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A B S T R A C T

Compression index Cc is an essential parameter in geotechnical design for which the effectiveness of correlation is
still a challenge. This paper suggests a novel modelling approach using machine learning (ML) technique. The
performance of five commonly used machine learning (ML) algorithms, i.e. back-propagation neural network
(BPNN), extreme learning machine (ELM), support vector machine (SVM), random forest (RF) and evolutionary
polynomial regression (EPR) in predicting Cc is comprehensively investigated. A database with a total number of
311 datasets including three input variables, i.e. initial void ratio e0, liquid limit water content wL, plasticity index
Ip, and one output variable Cc is first established. Genetic algorithm (GA) is used to optimize the hyper-parameters
in five ML algorithms, and the average prediction error for the 10-fold cross-validation (CV) sets is set as the
fitness function in the GA for enhancing the robustness of ML models. The results indicate that ML models
outperform empirical prediction formulations with lower prediction error. RF yields the lowest error followed by
BPNN, ELM, EPR and SVM. If the ranges of input variables in the database are large enough, BPNN and RF models
are recommended to predict Cc. Furthermore, if the distribution of input variables is continuous, RF model is the
best one. Otherwise, EPR model is recommended if the ranges of input variables are small. The predicted cor-
relations between input and output variables using five ML models show great agreement with the physical
explanation.
1. Introduction

Compressibility of soils is described using the compression index Cc,
which is generally determined by the oedometer test in geotechnical
design. The accurate prediction of Cc would facilitate the understanding
of soil volume change and it is of significance to calculate consolidation
settlement in engineering practice such as foundation (Yang et al., 2019),
tunneling (Shen et al., 2014; Wu et al., 2020; Zhang et al., 2020a),
embankment (Yin et al., 2015; Zhu et al., 2020). Compared with natural
clays, properties of reconstituted clays represent the inherent properties,
because they are inherent to the soil and independent of the natural
deposits with chemical environment (Hong et al., 2010; Yin et al., 2011;
Zhu et al., 2016; Yin et al., 2017a). The properties of reconstituted clays
thus provide a basis for understanding the in situ state of natural clays
and the influence of structure on its in situ properties (Burland, 1990).
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Therefore, this study merely focuses on the compressibility of recon-
stituted clays.

Numerous empirical correlations have been proposed to predict Cc
based on influential or state parameters of the soils. A linear correlation
between Cc and liquid limit water content wL proposed by Skempton and
Jones (1944) must be the most widely accepted one. Thereafter, Cc
predictive correlations based on plasticity index Ip (Wroth and Wood,
1978; Sridharan and Nagaraj, 2000; Nath and DeDalal, 2004; Tiwari and
Ajmera, 2012), shrinkage limit Is (Sridharan and Nagaraj, 2000), void
ratio at the liquid limit eL (Nagaraj and Murthy, 1983, 1986; Burland,
1990) were proposed, as summarized in Table 1.

Recently, machine learning (ML) algorithms have been extensively
used to develop soil properties prediction models and improve the
prediction accuracy in comparison with conventional empirical for-
mulations because of their capability of capturing the non-linear
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Table 1
Existing Cc empirical formulations for reconstituted clays.

Variable Formulation Reference

wL Cc ¼ 0:007ðwL � 10Þ Skempton and Jones (1944)

Ip Cc ¼ 0:5IpGs Wroth and Wood (1978)
Cc ¼ 0:014

�
Ip þ 3:6

�
Sridharan and Nagaraj (2000)

Cc ¼ 0:015Ip � 0:0198 Nath and DeDalal (2004)
Cc ¼ 0:0014Ip Tiwari and Ajmera (2012)

Is Cc ¼ 0:007ðIs þ 18Þ Sridharan and Nagaraj (2000)

eL Cc ¼ 0:2237eL Nagaraj and Murthy (1983)
Cc ¼ 0:2343eL Nagaraj and Murthy (1986)
Cc ¼ 0:0256eL � 0:04 Burland (1990)

