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We investigate a reduced scaling full-potential DFT method based on

the multiple scattering theory (MST) code MuST, which is released online

(https://github.com/mstsuite/MuST) very recently. First, we test the accuracy by

calculating structural properties of typical body-centered cubic (BCC) metals (V, Nb,

and Mo). It is shown that the calculated lattice parameters, bulk moduli, and elastic

constants agree with those obtained from the VASP, WIEN2k, EMTO, and Elk codes.

Second, we test the locally self-consistent multiple scattering (LSMS) mode, which

achieves reduced scaling by neglecting the multiple scattering processes beyond a

cut-off radius. In the case of Nb, the accuracy of 0.5mRy/atom can be achieved with

a cut-off radius of 20 Bohr, even when small deformations are imposed on the lattice.

Despite that the calculation of valence states based on MST exhibits linear scaling, the

whole computational procedure has an overall scaling of about O(N1.6), due to the fact

that the updating of Coulomb potential scales almost as O(N2). Nevertheless, it can

be still expected that MuST would provide a reliable and accessible way to large-scale

first-principles simulations of metals and alloys.

Keywords: first principles, Korringa–Kohn–Rostoker (KKR), multiple scattering theory (MST), full potential, elastic

constants

1. INTRODUCTION

Kohn–Sham density functional theory (KS-DFT) (Kohn and Sham, 1965) transforms the
many-body problem to a non-interacting system and has been widely used in modern
first-principles calculations. Although many computational schemes are developed to solve
the Kohn–Sham equation (Kohn and Sham, 1965) for the ground-state properties, the
Korringa–Kohn–Rostoker Green’s function (KKR-GF) method (Korringa, 1947; Kohn and
Rostoker, 1954), also known as multiple scattering theory (MST), provides equivalent information
by the single-particle GF (Economou, 2006). In the MST approach, the system is divided into
non-overlapping atomic regions as a set of scatterers. To solve the single-site scattering problem,
one numerically determines the angular momentum and energy-dependent solutions of the radial
Schrödinger equation for a given potential. The coherent matching of the single-site solutions can
be achieved if and only if the incoming wave of an atomic site is identical to the superposition
of the outgoing waves from all other scatterers. This viewpoint not only gives access to the
Kohn–Sham eigenstates but also to the single-electron GF of the system, which leads to the modern
KKR-GF method.
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The survey (Aarons et al., 2016) suggests that KKR-GF or
MST method remains important for large-scale metallic systems.
The favorable scaling in MST is attributed to the fact that the
electron density, which is the fundamental quantity in DFT, can
be obtained from the site-diagonal blocks of the scattering path
matrix. And the site-diagonal block of the scattering path matrix
for a particular atom can be solved with sufficient accuracy by
considering only the electronic multiple scattering processes in a
finite-sized region centered at this atom. This region is referred to
as the local interaction zone (LIZ), which is originally introduced
in the locally self-consistent multiple-scattering method (LSMS)
(Wang et al., 1995). Base on the central idea of the LSMSmethod,
the locally self-consistent GF (LSGF) approach (Abrikosov et al.,
1996, 1997) can choose judiciously the effective medium to
decrease the LIZ size. In particular, the linear scaling has been
achieved in LSMS with muffin-tin approximation and in LSGF
with tight-binding linear muffin-tin orbital (TB-LMTO) basis. It
should be mentioned that besides the MST-based methods, other
approaches to reduced scaling DFT methods for metallic systems
have also been developed in recent years Pratapa et al. (2016),
Suryanarayana et al. (2018), Aarons and Skylaris (2018), Mohr
et al. (2018).

There is a trend toward the full-potential (FP) MST in which
no shape approximation is assumed for the potential. Many
questions in materials science, for example, on complex defects,
interfaces, dislocations, as well as nanostructures, come to a
great demand for the reduced scaling FP method. KKRnano,
a massively parallel DFT package based on MST, has been
developed and optimized for thousands of atoms without a
compromise on the FP accuracy (Thiess et al., 2012). And this
package has been applied to study the role of the vacancy clusters
in metal-insulator transitions (Zhang et al., 2012).

However, most MST simulation packages are in-house, which
impedes the application of MST as a powerful tool for large
scale or disordered systems. Recently, the MuST package, an ab
initio calculation software package based on FP MST (Rusanu
et al., 2011), is open to public and is free to download online
(https://github.com/mstsuite) under a BSD 3-clause license.
We focus on the MST part in the MuST package, which
not only provides features for calculating physical properties
of materials but also serves as a platform for implementing
and testing the numerical algorithms. At present, the MuST
package is capable of performing the following calculations:
(1) muffin-tin approximation, (2) FP method, (3) coherent
potential approximation (CPA), and (4) LSMS method. And the
fully relativistic MST by solving the Dirac equation has been
implemented in MuST Liu et al. (2016, 2018). For such a newly
released package, it is prerequisite to perform systematic tests
both on the accuracy and efficiency.

