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Abstract. Aerodynamic heating is a critical problem to consider in hypersonic
flight. It involves many factors, and most of them affect the result nonlinearly,
which makes it difficult to get a proper model from experimental data. Even
worse, it is hard to gather enough data for distilling a model since aerodynamic
heating experiments are costly. Machine learning (ML) methods are possible can-
didates for its data modeling. However, generalML needsmore data for modeling.
Therefore, a ML strategy that can capture strong nonlinear relations with small-
size dataset is desirable. In this work, a special ML strategy that aims at modeling
data collected from hypersonic aerodynamic heating experiments is established.
The strategy is based on the randomized neural network (RNN)whose basicmodel
framework is a single-hidden layer feedforward neural network (SLFN). A global
optimization (GO) technique, lowdimensional simplex evolution (LDSE), is intro-
duced to improve its correlation performance. The modified algorithm is referred
to as LDSE enhanced RNN for short, in which the weights and biases in the hid-
den layer are globally optimized, rather than randomly generated. Theoretically,
the LDSE enhanced RNN has the hierarchically global optimality. Meanwhile,
the LDSE enhanced RNN has been applied to model a real word aerodynamic
heating database of blunt-body. Study shows that the LDSE enhanced RNN has a
good capability to balance the complexity and accuracy of a nonlinear regression
model, and the model can give a reliable estimation of the aerodynamic heating.

Keywords: Aerodynamic heating · Machine learning · Randomized neural
network · Global optimization

1 Introduction

Aerodynamic heating, is a typical physical phenomenon in hypersonic flow [1–3] with
strong nonlinearity. When an aircraft flies in hypersonic speed, the strong compression
by shock wave and shearing by viscosity will increase the temperature of gas around
the aircraft steeply. This causes a huge amount of thermal transmission (the very high
level of feat flux). The high temperature changes the physicochemical properties of gas,
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such as the vibrational excitation, dissociation, even ionization. The radiation becomes
more significant in the very high temperature gas, as well. Besides, the shock wave
interaction, transition or other factors in specific conditions will also severely influence
the aerodynamic heating. The heat flux is seriously dangerous for flight security, so,
estimating aerodynamic heating as exactly as possible plays an important role in hyper-
sonic aircraft design, but it is nearly impossible to theoretical analysis those problems
with considering all factors simultaneously. The computational fluid dynamics (CFD)
technique provides a feasible option to simulating hypersonic flows numerically and
has been widely applied to analyze aerodynamic heating. However, numerical schemes,
physical mathematical models of gas, and the mesh quality of computational domain
always restrict the accuracy of the simulation of aerodynamic heating. Though CFD
can provide abundant information of flowfield, those results are numerical approxima-
tions. In fact, there are still some physical phenomena that cannot be duplicated by CFD
and even can not be expressed by mathematical formulas. As a result, experiments are
irreplaceable in aerodynamic heating analysis.

Data-driven modeling plays an important role in natural science, either discovering
physical laws or fitting empirical/semi-empirical models. A number of useful aerody-
namic heating correlation models have been established from experiments data. Nowa-
days, increasing complexity of problems makes us to seek for more automated even
intelligent tools that can assist us in analyzing data.

The development of machine learning has brought us much convenience. In general,
two kinds of machine learning methods are commonly used for modeling physical data,
the symbolic regression [4] with explicit analytical expressions and black-box models
(like support vector regression, krigingmodel, or neural networks)with preset structures.
Symbolic regression has been applied to extract explicit expressions of free form equa-
tions [5], discover governing equations of nonlinear dynamics [6], and reconstruct phys-
ical laws [7] from data. A symbolic regression method, adaptive space transformation
[8], has successfully explored the invariant of hypersonic aerodynamic coefficients. A
multi block building symbolic regression method has been applied to predict parameters
of shockwave interactions [9]. However, for the data modeling in aerodynamic heating
analysis, the application is not straight forward. Feature engineering is the first issue
to consider. It is too complicated to determine attributes for constructing the symbolic
function due to both the restrictions from algorithm and physical attributes themselves.
Thus, the black-box model may be a better choice and especially the neural networks
because of its preset structure.

