-
mined from the MSM (red). This indicates that the geometric and
chemical heterogeneity could slightly suppress the diffusion of the
protein. For both models, the same decay constants λt ∼ 0.021 and
λr ∼ 0.016 are obtained for the translational and rotational diffusion
coefficients, respectively. In Fig. 3(a), the diffusion coefficient that
follows the prediction of the SE relation (i.e., D̃∞t = 1 as indi-
cated by the dashed line) is obtained at νt = 20 for the MSM and
νt = 16 for the PSM, while D̃∞r = 1 in Fig. 3(b) is obtained at
νr = 12 for both the MSM and the PSM. For simultaneous charac-
terizations of both translational and rotational diffusion, we expect
the discrepancy Δν = ∣νr − νt ∣ to be as small as possible. The results
indicate that the MSM is fine enough to characterize the diffusion
of the protein with slightly larger Δν = 8 compared to Δν = 4 for
the PSM.

Figure 4 compares the effect of ν on the anisotropyΛ and rhom-
bicity Ω of the rotational diffusion tensors for the MSM and PSM.
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FIG. 3. Dependence of the (a) dimensionless translational diffusion coefficient in
bulk D̃∞t and (b) dimensionless rotational diffusion coefficient in bulk D̃∞r on the
fluid–protein frictional constant ν, for both the MSM (red) and the PSM (black). The
solid lines are fitting curves with exponential decay (note that results at ν = 0 are
not used). The dashed lines are for D̃∞t = 1 and D̃∞r = 1.

Figure 4(a) shows that the magnitude of Λ is negatively related to ν
for both the MSM and the PSM. The all-atom simulation result indi-
cated by the dashed line (Λaa = 1.69) is reached at around ν ∼ 10,
at which D∞r comparable to the experimental result is also obtained.
As shown in Fig. 4(b), Ω depends less sensitively on ν, and our DPD
results seem to underestimate the magnitude of Ω compared with
the all-atom simulation result (dashed line). A slightly larger aver-
age value of Ω is obtained by the PSM than the MSM for ν ≥ 50. The
difference between the PSM and the MSM is, however, negligibly
small within measurement error. This again indicates size hetero-
geneity of the protein beads has a very limited effect on the diffusion
tensors.

The slow-down of rotational diffusion upon fluid–protein fric-
tional forces can also be demonstrated by the Green function
Gi(θ, t) shown in Fig. 5. For ν < 100, the shape of Gz(θ, t∗ = 5 ns)
corresponding to the third principal axis of inertia z at t∗ = 5 ns for
the PSM changes sharply with ν. This indicates the reorientation of
the protein is effectively suppressed with the increase in the frictional
forces. The shape of Gz is barely changed when ν is further increased
from 100 to 150. We note that a similar trend can be obtained for the
other two principal axes of inertia.

C. Applications to other proteins
To further validate our model, we compare the dependence of

D̃∞t and D̃∞r on ν for different types of proteins in Fig. 6. Inter-
estingly, the results indicate that the values of D̃∞t at fixed ν for
different types of proteins (i.e., ubiquitin, lysozyme, β-lactoglobulin,
and streptavidin) are so close that the D̃∞t –ν relations for different
proteins can be mapped onto a master curve of exponential decay,

FIG. 4. Dependence of (a) anisotropy Λ and (b) rhombicity Ω of the rotational
diffusion tensors on the frictional constant ν. The dashed lines are results derived
from all-atom MD simulations.66

as shown in Fig. 6(a). The same scaling behavior is also observed for
the D̃∞r –ν relations, as presented in Fig. 6(b). The translational and
rotational diffusion coefficients predicted by the SE relation (based
on experimental values of the hydrodynamic radius Rh) are, respec-
tively, obtained at D̃∞t = 1 and D̃∞r = 1, indicated by dashed lines.
For both Figs. 6(a) and 6(b), the solid and dashed lines intersect
at around ν = 25, which means both translational and rotational
diffusion coefficients can meet with the prediction of the SE rela-
tion under the same frictional constant. The values of νt , νr , and
Δν = ∣νr − νt ∣ for each type of protein are summarized in Table V.
Although νt and νr vary from 12 to 50, for different types of pro-
teins, we always have Δν < 10. The results unveil the scaling behavior
behind the model, which follows the prediction of the SE relation.