A reliable FP method can be used to exactly capture the
small energy difference for the lattice distortion or deformation.
According to the elastic theory, we deform the crystalline cell to
the distorted lattice structures and then calculate their energies.
The small energy change with the lattice deformation can be
used to calculate the elastic constants (Vitos, 2007). Asato et al.
(1999) investigated total energy calculations for metals and
semiconductors based on the FP MST method. But few work
pay attention to validate the elastic properties based on MST,

which is fundamental for applying MST to study the structural
properties of materials. Considering the anomalies behavior of
deformations in body-centered cubic (BCC) V andNb (Nagasako
et al., 2010; Dezerald et al., 2016), we employ the different ab
initio methods including the FP MST method in MuST package
to calculate the elastic constants of V, Nb, and Mo. By comparing
with results of available experiments and other popular first-
principles packages, we investigate the accuracy of the FP MST
method in MuST package.

To estimate the parallel scalability, we carried out strong
and weak scaling tests of the FP LSMS method in MuST
package. It is seen that the LSMS method exhibits a good strong
scalability. This is due to the two-level parallelism over atoms
and energy points implemented in MuST package. However,
in the weak scaling test, the overall computational procedure
is not linear scaling, which seems to be inconsistent with the
O(N) scaling of the muffin-tin LSMS proved in previous work
(Wang et al., 1995). By analyzing the implementation scheme,
we attribute it to the difference in updating the Coulomb
potential between the muffin-tin approximation and the FP
method. While the solution of eigenvalue problems is avoided
in the MST method, the calculation of Coulomb potential could
become the performance bottleneck in large-scale first-principles
simulations. For example, PRinceton Orbital-Free Electronic
Structure Software (PROFESS) (Ho et al., 2008; Hung et al., 2010;
Chen et al., 2015) suggested that about 70% of computation
time was spent on fast Fourier transforms (FFTs) to calculate
the kinetic and electron–electron Coulomb interaction terms.
PROFESS features plane-wave basis set and has been optimized
for peta-scale computing (Chen et al., 2016). The calculation
of MST is based on angular momentum expansion and new
algorithms should be developed to optimize the overall scaling
of the FP MST method.

The rest of this paper is arranged as follows. In section 2, we
introduce the MSTmethod and its LSMS variant. In section 3, we
investigate the accuracy by calculating the equation of state (EOS)
and elastic constants of typical BCC metals. In section 4, we test
and analyze the scalability of the FP LSMS method. In section 5,
some concluding remarks are drawn.

2. METHODOLOGY

2.1. MST Method
The term MST method in this manuscript refers to the modern
version of the KKR method, that is, the KKR-GF method.
The central quantity to be computed in the MST method
changes from the Kohn–Sham orbitals in band theory methods
to the one-electron GF, which can be defined as solutions of
the following differential equation (Economou, 2006) (non-
spin polarized cases assumed and atomic units h̄ = 1 and
me = 1/2 used):

{z +∇2 − Veff[ρ](r)}G(r, r
′; z) = δ(r − r

′), (1)

where Veff is the Kohn–Sham effective potential under exchange-
correlation approximations like the local density approximation
(LDA) or the generalized gradient approximation (GGA), ρ(r) is
the electron density, and z ≡ ǫ + ıη is a complex variable. If z is
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real and ǫ belongs to the continuous spectrum of−∇2 +Veff[ρ],
G(r, r′; ǫ) is not well-defined and one may define the retarded GF

G+(r, r′; ǫ) ≡ lim
η→0+

G(r, r′; ǫ + ıη). (2)

In the following, the superscript + will be omitted. Once the GF
is known, the valence electron density can be obtained by (Gonis
and Butler, 2000; Economou, 2006; Faulkner et al., 2018)

ρ(r) = −
2

π
Im

∫ ǫF

ǫB

G(r, r; ǫ)dǫ, (3)

where ǫF is the Fermi energy, the bottom energy ǫB is chosen
between the highest core-state energy and the valence band, and
the factor 2 accounts for the number of electron spins. The energy
integration in Equation (3) can be carried out along a contour in
the complex energy plane so that only few tens of energy points
are needed. Other physical quantities like the density of states
(DOS) can also be obtained from the GF (Gonis and Butler, 2000;
Economou, 2006; Faulkner et al., 2018).

The MST method provides a convenient access to the GF.
In the MST method, atoms in the system are considered as
scattering centers of which the scattering properties are described
by the so-called single-site scattering t-matrix (Gonis and Butler,
2000; Faulkner et al., 2018). The space is divided into non-
overlapping cells �n centered at atomic positions Rn, where n is
the index of atoms in the system. In the vicinity of atomic site n,
it is proved that the GF can be expressed as (Faulkner and Stocks,
1980; Gonis and Butler, 2000; Sébilleau, 2000; Zabloudil et al.,
2006)

G(rn, rn; ǫ) =
∑

LL′

Zn
L(rn; ǫ)τ

nn
LL′ (ǫ)Z

n×
L′ (rn; ǫ)

−
∑

L

Zn
L(rn; ǫ)J

n×
L (rn; ǫ), (4)

where L is the combined index of angular momentum quantum
number l and magnetic quantum number m, rn ≡ r − Rn the
relative coordinate, Zn

L(rn; ǫ) and JnL (rn; ǫ) regular and irregular
solutions of the single-site problem in cell n for momentum
L and energy ǫ, and τnnLL′ (ǫ) site-diagonal matrix elements of
the scattering path operator τnm(ǫ) in the angular momentum
representation. The × symbol in Equation (4) means that we
take the complex conjugate of the spherical harmonics and keep
remaining parts of the function unchanged.