In recent years, more and more researches have exploited the applications of deep
learning in fluid dynamics [10]. For instance, Reference [11] embed the Galilean invari-
ance of stress tensor to the deep multilayer neural networks and trained the model on
datasets from direct numerical simulation of turbulent flow to improve Reynolds stress
model, Reference [12] introduced physical equations into the deep neural networks
framework and reconstructed the flow fields by this model, Reference [13] used an
encoder-decoder model based on convolutional neural networks and dealt with temporal
evolution by traditional numerical scheme.

Unfortunately, the cost, the performance of testing facilities, and the precision of
measuring instruments [14] handicap the data acquisition. This means the aerodynamic
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heating dataset or database available usually includes only a small number of sample data.
In other words, the quantity of aerodynamic heating experimental dataset is too small to
train deep learning models, in which the number of parameters could be far more than
that of samples in dataset. The hypersonic flow always contains too much unpredictable
noise, which increases the uncertainty of collected data. Our purpose is training a low
complexity model covering the complicated nonlinear relations via inadequate data with
high uncertainty.

Randomized neural network (RNN) is an important path for training a neural network
model without gradient based iterations. The implementations of these methods can be
traced back to 1990s [15]. As a typical branch in those method, keeping the randomly
generated parameters of the hidden layer and analytically determining the weights of
output layer by Moore-Penrose Generalized Inverse, is the simplest way to implement
RNN. Reference [16] has provide an alternative model framework called random vector
functional link neural network (RVFL) which has a data stream directly linking input
layer with output layer. However, practice indicates that the randomness of parameters
of the hidden layer negatively influence the performance and robustness of the model.
There have been many works focusing on improving RNN or RVFL. Reference [17]
has given a review on those modifications and discussed different non-iterative learning
method with closed-form solution. In our work, the basic frame work of single-hidden
layer feedforward neural network is kept and a global optimization (GO) algorithm is
introduced to improve the model’s correlation performance.

In this work, we apply our modified method to model a database that has been
generated through testing a 70 deg sphere-cone blunt-body in high-enthalpy carbon-
dioxide flow with 16 deg angel of attack in an expansion tunnel [18]. We compare
the performance among the SLFN model trained via backpropagation, RNN, and our
method, respectively. Study shows that our method can acquire the best performance
stably in acceptable training cost.

The rest of this paper is arranged as follows. In Sect. 2, we will briefly describe the
RNN and the GO technique on improving RNN. In Sect. 3, we will show the details of
feature engineering,model training and discussions. Finally, therewill be the conclusion.

2 Introduction of Algorithm

2.1 Brief Review of Randomized Neural Network

This part shows the simplest form of randomized neural network (RNN) without any
constrains like regularizations.

Giving a set of samples
{(

xj, y∗
j

)
|xj ∈ R

n, y∗
j ∈ R, j = 1, 2, . . . ,Ns

}
, the approxi-

mation of the jth sample point’s target y∗
j by a single-hidden layer feedforward neural

network (SLFN) with Nh hidden neurons, and activation function fact , is expressed as

yj =
∑Nh

i=1
βifact

(
wi · xj + bi

)
(1)

where wi ∈ R
n and bi ∈ R are the weighs vector and bias of the ith input neuron

respectively, βi ∈ R is the weight of the ith output neuron, and yi ∈ R is the predicted
value of jth sample point.
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Using y = [
yj∈Ns

] ∈ R
Ns

to represent model predictions vector and y∗ =
[
y∗
j∈Ns

]
∈

R
Ns

to represent the sample observations vector, the floss loss based on the principle of
norm least square can be wrote as follows.

floss = ∥∥y − y∗
2

∥∥ (2)

According to non-iterative strategies, the learning progress is

min
β

floss (3)

Where β = [
βi∈Nh

] ∈ R
Nh

is the output weights vector.
Replacing y in Eq. 2 by merging Eq. 1 for all samples and representing y∗ by T, we

obtain another form of Eq. 3

min
β

‖Hβ − T‖ ⇔ Hβ − T = 0 (4)

whereH = H
(
wi=1,...,Nh , bi=1,...,Nh , xi=1,...,Nh

)
is called the hidden layer output, and

is expressed as follow.