Note: wL ¼ liquid limit; Gs ¼ specific gravity; Ip ¼ plasticity index; Is ¼ shrinkage
limit; eL ¼ void ratio at the liquid limit.
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relationships among high-dimensional variables (Chen et al., 2019a, b;
Zhang et al., 2019). Applications include the prediction of water con-
tent (Arsoy et al., 2013; Zhou et al., 2016), temperature (Kundu et al.,
2017; Feng et al., 2019), creep index (Zhang et al., 2020b), shear
strength (Pham et al., 2018), unconfined compression strength
(Gunaydin et al., 2010; Ghorbani and Hasanzadehshooiili, 2018), cyclic
behavior (Zhang et al., 2020c) and assessment of soil liquefaction (Alavi
and Gandomi, 2012). Overall, ML algorithms used in these research
Fig. 1. Schematic view of ML algorithms fo
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works cover back-propagation neural network (BPNN), extreme
learning machine (ELM), support vector machine (SVM), random forest
(RF) and evolutionary polynomial regression (EPR). In regard to the
application of ML algorithms in predicting Cc, Park and Lee (2011) first
adopted BPNN for predicting Cc, Yin et al. (2016b) proposed an inte-
grated EPR and real-coded genetic algorithm, and Kirts et al. (2018)
developed a model based on SVM. Hitherto, only these three ML algo-
rithms have been tried for predicting Cc. Nevertheless, the performance
of ML algorithms in a prediction issue is different and there is no unique
theory to identify which one is the optimum algorithm. The application
of other ML algorithms except the BPNN, EPR and SVM may improve
the Cc predictive accuracy and further facilitates understanding of the
correlations between Cc and influential factors. Hence, a comprehensive
study of different ML algorithms in predicting Cc is worth investigating.

This study focuses on the comparison of the performance of five
commonly used ML algorithms, i.e. BPNN, ELM, SVM, RF and EPR, in
predicting Cc of reconstituted clays. A database including various
reconstituted clays is first established. Meta-heuristic genetic search al-
gorithm is employed to optimize hyper-parameters of fiveML algorithms.
The average prediction errors for the 10-fold cross-validation (CV) sets
are used as the fitness function in the GA. The performance of ML algo-
rithms is also compared with existing empirical prediction formulations
of Cc. The correlations between influential factors and Cc using ML
models are particularly investigated.
r: (a) BPNN; (b) ELM; (c) SVM; (d) RF.
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2. Methodology

2.1. Machine learning algorithms

2.1.1. Back-propagation neural network
Back-propagation neural network (BPNN) is a type of feedforward

neural network, characterized by propagating errors from the output
layer for finding a set of weights that ensure that the output value pro-
duced by the network is the same as the actual output value (Rumelhart
et al., 1986). The generalization ability of BPNN is strong, but the
determination of the values of numerous parameters including weights,
biases and hyper-parameters is a hard task. A BPNN consists of an input
layer, any number of hidden layers and an output layer, as shown in
Fig. 1a. The performance of BPNN depends on the number of hidden
layers and hidden neurons. If they are fixed, the values of weights and
bias can be determined by gradient descend. The outputs of the hidden
and output layers are expressed as:

H1 ¼ f ðW1Xþ θ1Þ (1)

O¼ gðVHþ θoÞ (2)

where, H ¼ the hidden layer output matrix; X, O ¼ actual input and
output matrix, respectively; W1, V ¼ weights matrix on the connections
between input and hidden neurons, between hidden and output neurons,
respectively; θ1, θo ¼ bias vectors on the connections between input and
hidden neurons, between hidden and output neurons, respectively. f, g ¼
activation functions in hidden and output layers, respectively, that are,
tansig and purlin in this study, which can be formulated as:

tansig : f ðxÞ¼ 2
1þ e�2x

� 1 (3)

purlin : gðxÞ¼ x (4)

2.1.2. Extreme learning machine
Extreme learning machine (ELM) is a modification of the single-

hidden layer feedforward neural network, as shown in Fig. 1b. The
weights of input layer and the biases of hidden layer are assigned
randomly, and the weights of the output layer are determined analyti-
cally through simple generalized inverse operation of the hidden layer
output matrices (Huang et al., 2006), thereby the learning speed can be
thousands of times faster than traditional feedforward network algo-
rithms, but the generalization ability is sacrificed (Chen et al., 2019b).
ELM can be represented as:

H¼ f ðWXþ θÞ (5)

minβkHβ�Ok (6)

where, H ¼ the hidden layer output matrix; X, O ¼ actual input and
output matrix, respectively; β¼weight matrix connecting the hidden and
the output layers. The learning process of ELM algorithm is achieved by
calculating β.

2.1.3. Support vector machine
Support vector machine (SVM) develops upon structural risk mini-

mization, thereby it can be used to train model with small datasets and
the computational complexity depends on the number of support vector
rather the number of input parameters, but computational cost of SVM is
expensive for the training of numerous datasets. Datasets are mapped to a
high-dimension space by a kernel trick, where a linear decision surface or
hyperplane is constructed (Cortes and Vapnik, 1995), as shown in Fig. 1c.
In this figure, γ(i), which is term as geometric margin, donates the dis-
tance of training sample (x(i), y(i)) to the decision boundary, and it is
orthogonal to the hyperplane. For all samples in the training set, the
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smallest geometric margin is represented by:

γ¼ min
i¼1;2;…;m

γðiÞ (7)