The scattering path operator τnm(ǫ) describes all possible
scattering events of electron states with energy ǫ between atomic
sites n and m. In the angular momentum representation, the
corresponding scattering path matrix is given by (Gonis and
Butler, 2000; Zabloudil et al., 2006)

τnm = tnδnm + tnGnm
0 (1− δnm)t

m + tn
∑

k 6=n

Gnk
0 tkGkm

0 (1− δkm)t
m

+ tn
∑

k 6=n

Gnk
0 tk

∑

j 6=k

G
kj
0 t

jG
jm
0 (1− δjm)t

m + . . .

= tnδnm + tn
∑

k 6=n

Gnk
0 τ km,

(5)

where the underline symbol indicates matrices with respect to
the angular momentum index L, tn(ǫ) is the single site scattering
t-matrix associated with site n, and Gnm

0 (ǫ) is the free-electron
propagator matrix in the angular momentum representation,
also known as KKR structure constant matrix, that describes the
propagation of a free electron with energy ǫ from site n to site
m. Note that we have omitted the dependence on energy ǫ in
Equation (5) for a compact expression.

In the case of a finite system with N atoms, it is seen from the
second equation in Equation (5) that the scattering path matrix
can be computed directly by a matrix inversion:

τnm(ǫ) =















[t1(ǫ)]−1 −G12
0 (ǫ) −G13

0 (ǫ) · · · −G1N
0 (ǫ)

−G21
0 (ǫ) [t2(ǫ)]−1 −G23

0 (ǫ) · · · −G2N
0 (ǫ)

−G31
0 (ǫ) −G32

0 (ǫ) [t3(ǫ)]−1 · · · −G3N
0 (ǫ)

...
...

...
. . .

...
−GN1

0 (ǫ) −GN2
0 (ǫ) −GN3

0 (ǫ) · · · [tN(ǫ)]−1















−1

nm

,

(6)
where the subscript nm on the right hand side indicates the
block at the nth row and mth column of the big matrix after
the inversion has been taken. In the case of periodic systems,
the equation in Equation (5) for the scattering path matrix can
be solved by the lattice Fourier transform, leading to (we assume
that there is only one atom in the unit cell):

τnm(ǫ) =
1

�BZ

∫

�BZ

[

t(ǫ)−1 − G0(k, ǫ)
]−1

eık·(Rn−Rm)dk, (7)

where �BZ is the first Brillouin zone and G0(k, ǫ) is the lattice
Fourier transform of G

0
(ǫ) (the double underline indicates

matrices with respect to the angular momentum index and the
atomic site index) (Gonis and Butler, 2000; Zabloudil et al., 2006).

2.2. LSMS Method
As described above, the MST method makes unnecessary the
calculation of the Kohn–Sham orbitals, and consequently
the time-consuming procedure for diagonalization and
orthogonalization in the conventional KS-DFT calculations
can be entirely avoided. The only global operation required by
computing the GF is to obtain the scattering path matrix by an
inversion of the matrix in Equation (6). Since the size of the
matrix is proportional to the number of atoms in the unit cell,
the MST method still suffers from cubic scaling limitation.

To reduce the scaling of the procedure, we can calculate the
nth site-diagonal block of the scattering path matrix τnn by
neglecting the multiple scattering processes that involve atoms
beyond some cut-off radius RLIZ from atomic site n. This is
based on the observation that the scattering processes involving
far away atoms have little influence on the electronic scattering
behavior in the vicinity of atomic site n, which is the essence
of the LSMS method. The region within distance RLIZ from the
central atom is called the LIZ. If there are M atoms in the LIZ,
the solution of the multiple scattering problem scales asO(NM3),
where N is the total number of atoms. Consequently, the LSMS
method is expected to exhibit the linear scaling in N with a
prefactor determined byM and the number of basis functions.
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2.3. Coherent Potential Approximation
Due to the convenient access to the GF, the MST method plays a
prominent role in first-principles alloy theory, in which a novel
candidate is the CPA (Soven, 1967; Taylor, 1967; Gyorffy, 1972;
Ruban and Abrikosov, 2008). The CPA is designed to obtain an
ordered effective medium to describe properties of the multi-
component random alloy. The scattering path operator of the
CPA effective medium, denoted by τCPA, is determined by the
following self-consistency condition (two-component alloy as
the example):

τCPA = CAτA + CBτB, (8)

where τA(B) is the scattering path operator of the auxiliary
system constructed by replacing the central site in the ordered
effective medium system by the alloy component A(B). Within
the single-site approximation, it can be proved that the GF of the
CPA effective medium system is equal to the targeted ensemble
averaged GF (Faulkner, 1982; Ebert et al., 2011). The CPA
condition in Equation (8) needs to be reformulated into a proper
expression to be suited for numerical applications (Faulkner,
1982; Turek et al., 1997).