FIG. 5. Angular distribution of the Green function Gz(θ) corresponding to the third
principal axis of inertia z at t∗ = 5 ns for the PSM. The function at each ν is obtained
by averaging simulation results with different box sizes.
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FIG. 6. Dependence of the (a) dimensionless translational diffusion coefficient D̃∞t
and (b) dimensionless rotational diffusion coefficient D̃∞r in bulk on the fluid–
protein frictional constant ν for ubiquitin (black), lysozyme (red), β-lactoglobulin
(blue), and streptavidin (olive). All simulations are performed with the PSM. The
solid lines are exponential fittings to all data points. The dashed lines are for
D̃∞t = 1 and D̃∞r = 1.

TABLE V. Comparisons of νt , νr , and Δν for different types of proteins.

Protein type νt νr Δν

Ubiquitin 29 25 4
Lysozyme 16 12 4
β-Lactoglobulin 48 50 2
Streptavidin 17 26 9

Such universality indicates the model can be applied to simulate the
global diffusion for other types of proteins or even other types of
macromolecules.

IV. CONCLUSIONS
We, in this work, present a DPD model with the smeared-

charge Coulombic potential and tunable-slip interactions for sim-
ulating the translational and rotational diffusion of various proteins.
The protein could be represented by either mono-sized or poly-
sized DPD beads. In comparison, although D∞t and D∞r are slightly
overestimated, the MSM is fine enough to characterize the diffu-
sion of the protein. While the translational diffusion coefficient Dt
increases linearly with the box size, we do not observe the size effect
on the rotational diffusion coefficient Dr . The diffusion coefficients
in bulk (D∞t and D∞r ) decrease exponentially with the fluid–protein
frictional constant ν. Interestingly, normalized by the diffusion coef-
ficients predicted by the SE relation, both the dimensionless trans-
lational diffusion coefficient D̃∞t and the dimensionless rotational

diffusion coefficient D̃∞r converge for the four different types of pro-
teins. Such scaling behavior indicates correct Navier–Stokes hydro-
dynamic interactions are included in our model. In addition, the
theoretical predictions of both translational and rotational diffusion
coefficients based on the SE relation (i.e., D̃∞t = 1 and D̃∞r = 1) are
reached simultaneously at around ν = 25.

Aside from the self-diffusion of a single protein, the model has
potential applications in simulating unconventional transport and
collective behavior without structural changes (internal degrees of
freedom). For instance, as the size of the simulation box is much
larger than the size of the protein (see Table IV), it is feasible to study
the dynamics of multiple proteins. However, simulations of more
than one protein molecule will inevitably introduce protein–protein
interactions that have not yet been addressed in our current model.
A more realistic force39,67,68 could be introduced as the conservative
term of protein–protein interactions, which is parameterized based
on techniques such as iterative Boltzmann inversion, inverse Monte
Carlo, and conditional reversible work.38,69 We also note that the
hypothesis of a protein without conformational changes shall only
be applicable to simulate diffusion in a dilute, energetically mild,
and equilibrated system, as it ignores structural changes in some
extreme conditions and the role of many-body hydrodynamics in
macromolecular crowding (see the supplementary material). Due to
the coupled dynamics of the protein and counter-ions, the surface
charges of the protein could influence the diffusion coefficients.70 In
the future, we would like to investigate the effect of pH (which deter-
mines the charges of protein beads) and ionic strength on the diffu-
sion coefficients. To study the diffusion of proteins in a crowded,
extreme, or non-equilibrium system, we would also like to develop
models at different levels of coarse-graining.

SUPPLEMENTARY MATERIAL

See the supplementary material for more discussions on param-
eters for the protein and fluid model, dynamics without frictional
forces, Dr determined from time-correlation function, the size effect,
and the hydrodynamic radius Rh.
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