The optimal SVM classifier is the one which can separate the positive
and negative points of the training set with a largest “gap”, that is, γ
reaches the maximum value, which can be obtained by:

minγ;ω;b
1
2
kωk2 þ C

Xm
i¼1

ξi

s:t:yðiÞððωÞTxðiÞ þ bÞ � 1� ξi; i ¼ 1; 2;…;m; ξi � 0

(8)

where,m¼ a total number of training samples; ω, b¼weights and biases;
ξ ¼ slack parameter; C ¼ penalty parameter. Radial basis function (RBF)
kernel is utilized in this research for mapping the inputs to a high-
dimension space, which is formulated as:

RBF : Kðx; zÞ¼ exp
�� γkx� zk2� (9)

2.1.4. Random forest
Random forest (RF) is an ensemble learning algorithm with the

integration of bootstrap aggregating (Breiman, 1996) and random sub-
space (Ho, 1998) methods. The prediction performance of RF is strong
due to the integration of numerous decision trees, but the output of RF is
limited to the combination of values of output parameters (Zhang, 2019).
In bagging, n bootstrap sets are made by sampling with replacement N
training examples from the training set. The number of samples in the
bootstrap training set is arbitrary, less than the original training set.
Thereafter each bootstrap set is used to build a decision tree, as shown in
Fig. 1d. Each node in a decision tree represents a classification criterion
and the leaves of the tree represents the output labels, thereby a decision
tree classifies a bootstrap training sample by testing random features at
each node. Consequently, a regression space can be determined. The
ultimate result can be obtained by aggregating the outputs of all trees
(Liaw and Wiener, 2002), which can be expressed as:

y¼ 1
n

Xn
i¼1

yiðxÞ (10)

where, yi(x) ¼ predicted output of a tree for an input vector x.

2.1.5. Evolutionary polynomial regression
Evolutionary polynomial regression (EPR) is a type of genetic pro-

gramming including two-stage technique for constructing symbolic
models: (i) structure identification, and (ii) parameter estimation
(Giustolisi and Savic, 2006). In the first stage, genetic algorithm (GA) is
used to search for symbolic structures of EPR and parameters values are
estimated by solving a Least Squares (LS) linear problem in the second
stage. Unlike the ML algorithms mentioned above, a simple formulation
is particularly presented in EPR algorithm for describing the correlation
between input and output variables, which is convenient to be used, but
EPR is not suitable to solve high-dimensional and complex problems. A
general EPR expression can be formulated as:

y ¼
Xm
j¼1

aj ⋅ zj þ a0 (11)

where, y ¼ predicted output; zj ¼ jth transformed variable; aj ¼ an
adjustable parameter for the jth term; a0 ¼ an optional bias.

The key objective of the EPR is to search the best form of the function,
i.e. the number of transformed variables and a combination of vectors of
independent input variables. Herein, the transformed variable is ob-
tained by:

zj ¼ xESðj;1Þ1 ⋅… ⋅ xESðj;iÞi ⋅… ⋅ xESðj;kÞk (12)



Table 2
Values of parameters in the GA algorithm.

Algorithm pcross pmutation Population Generation

GA 0.7 0.1 20 100/1000

Note: 100¼maximum generation in BPNN, SVM, RF and EPR; 1000¼maximum
generation in ELM.
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where, xi ¼ ith input variable; k ¼ a total number of input variables;
ESm�k ¼ exponents matrix, it is determined by GA. Thereafter, the
adjustable parameters and an optional bias can be determined by the
least square regression.

2.2. Genetic algorithm

Genetic algorithm (GA) is a meta-heuristic search and optimization
technique inspired by nature evolution (Holland, 1975). GA is one of the
most accepted global optimization algorithm and has been extensively
utilized in geotechnical engineering such as identification of parameters of
constitutive models (Jin et al., 2016b, 2017; Yin et al., 2016a, 2017b),
model selection (Jin et al., 2016a), slope (Tran and Srokosz, 2010; Liu
et al., 2019), embankment (Guo et al., 2018; Müthing et al., 2018),
tunneling (Koopialipoor et al., 2017; Liu and Liu, 2019), pile foundation
(Jin et al., 2018a, 2018b), excavation (Jin et al., 2019). Therefore, the GA
is employed to optimize hyper-parameters in this study. Fig. 2 presents the
flowchart of the GA algorithm. GA starts from generating a population of
individuals. Each individual is represented by a chromosome based on a
coding scheme (real-coded GA). The performance of each individual can
be evaluated by the fitness value. The best individuals in the population –

those with lowest fitness value – are selected and then modified through
crossover andmutation operations at each generation. A new population is
thus created. The process continues until satisfies the termination condi-
tion, that is, whether or not reaches the maximum generation and fitness
value converges at the constant value (100 generations for BPNN, SVM, RF
and EPR, 1000 generations for ELM due to the slow converge rate in this
study). Common genetic operators used in GA, roulette wheel selection
and real valued recombination methods are adopted in this research. The
values of parameters used in GA is presented in Table 2.