3. TEST ON ACCURACY

In this section, we investigate the accuracy of the FPMSTmethod
implemented in the MuST package by comparing equilibrium
bulk properties and elastic constants with those calculated by the
WIEN2k, EMTO, and VASP codes.

3.1. Calculation Details
In order for a meaningful comparison, we used the Perdew–
Burke–Ernzerhof (PBE) exchange-correlation functional
(Perdew et al., 1996) in all our calculations, and carried out
convergence tests to determine the numerical parameters for
each code. The relativistic effect of the core electrons was treated
via the default scheme in each package. In the following, we
enumerate the detailed settings of numerical parameters.

3.1.1. MuST

The uniform grid for the computation of the Coulomb potential
was chosen as 64× 64× 64. The Monkhorst–Pack k-point mesh
was set to be 21×21×21 in all the KKR tests. The break condition
for the electronic SCF (self-consistent field) iterations was that
differences in the total energy and the potential are smaller than
5 × 10−8 Ry and 10−7 Ry, respectively. The maximum angular
momentum used in the expansion of the wave functions and
the GFs was set to lmax = 4. The number of radial grid points
from the atomic center to the muffin-tin radius was chosen to
be 2001, which is sufficiently accurate for solving the single-site
scattering problem.

3.1.2. WIEN2k

The WIEN2k package (Blaha et al., 2020) implements an FP
linearized augmented plane-wave (LAPW) method. No shape
approximations have been made on the potential and charge
density inside themuffin-tin spheres and in the interstitial region.
In our calculations, the muffin-tin sphere radius was fixed as

2.50 Bohr, the cutoff parameter RMT ·Kmax was chosen to be 8.00,
and the plane-wave expansion cutoff Gmax was set as 14.00 Ry.
And a 15× 15× 15 Monkhorst–Pack k-point mesh was used for
the Brillouin zone sampling. The chosen RMT · Kmax and k-mesh
ensure that errors in the total energies of the deformed structures
are converged to 10−4 Ry in elastic constant calculations.

3.1.3. EMTO

The EMTO package implements the so-called exact muffin-
tin orbitals method, in which different from former muffin-tin
methods, the single-electron states are calculated exactly for the
optimized overlapping muffin-tin (OOMT) potential. We refer
the readers to Vitos et al. (2001), Vitos (2001), and Vitos (2007)
for the detailed theory and applications of the EMTO method.
In our calculations, the EMTO basis set including s, p, d, and f
orbitals was used in combination with soft-core approximation.
For the integration over energy in the complex plane, we used
24 points along a semicircular contour. The Brillouin zone was
sampled by a 21 × 21 × 21 Monkhorst–Pack k-point mesh to
make the total energies of the deformed structures converge up
to 3× 10−5 Ry.

3.1.4. VASP

The Vienna ab initio simulation package (VASP) (Kresse and
Furthmüller, 1996a,b; Kresse and Joubert, 1999) describes the
electron-ion interactions by the projector-augmented wave
(PAW) method. In our calculations, the kinetic energy cutoff for
the plane-wave basis set was 400 eV. A 15× 15× 15 Monkhorst–
Pack k-point mesh was used for the Brillouin zone sampling. And
the SCF convergence criterion was set to be 10−7 Ry.

3.2. Equation of State
The lattice parameter a, bulk modulus B, and pressure derivative
of the bulk modulus B′ have been commonly used for accuracy
assessments of DFT codes and (pseudo)potential libraries
(Kucukbenli et al., 2014; Lejaeghere et al., 2014, 2016). These
structural properties can be extracted from the EOS for a solid.
For instance, in a Morse type of EOS, the total energy is fitted by
an exponential function with four parameters (D0, γ , a0, and E0)

E(a) = D0e
−γ ( a

a0
−1)

− 2D0e
−

γ
2 (

a
a0

−1)
+ E0. (9)

Then a0, B0, and B′ can be derived from the Morse function and
used to assess the accuracy of DFT codes under investigation.

To investigate the accuracy of the FP MST method in the
MuST package, we calculated a0, B0, and B′ of three bulk systems
V, Nb and Mo, and compared the results with all-electron
packages including WIEN2k, EMTO, and VASP. In these tests,
we employed the same exchange-correlation functional and
equivalent numerical settings, as introduced in section 3.1.
Figure 1 shows the calculated E(a) curves from these packages,
which have been shifted so that all E(a) points with the lowest
energy are adjusted to zero. The fitted results of a0, B0, and B′ are
given in Table 1. In addition, results from the Elk package, those
obtained by the FP-LMTO method, and experimental values
from the literature are also listed in Table 1 as a reference. The
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FIGURE 1 | (Color online) Equation of states (the total energy per atom vs. lattice parameter) for body-centered cubic (BCC) V (A), Nb (B), and Mo (C). The total

energies have been shifted so that all E(a) points with the lowest energy are adjusted to zero.

TABLE 1 | Equilibrium bulk properties [lattice parameter a (Bohr), bulk modulus B (GPa), and pressure derivative of the bulk modulus B′], the elastic constants

c′ = (c11 − c12)/2, c11, c12, and c44(GPa) for body-centered cubic (BCC) V, Nb, and Mo metals.