H =
⎡
⎢⎣

fact(w1 · x1 + b1) · · · fact
(
wNh · x1 + b1

)
...

. . .
...

fact
(
w1 · xNs + b1

) · · · fact
(
wNh · xNs + b1

)

⎤
⎥⎦

It is clearly that training SLFN by RNN is equivalent to solving an equation set. And
the solution of Eq. 4 is

β̂ = H†T (5)

where H† denotes the Moore-Penrose Generalized Inverse of matrix H.
Therefore, the RNN analytical determines output weights, and if the H† is unique,

the β̂ will be unique too, which ensures the global optimality of output layer weights.

2.2 Global Optimization Techniques for Improving RNN

In RNN, the hidden layer parameters are randomly generated. The randomness has a
negative influence on the robustness and performance of the model. It is necessary to
optimize the hidden layer parameters via efficient methods for modeling aerodynamic
heating experimental data.

Global optimization (GO) algorithms are widely used in solving operation research
problems. The hidden layer parameters of neural networks can be flattened and con-
catenated in a vector, and then learned by GO. Though both the duration of training
process and the cost of computing resource are insupportable when use those algorithms
to training large scale neural networks, GO can achieve rapid convergence on the solu-
tion space of SLFN’s input layer weights and biases with low complexity. Though, GO
prolongs the process of RNN training SLFN, this cost is insignificant comparing with
aerodynamic heating experiments or numerical simulations.



1760 Z. Chen et al.

There has been a series of results about the theory and applications of GO improv-
ing RNN in traditional machine learning territory. Different GO algorithms have been
employed in different research, and in this paper, the GO applied is low dimensional
simplex evolution (LDSE) [19], a lightweight improved differential evolution algorithm.

The procedure of these methods can be briefly described as follows.

1. Initialization: Input dataset, hyperparameters, and convergence criteria;
2. Beginning: Randomly generate hidden layer parameters (HPs);
3. Optimization: Call LDSE to evolve HPs with RNN strategy determining the

corresponding output layer weights to minimize the loss;
4. Finalization: Check the criteria, export the best weights at convergence.

A simple comparison of different training methods is listed in Table 1.

Table 1. Comparison of three algorithms for data modeling

Item BP RNN GO enhanced RNN

Model complexity Usually high Low Low

Learning duration Uncertain, Very fast Medium (10–20 s in this work)

Number of iterations o(102) None O(102)

Hidden layers para Local optimum Random Global optimum

Output layers para Local optimum Global optimum Global optimum

From the above procedure, we can see that GO enhanced RNN has two levels, RNN
andGO. The basic RNN strategy ensures the best coefficients of nonlinear function basis
for arbitrary single affine transformation searched by GO. That is, GO enhanced RNN
has the hierarchical global optimality. Though LDSE optimized input layer parameters
replace the randomized parameters in RNN, LDSE enhanced RNN is still a rational path
to abbreviate our method.

3 Results and Discussion

From literatures about global optimization (GO) algorithm improving randomized neural
networks (RNN), we find that the performance indicators (i.e. convergence, efficiency,
and reliability) of different modified methods have no significant difference. That is, no
one could dominate others. Therefore, the testing of our method on benchmark datasets
is omitted in this paper. The low dimensional simplex evolution embedded globally
optimal learning method for a single-hidden layer feedforward neural network in this
work is specifically designed for aerodynamic heating data modeling.