2.3. Evaluation indicators

To evaluate the performance of ML models, three commonly used
indicators “Mean Absolute Error (MAE)”, “Ranking Distance (RD)” and
“Nash–Sutcliffe model Efficiency coefficient (NSE)” are adopted. MAE is
an unbiased measure to evaluate the average prediction error of model.
RD and NSE can be used to assess the accuracy and precise of model
(Nash and Sutcliffe, 1970; Orr and Cherubini, 2003). The combination of
such three indicators enables to comprehensively evaluate model per-
formance. The expression of these three measures can be obtained by
Fig. 2. Flowchart of GA algorithm.
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MAE¼ 1
n

Xn
jri � pij (13)
i¼1

RD¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1� μ

�
pi
ri

��2
þ
�
δ
pi
ri

�2
s

(14)

NSE¼ 1�
Pn

i¼1ðpi � riÞ2Pn
i¼1ðri � rÞ2 (15)

where, r ¼measured output value; p ¼ predicted output value; r ¼mean
of measured output values; n ¼ a total number of datasets; μ ¼ mean
value of pi/ri; δ ¼ standard deviation of pi/ri. Low values of MAE and RD,
high value of NSE indicate a model with great performance.

2.4. K-fold cross validation

The whole process of establishing a ML model includes three phases:
training, validation and test. The objective of validation is to improve the
robustness of training models and avoid overfitting, the training model is
thus more reliable for the test set. Herein, k-fold cross-validation (CV)
method has been extensively used to validate model (Stone, 1974). In
this method, the original training set is randomly divided into k
sub-datasets. K–1 sub-datasets are used to train models and a remaining
sub-dataset is used to validate models. Each sample thus has opportunity
to train and validate models. Kwas set as 10 in this study according to the
research conducted by Kohavi (1995).

At each round, MLmodels with a fixed set of hyper-parameters will be
trained ten times with random nine sub-datasets as the training set, and
the performance of ML models will be evaluated by the mean prediction
error for the remaining one sub-dataset, which can be formulated by:

Fitness¼ 1
10

X10
i¼1

MAEi (16)

where, MAEi ¼ prediction error for the ith validation set. Eq. (16) is
defined as the fitness function in the GA algorithm.

3. Hybrid meta-heuristic and machine learning algorithms

3.1. Model framework

Fig. 3 presents the proposed process of establishing hybrid meta-
heuristic and ML-based Cc prediction models. A database including
influential factors and Cc is first formed. The selection of input vari-
ables is vitally important to the model performance, and the correla-
tion of selected parameters to Cc will be examined by grey relational
analysis (GRG). GRG can account for the geometric similarity of the
time series of the two parameters, and a large GRG value indicates a
strong correlation exists between two parameters, thereby it has been
extensively applied to evaluate uncertain correlations among param-
eters (Jiang and He, 2012; Li and Chen, 2019). Given a reference
sequence xr ¼ xr (xr(1), xr(2), …, xr(n)) and a compared sequence xi ¼
xi (xi(1), xi(2), …, xi(n)), the grey relational coefficient between two
sequences at the jth (j ¼ 1, 2, …, n) criterion can be obtained by:



Fig. 3. Flowchart of proposed hybrid meta-heuristic and ML Cc prediction model.

Table 3
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γðxrðjÞ; xiðjÞÞ¼
min

i
min

j
jxrðjÞ � xiðjÞj þ ξmax

i
max

j
jxrðjÞ � xiðjÞj

(17)

Hyper-parameters in five ML algorithms.

Algorithm Hyper-parameters Description Range

BPNN l_hidden layers Number of hidden layers 1
n_neurons Number of neurons in hidden layers 1–8

ELM n_neurons Number of neurons in hidden layers 1–8
SVM C_penalty Penalty parameter of the error term 0–200

g_width index Width index of kernel functions 0–200
RF n_tree Number of trees in the forest 1–200

m_try Number of features for splitting at each
node

1–3

EPR z_transformed
term

Number of transformed variables 1–8

Table 4
Methods for determining the number of hidden neurons.