Method a B B′ c′ c11 c12 c44

V

MuST 5.685 170.32 3.72 60.42 250.88 130.04 52.46

WIEN2k 5.667 182.10 3.72 59.69 268.91 149.53 19.90

EMTO 5.673 178.73 3.06 79.72 285.03 125.58 51.61

VASP 5.666 183.18 3.22 60.71 264.13 142.71 20.50

Elk (Lejaeghere et al., 2016) 5.663 182.89 3.89 – – – –

FP-LMTO (Landa et al., 2006a) 5.673 182.70 – 67.30 272.43 137.83 37.40

Exp.(Frederikse, 1972; Maschke and Levy, 1983; Young, 1991; Haas et al., 2009) 5.713 (5.715) 155.0 – 54.85 (57) 228.7 119.0 43.20 (46)

Nb

MuST 6.258 178.62 3.22 51.94 247.88 144.00 35.52

WIEN2k 6.258 168.77 3.01 47.87 232.60 136.85 14.88

EMTO 6.278 177.44 2.86 74.07 276.20 128.06 51.00

VASP 6.254 171.87 3.21 50.02 238.56 138.52 16.62

Elk (Lejaeghere et al., 2016) 6.256 170.92 3.84 – – – –

FP-LMTO (Landa et al., 2006a) 6.270 170.7 – 63.9 225.9 128.1 25.5

Exp.(Frederikse, 1972; Ashkenazi et al., 1978; Young, 1991; Haas et al., 2009) 6.237 (6.225) 169 – 52.89 (60) 246.5 134.5 28.73 (31)

Mo

MuST 5.968 253.65 3.22 169.52 479.67 140.64 131.59

WIEN2k 5.973 263.47 3.99 147.45 460.07 165.17 103.15

EMTO 5.991 254.21 4.89 169.80 480.61 141.01 131.02

VASP 5.978 263.08 3.15 148.57 461.18 164.03 102.56

Elk (Lejaeghere et al., 2016) 5.973 259.07 4.22 – – – –

FP-LMTO (Söderlind et al., 2000) 5.970 255 – 139 440 162 139

Exp.(Dickinson and Armstrong, 1967; Frederikse, 1972; Young, 1991; Haas et al.,

2009)

5.947 (5.936) 261 – 152.95 463.7 (473.0) 157.8 (156.2) 109.2 (110.9)

Exp. stands for experimental results. The experimental values in parenthesis are the experimental lattice constants corrected for the zero-point anharmonic expansion (ZPAE) and

experimental elastic constants corrected at 0 K. The MuST, WIEN2k, EMTO, VASP, Elk, and FP-LMTO are different ab initio methods.

differences with respect to the results from Elk are illustrated in
Figure 2.

We see from Table 1 and Figure 2 that except for the bulk
modulus of V, differences in the calculated a and B results are
less than 0.5% and 5%, respectively, which could be considered
as small discrepancies between different codes (Holzwarth et al.,

1997; Kresse and Joubert, 1999; Lejaeghere et al., 2016). The
lattice parameter a of BCC V metal obtained by MuST is slightly
larger than that of other ab initio methods, but the difference
of a is only 0.39%, with respect to the Elk’s result. For BCC Nb
and Mo, both MuST lattice parameters are very close to those
results from Elk. The relative error is 0.03% for Nb and 0.08%
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FIGURE 2 | (Color online) Relative errors in lattice parameter (A), bulk modulus (B), and its derivation (C) (1a, B, 1B′) for body-centered cubic (BCC) V, Nb, and Mo,

where the Elk results are taken as reference values.

for Nb, respectively. Generally speaking, the PBE predicted lattice
parameter is overestimated, that is, theoretical lattice parameter
is usually larger than experimental values, whereas for V, all
present ab initio lattice parameters listed in Table 1 are smaller
than the experimental value at 0 K. But for Nb and Mo, the ab
initio lattice parameters are slightly larger, with respect to their
experimental values. The bulkmodulus B represents the stress v.s.
the volume expansion or compression. And its derivative B′ can
be used to describe the anharmonic effect in the vibrating lattice.
Comparing the calculated bulk moduli and their derivatives, we
find that for BCC V metal the MuST B is slightly smaller, within
6.9%, than the Elk bulk modulus, while EMTO, WIEN2k, and
VASP results agree well with each other. This is consistent with
the fact that the MuST lattice constant is slightly larger, within
0.4%, than the Elk result, whereas the relative discrepancy is
within 0.2% among the results of other codes.

Finally, it is necessary to mention that the energy-lattice curve
of a solid is sensitive to the treatment of semi-core states. For
example, Nb has core (1s, 2s, 2p, 3s, 3p, 3d), semi-core (4s,
4p), and valence (4d, 5s) states. Due to the limitation in the
current implementation of MuST, only the 4d5s electrons of Nb
are considered as valence electrons, and the semi-core states are
treated as core states. The same treatment is imposed for the
semi-core states of V (3s, 3p) and those of Mo (4s, 4p). In MST
as well as in other all-electron methods including LAPW and
EMTO, both the core and the valence states participate in the
self-consistent iteration. The difference is that the core states are
calculated using the spherical part of the crystal potential in the
atomic sphere Singh and Nordström (2006). The wave function
for each core state is confined and normalized within the sphere
radius. In the case that semi-core states are treated as core states,
since their charges are no longer well confined inside the atomic