3.1 Blunt-Body Aerodynamic Heating and Feature Engineering

In this part, the feature engineering of the aerodynamic heating datasetwill be shown.The
database fromReference [18] contains the initial states of experiments, measurements of
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heating, pressure, and the comparison between experiments and numerical simulations.
The database from the reference in this work contains data from 20 groups of wind
tunnel experiments arranged by their total enthalpy of free stream.

Initial states in a specific testing group are identical among eachmeasuring point. The
difference of each measuring point can only be distinguished by geometrical informa-
tion. If input attributes of the dataset used for modeling are initial states and geometrical
parameters, it means that the correlation model should capture the compression by the
shock wave, the shearing by the viscosity, and some other physical factors. More com-
plicated relations call for more complex model, which need more data for training. The
number of samples in the databasewe selected cannot support such a brute-force strategy.
Therefore, feature engineering is necessary before modeling.

Heat flux is related to the gradient of temperature. That is, local flowfield property
affects the heat flux more significantly. Therefore, the main task of feature engineering
is to extract information of local flowfield parameters at measuring points from initial
inflow conditions.

In this work, the flowfield parameters at the outer edge of boundary layer are used
for model inputs. The parameters near measuring points are determined by an inviscid
computational fluid dynamics (CFD) simulation for each wind tunnel test. In fact, sim-
ulating the flowfield to duplicate the real-world conditions ties up with too many details
and expends the enormous amount of computing resource that are meaningless for our
feature engineering. Referring to the practice of some aerodynamic heating estimation
methods, we use the finite volume method (FVM) converting initial inflow parameters
to local flowfield at measuring points by solving Euler Equations (the detail settings of
CFD presenting in Table 2, the geometry of the blunt-body showed in Fig. 1, and the
mesh with computational domain illustrated in Fig. 2).

Table 2. CFD settings in our aerodynamic simulations

Item Basic information Extras

Governing equations Compressible Euler equations 3D, thermal equilibrium gas
model

Equation of State Redlich-Kwong-Soave

Numerical scheme 2nd order TVD with HLLC Centralized FVM

Time integration Steady Implicit iteration

Quantity of mesh 0.8 Million Structure and unstructured at
central line

Components of fluid Only CO2 Disassociation or ionization not
considered

Boundary conditions Far-field: hypersonic inflow
Outflow: extrapolation by inner
grid
Wall: inviscid slip wall

Radiation not considered
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Essentially, this feature engineer is that the inviscid flow at wall approximates the
outer edge of boundary layer in real world. Meanwhile, solving Euler Equations can
capture the effect of the shock wave, which has the mathematical discontinuity. That is,
modeling aerodynamic heating through the information of flowfield at the outer edge
of boundary layer can weaken the nonlinearity than modeling with the initial states of
inflow with geometric parameters directly. This helps reduce the model complexity.

Due to the symmetry, the computational domain contains only a half of the windward
surface of this geometrical model. The feature engineering of each group costs 0.5 ~ 1
h, which is far less than calculating aerodynamic heating by CFD.

Fig. 1. Model geometry [18] (dimension in inch) (left) and 3D effect (right)

Fig. 2. Mesh and boundary condition of the computational domain

Experimental data have been used to test the reliability of numerical simulations.
The comparison shows that our simulations agree well with the experimental data. The
comparison is illustrated in Fig. 3.

The input attributes for data modeling are listed in the following Table 3.
The output is heat flux (qwall < W/m2 >). There are 504 measurement results (504

sample points) in total.
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Fig. 3. An example of the comparison of pressures, simulations of inviscid flow (left) and figure
from reference [18] (right)

Table 3. List of input attributes

Notation Physical quantities

Pedge Static pressure at boundary edge (Pa)

Tedge Static temperature at boundary edge (K)

Uedge Magnitude of velocity at boundary edge (m/s)

Lstag Distance from stagnation point to measuring point along the surface (m)

A Angle between free stream and local surface normal

Mainf Mach number of free streams

Reinf Reynold number of free streams

3.2 Regression Analysis of Aerodynamic Heating Dataset

In this part, performance of three different data modeling algorithms, including
backpropagation (BP), basic RNN, and LDSE enhanced RNN, are compared.