Method Reference Number of
neurons

� 2Ni þ 1 Nielsen (1987) 7
2þ Ni � No þ 0:5No � ðN2

o þ NiÞ � 3
No þ Ni

Paola (1994) 1

2Ni=3 Wang (1994) 2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ni � No

p
Masters (1994) 2

2Ni Kaastra and Boyd
(1996)

6

Note: Ni ¼ the number of input variables; No ¼ the number of output variables.
jxrðjÞ � xiðjÞj þ ξmax
i
max

j
jxrðjÞ � xiðjÞj

where ξ¼ the resolving coefficient in the range [0, 1], usually considered
to be 0.5. The GRG between sequences xr and xi is defined by:

γðxr; xiÞ¼ 1
n

Xn
j¼1

γðxrðjÞ; xiðjÞÞ (18)

To train a well-performed ML based model, it is necessary to collect
numerous datasets. Therefore, this study uses three parameters which
can be extensively collected and exhibit strong relationships with Cc, i.e.,
e0, wL and Ip. It should be noted that the mineralogical composition of
each sample and the void ratio at liquid limit are the parameter most
directly related to intrinsic compression index (Giasi et al., 2003; Cerato
and Lutenegger, 2004; Tiwari and Ajmera, 2012; Cao et al., 2018; Hab-
ibbeygi et al., 2018). However, the datasets including the void ratio at
liquid limit are limited, which hinders to develop a ML based model
involving the void ratio at liquid limit with excellent generalization
ability. It has been reported that liquid limit wL and plasticity index Ip
exhibit clear relationships with Cc and have been used in empirical for-
mulations (Skempton and Jones, 1944; Tiwari and Ajmera, 2012). In
addition, the compressibility behavior is directly affected by initial void
ratio e0 (Nagaraj and Murthy, 1983; Burland, 1990; Tiwari and Ajmera,
2011). Herein, 80% of data are randomly selected for training model
while the remaining are used to test model. All the datasets are first
mapped to the interval (�1, 1) using Eq. (22). In this way, the compu-
tation cost can decrease dramatically and the different magnitude of
input variables can be eliminated.

xnorm ¼ x� xmin

xmax � xmin
ðxmax � xminÞ þ xmin (19)

The objective at the process of training model is to identify the
optimum hyper-parameters in five ML models. Table 3 summarizes the
hyper-parameters in five ML algorithms and the range of these hyper-
parameters. One hidden layer in BPNN is sufficient enough consid-
ering merely three input variables. The ranges of hidden neurons in
BPNN and ELM are determined according to the published research
works as listed in Table 4. The ranges of hyper-parameter in SVM and
RF are large enough to determine the optimum values. The maximum
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number of terms in the EPR is set as 8 considering that the optimum
number of terms is 5 in Cc prediction model proposed by Yin et al.
(2016b) and too many terms can cause overfitting. At each round, GA
randomly assigns hyper-parameters to ML algorithms. The performance
of ML algorithms with this set of hyper-parameters will be evaluated by
the fitness value. If the termination condition is satisfied, the optimum
hyper-parameters in one ML algorithm can be determined. Otherwise,
GA will assign a new set of hyper-parameters to ML algorithms. After
the optimum hyper-parameters of five ML algorithms are determined,
the performances of five ML Cc prediction models will be comprehen-
sively compared by the test set.
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3.2. Data analysis

Compressibility tests for determining Cc have been conducted by
numerous studies. To develop a general Cc prediction model for all
reconstituted clays, the data used in this research were collected from
various reconstituted clays (including silty clays) in the world. A total
number of 331 datasets were particularly collected, and the statistical
properties of these datasets are presented in Table 5. The diagonal line in
Fig. 4 presents the histograms of all variables in the database and the
values of mean and standard deviation (SD). Scatter plots of pairwise
variables are also plotted in this figure. It can be observed that all vari-
ables cover a wide range of values and roughly presented a lognormal
distribution, which sufficiently extend the applicability of the proposed
model.

Grey relational grade (GRG) has been extensively employed to
evaluate uncertain correlations among variables in a system (Jiang and
He, 2012; Li and Chen, 2019). Table 6 presents the GRG values among
input and output variables. It can be observed that wL has the largest
GRG value with 0.88, followed by Ip with 0.85 and e0 with 0.81,
respectively. Overall, GRG values of all input variables are much larger
than 0.8, showing high correlations between input and output variables.
It indicates that the selected influential factors are appropriate to pre-
dict Cc.

4. Results

4.1. Determination of hyper-parameters

Fig. 5 shows the evolution of the fitness values in five ML algo-
rithms. It can be observed that the evolution of fitness values is obvi-
ously different and ultimately converges at various values. The
maximum generation in BPNN is 72. The convergence value decreases
with the increase in the hidden neurons, but it holds steadily when the
number of neurons exceeds 7. Hence, the optimum number of hidden
neurons in BPNN is here identified as 7. In ELM, the convergence rate is
relatively slow, which is attributed to the principle of ELM as mentioned
before. The performance of ELM depends on the weights of input layer
and biases of hidden layer, thereby the parameters which need to be
optimized are numerous, causing slow convergence rate. Overall, the
variation in the fitness value can be negligible when the generation
exceeds 500. The optimum number of hidden neurons in ELM is here
identified as 3. In contrast, the fitness values of SVM and RF keep
constant from the initial generation, which is due to the fact that only
two parameters need to be optimized in these two algorithms. In EPR,
the maximum generation is 67. The convergence value decreases with
the increase in the number of terms and reaches minimum value with
six terms, then starts to increase with the continuous increase in the
number of terms.