sphere, the so-called confinement error appears and a proper
setting of the bounding sphere radius becomes important Asato
et al. (1999). Different fromMuST, in theWIEN2k calculations, a
recommended separation energy of -6.0 Ry automatically defines
the core- and band-states. Accordingly, both the semi-core and
valence states of V, Nb, and Mo metals are treated as band states
and solved using the full potential of the crystal. In the PAW
method of the VASP package, the frozen-core approximation
is used, so the core electrons will not participate in the self-
consistent calculations. And the PAW atomic datasets including
semi-core states for V, Nb, and Mo are provided by the VASP
POTCAR library to be utilized for accurate calculations. The
main point is that: the differences in the treatment of the semi-
core states may cause noteworthy discrepancies in the calculated
results, and we suggest that the semi-core states are allowed to be
treated as band states in the future version of MuST.

3.3. Elastic Constants
In a cubic lattice there are three independent elastic constants,
c11, c12, and c44, of which c11 and c12 are connected to the bulk
modulus B = (c11 + 2c12)/3 and the tetragonal shear modulus
c′ = (c11 − c12)/2. The two shear elastic parameters c′ and c44
were computed according to the standard methodology (Vitos,
2007). For example, we used the following volume conserving
orthorhombic and monoclinic deformations:





1+ δo 0 0
0 1− δo 0
0 0 1

1−δ2o



 and





1 δm 0
δm 1 0
0 0 1

1−δ2m



 ,

which lead to the energy change △E(δo) = 2V ′
cδ

2
o + O(δ4o) and

△E(δm) = 2V ′
c44δ

2
m + O(δ4m). Both energies were computed
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FIGURE 3 | (Color online) The deformation configurations [body center

orthorhombic (BCO) for the calculation of c′ and face center orthogonal (FCO)

for the calculations of c44] for body center cubic (BCC) crystal.

for six distortions, δ = 0.00, 0.01, ..., 0.05. The body center
orthorhombic (BCO) for c′ and faced center orthorhombic
(FCO) for c44 are shown in Figure 3.

Results of elastic constants from different ab initio methods
and experiments are listed in Table 1. Their differences with
respect to experiments are shown in Figure 4. Due to the
calculations of c11 and c12 via the combination of c′ and bulk
modulus, the accuracy of c′ plays a key role in the quality of
c11 and c12 results. From Figure 4, we can see that for the c′ of
V, the MuST result agrees well with the results from WIEN2k
and VASP. Due to the small bulk modulus, our MuST calculated
c11 and c12 are slightly different from those of WIEN2k and
VASP. For c11 and c12 of Nb, results from MuST, WIEN2k, and
VASP are all close to experiments at room temperature, whereas
the difference of c′ between calculations and experiments at 0
K is up to 13.4% for MuST, 20.2% for WIEN2k, and 16.6% for
VASP. For Mo, the discrepancy of c′ with the experimental value
is up to 11.0% for MuST and EMTO, but it is only 2.9%/3.6%
for VASP/WIEN2k. This results in the large difference for c11
and c12 between MuST/EMTO and WIEN2k/VASP calculations.
Although EMTO and FP-LMTO can be regarded as similar
muffin-tin type methods, their calculated elastic constants are
very different. The main reason is that the available FP-LMTO
results were calculated based on the LDA (Söderlind et al., 2000).

From Table 1, we can find for V and Nb that c44 results
of MuST and EMTO are close to experimental values, while
those from WIEN2k and VASP much smaller. We note that
the early work on elastic constants c44 is 17.1 GPa for V and
10.3 GPa for Nb (Koči et al., 2008; Nagasako et al., 2010).
There is an anomalous dispersion of transverse acoustic phonons
propagating along the <100> direction in V and Nb. Softening
of acoustic phonons induces small values of the shear constant.
The soft acoustic phonons and small shear constants are related
to the nesting properties of the Fermi surface, which produce a
van Hove singularity in the electronic DOS near the Fermi level

(Landa et al., 2006b; Nagasako et al., 2010). Due to the presence of
van Hove singularity, an extremely fine mesh for Brillouin zone
integration suggested in Nagasako et al. (2010) was expected to
determine the exact c44. However, in practice, the convergence
of c44 with respect to the k-point density may be very slow
(Nagasako et al., 2010). Instead of using an extremely dense k-
mesh, the smearingmethods can be used to handle the singularity
in DOS. It is reported in Nagasako et al. (2010) that the smearing
method has a clear impact on the c44 results. We note that
smearing is performed in WIEN2k and VASP calculations, but
in the MuST and EMTO codes no smearing methods are used.
This might be the reason on the discrepancy between theoretical
results. For Mo, the MuST calculated c44 is 18.7% larger than the
experimental value at 0 K, but the c44 from WIEN2k and VASP
are in good agreement with experiments. The ultimate reason of
differences in the elastic constant between ab initio calculations
and experiments is still far from resolved. We noted that there
exist variations between experiment results, for example, for Mo
the experimental value of c44 is about 110.9 GPa at 0 K reported
in Dickinson and Armstrong (1967), while another experiment is
about 125 GPa at 0 K (Featherston and Neighbours, 1963). So it
may be necessary to estimate the accuracy of experiments at low
temperatures and the improved extrapolation method may also
be desirable.