To improve the effect of training, all input attributes are linearly mapped to [−1, 1].
The target values, heat flux, are distributed in a wide range of order of magnitudes, that
is, the linear mapping is executed for logarithmic target values.

The datasets are randomly split into training set and validation set and the loss
function in LDSE enhanced RNN is defined as follows

f LDSE−RNN
loss = (1 − σtrain)f

train
loss + σtrainf

validation
loss (6)

where σtrain is the proportion of training set (range from 0 to 1).
The number of hidden neurons ranges from 10 to 100 with step 5 are tested by each

training algorithm, which indicates the complexity of the target model. The coefficient
of determination (R2) is used to evaluate the goodness of fit of each model. For each
complexity at a given number of hidden neurons, we averaged the performance of model
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of 20 times with different random seeds. The activation function is set to Tanh. The BP
algorithm is called from Pytorch [20] using MSE loss and Adam optimizer. Each run
takes iterates 20000 epochs iteration to gain the best R2 value. The comparison results
are shown in Fig. 4.

Fig. 4. Correlation performance of different data modeling algorithms with different number of
hidden neurons

Figure 4 shows that the model trained by LDSE enhanced RNN has the best perfor-
mance among these three strategies. Though BP do not tend to overfitting, its regression
effect is mediocre. When the number of hidden neurons is over 65, the model trained
by RNN is obviously overfitting. In this study, if the performance of models trained by
LDSE enhanced RNN with different number of hidden neurons are similar, the lower
complexity one will be selected to further study.

The single-hidden layer feedforward neural network has only one hyperparameter,
the number of hidden neurons. It is easy to select the suitable model complexity, such
as plotting a figure like Fig. 4.

The regression performance of the LDSE enhanced RNN trained model is demon-
strated in Fig. 5.

An example of heat flux prediction from the LDSE enhanced RNN trained model is
presented (see Fig. 6).

Figure 6 shows that the model’s predictions agree well with results from Refer-
ence [18], considering the uncertainty intervals at each measurement point. The LDSE
enhanced RNN trained model gives cogent predictions of both the order of magnitudes
and the trend of distribution for heat flux.
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Fig. 5. Performance of the LDSE enhanced RNN trained model with 60 hidden neurons, random
seed 2020 (R2 on training set: 0.9868; R2 on validation set: 0.9852)

Fig. 6. An example of the comparison of heat flux and model predictions (left), and the figure
from reference [18] (right)

4 Conclusion

A special globally optimal learningmethod combining low dimension simplex evolution
(LDSE) and randomize neural network (RNN) has been proposed tomodel aerodynamic
heating from experimental data. The modified method, named LDSE enhanced RNN, is
still a kind of single-hidden layer feedforward neural network, and it has a hierarchical
global optimality in theory.

Feature engineering of original aerodynamic heating data has also been carried out.
Initial states of wind tunnel experiments are processed by computational fluid dynamics
(CFD) technique. The numerical simulations of inviscid flow distill the flowfield of the
outer edge of boundary layer corresponding to initial inflow conditions. Information of
inviscid flow, geometrical parameters, and two parameters from initial states have been
used as input attributes in dataset for training a model. The aerodynamic heating dataset
contains a relatively small number of samples.
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The performance of LDSE enhanced RNN on the aerodynamic heating dataset has
been comparedwithRNNand back propagation (BP). Results show that LDSE enhanced
RNN outperforms BP, and is more stable than RNN. The model generated by LDSE
enhanced RNN can rapidly give the predictions, and the predicted heat flux agree well
with the wind tunnel result. LDSE enhanced RNN has a good ability to balance the
complexity and accuracy of model. It is a promising method for aerodynamic heating
data modeling.
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