Once the fitness value converges at a steady value, the corresponding
hyper-parameters are defined as the optimum values. Table 7 summa-
rizes the optimum hyper-parameters, convergence values and computa-
tional cost in five ML algorithms. It can be observed that the minimum
convergence value (0.003265) appears in the RF algorithm, followed by
BPNN (0.04163), ELM (0.04252), SVM (0.06657) and EPR (0.08291).
Compared with other ML algorithms, EPR presents a clear Cc prediction
formulation. The optimum EPR formulation with six terms in this study
could then be expressed as:
Table 5
Statistical properties of parameters.

Parameter Max. Min. Mean

e0 4.643 0.663 2.18
wL 166.2 25 67.95
Ip 113.2 0.23 31.30
Cc 0.12 1.34 0.46
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Cc ¼ 0:185419þ 158:8564
1

w2 I
� 2:23074

1
e2w I

þ 0:30408
�
Ip
w

�2
L p 0 L p L

þ 0:030177e20 þ 0:0000792
w2

L

e0
� 0:00461

wL

e0
(20)

4.2. Prediction of Cc for the validation and test sets

To reveal the reason behind the difference in the convergence value in
five ML prediction models, Fig. 6 presents the distribution of MAE values
for the ten CV sets in five ML algorithms. It can be observed that the
evolution of MAE in five ML algorithms is roughly identical. The ranges
of MAE in BPNN, ELM and RF are less than that in SVM and EPR.
Meanwhile, in ten CV sets, the corresponding MAE values produced by
BPNN, ELM and RF are less than that in SVM and EPR. Furthermore, the
maximumMAE value of outlier is 0.29131 appeared in EPR, Followed by
SVM, the maximum MAE value of the outlier is 0.21774. These factors
cause the convergence values in SVM and EPR are obviously larger than
that in BPNN, ELM and RF.

Once the optimum hyper-parameters are determined in five ML al-
gorithms. The test set will be used to evaluate the feasibility and appli-
cability of these models. Fig. 7 presents the scatter plots of the predicted
Cc for training and testing sets using five optimummodels, and the values
of three performance indicators are also presented in the figures. Such
values are summarized in Table 8. It is clear that RF model outperforms
the remaining four ML models with the highest value of NSE and the
lowest values of MAE and RD. The predicted Cc for the training set show
perfect agreement with the measured Cc, in which both MAE and RD are
approximately identical to zero and the NSE is equal to 1. The predicted
Cc for the test set is also close to the P ¼ M line. The MAE and RF values
for the testing set, 0.0143 and 0.08, respectively, are much less than that
generated by remaining four ML algorithms. The predicted Cc for the
training and test sets using BPNN also exhibits excellent agreement with
the measured Cc with small values of MAE and RD. The predicted Cc
scatters around the P ¼ M line, and the NSE value for the testing set
generated by BPNN is the lowest among five ML algorithms. Overall,
regarding the testing set, NSE values produced by five optimum ML
models are roughly identical; RF yields the lowest MAE and RD values,
followed by BPNN, ELM, EPR and SVM. Due to the scarce datasets for the
Cc larger than 0.8, the predicted Cc using ELM, SVM and EPR based
models obviously deviates from the measured Cc as the measured Cc
exceeds 0.8, whereas BP and RF based models still present high accuracy
for predicting large Cc. Such factors indicate the generalization ability of
BP and RF based models outperform ELM, SVM and EPR based models.

5. Discussions

5.1. Comparison with empirical formulations

To compare the predictive ability of ML models with the empirical
formulations, four commonly used empirical formulations are used for
predicting Cc. Fig. 8 presents scatterplot of the predicted Cc for the test set
using four empirical formulations, and the relevant correlations. MAE,
RD and NSE values are also included in the figure. It can be observed that
the predicted Cc is widely distributed and deviates from the P ¼ M line.
The prediction error using empirical formulation proposed by Skempton
and Jones (1944) is lowest with MAE ¼ 0.1065, RD ¼ 0.35 and NSE ¼
0.61, but they are much larger than the prediction error of five ML-based
models.

5.2. Parametric investigation

A robust ML model exhibits smooth functions to describe the corre-
lations between input and output variables, and exhibits physical
explanation for these correlations (Shahin et al., 2005). Therefore, the
correlations between three input variables and Cc in five optimum ML



Fig. 4. Distribution of input and output variables.

Table 6
GRG values between input and output variables.