4. TEST ON SCALABILITY

In this section, we investigate the strong and weak scalabilities of
the FP LSMS method implemented in MuST package.

4.1. Convergence on LIZ Size
In practice, the first question on the LSMS method may be the
proper choice of the LIZ size for an atomic site. We can calculate
the total energy of the bulk system using the LSMS method with
increasing LIZ sizes and compare the results with those obtained
by the standard MST method. The convergence tests on the LIZ
radius have been performed for face-centered cubic (FCC) Cu
and BCC Mo in Faulkner et al. (2018). For FCC Cu, the LSMS
energy agrees with the reference MST result to better than 0.5
mRy when 6 neighboring shells are included in the LIZ. This
corresponds to a cluster of 87 atomic sites with a LIZ radius
of 11.7 Bohr. For BCC Mo, on the other hand, a larger LIZ
is required in order to achieve better than 0.5 mRy accuracy.
We test the convergence of the LIZ radius for BCC Nb and
its deformed structures. As shown in Figure 5, the LSMS total
energies converge to the MST results when the LIZ radius is
larger than 20 Bohr. Indeed, we have achieved the accuracy of
0.5 mRy by including 14 neighboring shells into the LIZ, which
corresponds to about 330 atoms. This is due to the fact that the
Fermi energy falls in the d bands so that the DOS near the Fermi
energy is significant.

We would like to mention that in the MuST code, the LIZ is
embedded in the vacuumwith free-electronGF. The LIZ sizemay
be effectively decreased by choosing the effective medium instead
(Zeller et al., 1995; Abrikosov et al., 1997), which could provide
clues for improving the performance of the LSMS method in a
future release.
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FIGURE 4 | (Color online) Differences in the calculated c′ (A), c11 (B), c12 (C), and c44 (D) from ab initio methods for body-centered cubic (BCC) V, Nb, and Mo with

respect to experimental values at room temperature.

FIGURE 5 | (Color online) Energy as a function of the local interaction zone (LIZ) radius for (A) body-centered cubic (BCC), (B) body center orthorhombic (BCO), and

(C) faced center orthorhombic (FCO) structures, where the “KKR” stands for the results from the standard multiple scattering theory (MST) method.

4.2. Strong Scalability
The complexity of the FP MST method can be estimated by the
weak scaling test. A good strong scalability is a prerequisite to
an effective weak scaling test. Under the premise of good strong
scalability, the computational overhead can be revealed by the
execution time since the communication overhead contributes
a small percentage. We constructed a BCC supercell consisting
of 1024 niobium (Nb) atoms. The LIZ of each atomic site
contains 89 atoms. As illustrated in Table 2, the LSMS method
exhibits a good strong scalability. This is due to the two-level
parallelism over atoms and energy points implemented in MuST
package. The 1024 atoms are distributed over from 128 to 1024
MPI (message passing interface) processes. When the number of
MPI processes exceeds the number of atoms, a second level of
parallelization over energy points is performed.

The intrinsic parallelism comes from the fact that the
computation of the GF for each atom and each energy point
along the complex contour is essentially independent. Each
MPI process exchanges t-matrix with the others treating the
neighboring atoms in the LIZ region. There are no global

TABLE 2 | Strong scalability test of the full-potential multiple scattering theory

(MST).

#MPI 128 256 512 1024 2048

Execution time (s) per SCF iteration 17581 8804 4855 2456 1255

Parallel efficiency (%) 100.0 99.8 90.5 89.5 87.6

operations involved in the process of calculating the GF other
than few global sum operations such as the summation of the net
charge in each atomic cell for the determination of the electron
chemical potential. Consequently, theMSTmethod can be highly
parallelized, as shown in Figure 6.

4.3. Weak Scalability
In the weak scaling test, the system size and the number of MPI
processes are increased concurrently when one atom per MPI
process is kept unchanged. In the pure atom parallelization, we
observe a significant growth in the execution time with increasing
atoms, as shown in Table 3. Consequently, the overall complexity
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FIGURE 6 | (Color online) A schematic illustration of highly parallelized multiple

scattering theory (MST) method.

TABLE 3 | Weak scalability test of the full-potential locally self-consistent multiple

scattering (LSMS) method where tscf stands for the execution time on one SCF

iteration, tval the execution time on calculating the valence states based on

multiple scattering theory (MST), tpot the execution time on updating the effective

potential, txc the execution time on updating the exchange-correlation potential,

and t∗ to be defined in Section 4.4 is the execution time for an interpolation step in

updating the Coulomb potential.