Variables e0 wL Ip

GRG 0.81 0.88 0.85
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algorithms are investigated, as shown in Fig. 9. Herein, the values of
studied parameter vary from the minimum to maximum, and the other
parameters maintain at mean values. The smooth correlations between
three input variables and Cc can be observed in ML models except RF,
where the variation of predicted Cc is dramatic, although the general
trend is similar to other ML models. This is attributed to the principle of
RF algorithm. The performance of the RF algorithm depends on the
classification conditions (values of variables) at each node as mentioned
in the Random forest section. Furthermore, the classification conditions
are affected by the distribution of input variables. Continuous distribu-
tion of input variables will generate continuous values of classification
conditions, whereas the discrete distribution will generate discrete
values of classification conditions. It means that the predicted results
using RF may wrongly enter output labels if the values of new datasets do
not appear in the original database, because the classification conditions
do not include the values of new datasets. It can be observed from Fig. 4
that the distribution of e0 is much more continuous than wL and Ip.
Therefore, in Fig. 9, the correlation between e and predicted Cc is much
smoother than the remaining variables wL and Ip.

From the perspective of other four ML algorithms, it can be observed
from Fig. 9a that Cc increases monotonically with the increase in e0. The
difference among four ML models can be negligible when the e0 is less
than 4. When the e0 is larger than 4, the increase in the Cc in the EPR
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model is obviously larger than the remaining three MLmodels. In Fig. 9b,
Cc initially decreases with the increase in the wL, after reaching the
minimum value, Cc starts to increase with the continuous increase in the
wL. In Fig. 9c, the predicted Cc roughly increases monotonically with the
increase in Ip. Similar to the correlation between Cc and e0, the increase in
the Cc in the RF model is much larger than that in the remaining three ML
models. Overall, the correlations presented in Fig. 9 are consistent with
physical explanation, indicating robustness and reasonability of the
proposed RF models.

To investigate the generalization ability of five optimum models, a
database including a total number of 10,000 random samples is estab-
lished, in which it is assumed that each variable complies with lognormal
distributions (Zhang et al., 2009; Cao and Wang, 2014; Zhang et al.,
2018). Herein, the values of mean and standard deviation for each var-
iable are consistent with the measured values presented in Fig. 4. Fig. 10
shows the distribution of predicted Cc using five optimum ML models. It
can be observed that the predicted Cc presents a clear lognormal distri-
bution except the RF model, where numerous predicted Cc falls into the
range of 0.45–0.525. The reason behind this is similar to the correlations
between the input and out variables in the RF model. In EPR model, the
maximum predicted Cc reaches 3.9, severely losing reliability, because
the increase in the input variables causes the continuous increase in the
Cc in EPR model as mentioned before. In contrast, the predicted Cc using
the remaining four ML algorithms does not exceed the range of Cc in the
original database. The distribution of predicted Cc using BPNN, ELM and
SVM is roughly identical. Overall, the performance of ML models is
reliable for the unseen datasets, and the values of mean and standard
error for 10,000 random samples generated by five ML models are
roughly equal to the values of mean and standard error of the measured
Cc (0.458 and 0.219, respectively).



Fig. 5. Evolution of fitness values for: (a) BPNN; (b) ELM; (c) SVM; (d) RF; (e) EPR.

Table 7
Optimum values of hyper-parameters in five ML algorithms.

Algorithm Hyper-parameters Value Convergence value

BPNN l_hidden layers 1 0.04163
n_neurons 7

ELM n_neurons 3 0.04252
SVM C_penalty 132 0.06657

g_width index 84
RF n_tree 131 0.03265

m_try 1
EPR z_transformed term 6 0.08291
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5.3. Sensitivity analysis

Sensitivity analysis (SA) aims at investigating how model output
uncertainty can be apportioned to the uncertainty in each input variable
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(Saltelli and Sobol, 1995). There are two primary SA methods, namely
local sensitivity analysis (LSA) and global sensitivity analysis (GSA). The
calculation of LSA is to obtain the partial derivatives of the model
response with respect to input variables at a given point. LSA method is
useless if the relation between input and output variables is non-linear or
the correlations between input variables are strong. In contrast, GSA can
take into consideration the whole variable space, thereby the coupled
effect among input variables can be considered. In this study, a simple
linear correlation between input and output does not exist. Meanwhile,
three input variables e0, wL and Ip obviously exist strong correlation,
especially for wL and Ip. Therefore, GSA method is employed to investi-
gate the significance of input variables to clay compressibility in five ML
models.

Variance-based GSA method is used in this study, which has been
extensively used in geotechnical engineering (Zhang et al., 2017; Hamdia



_
_

Fig. 6. Distributions of MAE values in 10 CV sets.

Table 8
Summary of indicators for five ML algorithms.

ML algorithm Training set Testing set

MAE RD NSE MAE RD NSE

BPNN 0.0306 0.13 0.98 0.0325 0.15 0.99
ELM 0.0412 0.17 0.96 0.0457 0.17 0.98
SVM 0.0470 0.22 0.96 0.0465 0.22 0.98
RF 0.0008 0.00 1.00 0.0143 0.08 0.98
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et al., 2018; Zhao et al., 2018). The total-order index STi in
variance-based GSAmethodmeasures the effect of the input parameterXi
on the output variable as well as the coupled effect of the Xi and other
variables on the output variable. The calculation of STi proposed by
Jansen (1999) is adopted, as shown in Eqs. (24–26). The superiority of
this estimator has been demonstrated by Saltelli et al. (2010).
Fig. 7. Predicted Cc for training and testing sets by different
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STi ¼ 1� VðEðY jX�iÞ Þ
VðYÞ ¼ EðVðY jX�iÞ Þ
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where, A, B ¼ two independent sampling matrices with N/2 (N is the
total number of data in the training set) sets of data (see Eqs. (24) and

(25)).AðiÞ
B ¼ all columns are from A except the ith columnwhich is from B

(see Eq. (26)); f¼ prediction models, that are, optimum five optimumML
models in this study.
methods: (a) BPNN; (b) ELM; (c) SVM; (d) RF; (e) EPR.

EPR 0.0542 0.20 0.95 0.0523 0.17 0.98



Fig. 8. Predicted Cc using empirical formulations.
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Fig. 9. Correlation between predicted Cc and three input variables respectively
for: (a) initial void ratio e0; (b) liquid limit wL and (c) plasticity index Ip.
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A and B matrices (5000 � 3) derive from 10,000 random samples
generated in the Parametric investigation section. In order to compre-
hensively compare the significance of input variables in five ML models,
the sum of all input variables total-order index is assumed to be 1. The
total-order index proportion of each input variable in five ML models is
shown in Fig. 11. It is clear that the significance of three input variables in
five ML models is similar. Cc depends heavily on the e0, and the signifi-
cance of wL and Ip is roughly identical. Cc describes soil volume change
behavior and the change of soil volume relates to the compression of soil
void, e0 thus affects Cc dramatically. The significance of wL and Ip to Cc is
roughly identical in five ML models, which is consistent with experi-
mental results (Kootahi and Moradi, 2016). The results of GAS in the five
ML models harmonize with physical explanation, further indicating the
reliability of ML models in predicting Cc.

6. Conclusions

This study comprehensively investigated the performance of five
commonly used machine learning (ML) algorithms, i.e. back-propagation
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neural network (BPNN), extreme learningmachine (ELM), support vector
machine (SVM), random forest (RF) and evolutionary polynomial
regression (EPR) in predicting Cc. Genetic algorithm (GA) was adopted to
optimize the hyper-parameters in five ML algorithms. The average pre-
diction errors for the 10-fold cross-validation (CV) sets were used as the
fitness function in the GA, which could effectively enhance the robust-
ness of ML models and avoid overfitting problem.

Five ML models with only three input parameters including initial
void ratio e0, water content wL and plasticity index Ip obviously outper-
form the Cc empirical prediction formulations. For the test set, RF yields



Fig. 10. Distribution of predicted Cc for randomly generated data using: (a) BPNN; (b) ELM; (c) SVM; (d) RF; (e) EPR.

Fig. 11. Total sensitivity indices of three input variables.
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the lowest MAE, RD and highest NSE values, 0.0143, 0.17 and 0.98,
respectively, followed by BPNN, ELM, EPR and SVM. Parametric inves-
tigation indicates that predicted correlations between three input vari-
ables e0, wL, Ip for Cc using five ML models are roughly identical, showing
a good agreement with the physical explanation, which indicates the
generalization ability of ML-based models are acceptable.

From the perspective of the predicted Cc for the 10,000 random
datasets using five ML models, BPNN, ELM, SVM and RF models are
suitable for interpolation. and extrapolation. Results of variance-based
global sensitivity analysis indicate that the values of predicted Cc in ML
models primarily depend on the e0, and the significance of wL and Ip is
roughly identical. Overall, if the ranges of input variables in database are
large, RF-based model is recommended to predict Cc. Otherwise, if the
ranges of input variables in database are small, EPR model is recom-
mended. The explicit formulation of EPR-based model presented in this
study can be conveniently used in engineering practice, and user-friendly
application programming interface of RF-based model is developed for
ensuring its easy usage, which can be download at following link: https://
www.researchgate.net/publication/337918766_API_for_compression_i
ndex_prediction.
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Users can easily run the code and achieve the results presented in this
study. Furthermore, for the new datasets, the whole process can be easily
achieved by updating the datasets in the original database in the Excel
document.
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