#atoms tscf (s) tval (s) tpot (s) t∗ (s) txc (s)

64 391.45 249.28 141.86 120.84 19.94

128 517.29 252.65 263.03 241.74 19.79

256 818.45 253.18 562.11 539.58 20.46

512 1374.58 255.09 1115.19 1092.71 19.97

1024 2479.77 255.05 2216.79 2182.25 19.98

of the FP MST method is not O(N). The execution time of one
SCF iteration can be divided into two parts. One part is for the
solution of the valence state by KKR-GF method. The other is
used to update the effective potential. They are denoted by tval
and tpot in Table 3. It can be observed that tval remains almost
the same while tpot grows with increasing system size. So the
linear scaling is achieved in solving the GF function, which is
consistent with the tests in Thiess et al. (2012). As the system
size becomes large, the computational overhead on updating the
effective potential becomes gradually dominant, which deserves
further analysis.

4.4. Scaling Analysis for Updating Potential
As shown in Table 3, the execution time on updating the
exchange-correlation potential, denoted by txc, remains almost
the same as system size increases. Therefore, we concentrate on
the Coulomb potential. In the FPmethod, the total charge density

is divided into the following two parts:

ρ(r) = ρ̃(r)+ ρ̂(r), (10)

where ρ̃ is chosen as a smoothly varying density and ρ̂

is the sphere-bounding non-overlapping charge density. The
associated Coulomb potential with ρ̂ can be formulated as like

V̂Coul(r) = 2

∫

R3

ρ̂(r′)+ ρ0

|r′ − r|
dr′ − 2

∑

j

Zj
∣

∣r − Rj

∣

∣

, (11)

which can be calculated by the multi-pole expansion technique
together with the periodic boundary condition and the constraint

∫

R3
ρ̂(r)dr + ρ0

∫

R3
dr =

∑

j

Zj. (12)

The procedure is somewhat analogous to the calculation of the
Coulomb potential in muffin-tin approximation. The difference
is that the non-spherical potential in FP method has multi-pole
expansion while the spherical one in muffin-tin approximation
has only zero-order moment. Actually, both the two schemes
have linear scaling.

The charge density ρ̃ can be regarded as a pseudo electron
density varying smoothly. The associated Coulomb potential can
be determined by solving the Poisson equation:

− ∇2Ṽ(r) = 4πρ̃(r). (13)

And fast Fourier transform (FFT) is used for solving Equation
(13). In the MST method, both the electron density and one-
electron potential are discretized on the spherical mesh around
each atom. Therefore, an interpolation from the uniform FFT
mesh to the spherical mesh is required. More specifically, the
radial part ṼL is calculated from ρ̃ on the uniform FFT grids. The
computational scheme can be formulated as the integral form:

ṼL(rj) =
2

π
(−ı)l

∫

R3
ρ̃(r′)FL(rj, r

′
j)dr

′, (14)

where FL(rj, r′j) is defined as follows:

FL(rj, r
′
j) ≡

∫

R−3\{0}

1

|G|2
jl(|G|rj)Y

∗
L (Ĝ)e

ıG·r′jdG, (15)

where jl is the spherical Bessel function and YL is the spherical
harmonic. In Equations (14) and (15), rj stands for the radial
grid point, r′ and G represent the real-space FFT grid and the
corresponding reciprocal grid, respectively, and r′j = |r′ − Rj|.

Since FL(rj, r′j) is independent of the electron density, it can
be setup once before the SCF iteration. However, the summation
in Equation (14) scales as Nrad · N · NFFT, where Nrad is the
number of radial grids and set to be 2001 in the test. And NFFT

is proportional to the number of atoms N, which yields O(N2)
scaling in performing the interpolation like Equation (14). We
locate the code segment to perform (14) and denote its execution
time by t∗ in Table 3. As shown in Figure 7, the calculations
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FIGURE 7 | (Color online) The log–log diagram of CPU time vs. system size

where the CPU time is the product of the execution time by the number of MPI

processes.

of valence states scale as O(N), while the interpolation from
FFT uniform grid to the atom-centered radial grid exhibits an
O(N2) scaling, which results in an overall scaling of O(N1.6).
Therefore, a more efficient algorithm to update the Coulomb
potential in angular momentum expansion is critical to achieve
a linear scaling FP MST method.

5. CONCLUSION

We have investigated the accuracy and scalability of the FP MST
method implemented in MuST package. The MST predicted
lattice parameter for V, Nb, and Mo are consistent with the other
calculations and the available experiments. The MST predicted
bulk moduli, pressure derivative of the bulk modulus, and the
c′ elastic constant are acceptable, expect for a relatively larger
difference in the bulk modulus of V. While for c44, there exists
large difference between theoretical and experimental results, the

possible reasons have been discussed in details. It is suggested that
a proper treatment of the semi-core states should be considered
in the future version of the MuST package.

A significant advantage of the MST method is the reduced
scaling in the calculations of metallic systems. Although the
linear scaling has been reported previously under the muffin-tin
approximation, tests in this work imply that the overall scaling of
the FP method is not O(N). It is suggested that the updating of
the Coulomb potential in angular momentum expansion should
be further improved. Nevertheless, a favorable scaling asO(N1.6)
can be achieved in the full-potential MST method, compared to
theO(N2) toO(N3) scaling of frequently-usedmethods. Another
advantages in MuST is the treatment of chemical and magnetic
disorders based on the CPA.

In summary, the FP MST method shows the potential
to simulate more complicated materials on massively parallel
supercomputers. And MuST provides a reliable and accessible
way to large-scale first-principle simulations of metals and alloys.
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