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A B S T R A C T   

We have developed a hybrid machine learning (ML) model for the prediction and optimization of a gliding arc 
plasma tar reforming process using naphthalene as a model tar compound from biomass gasification. A linear 
combination of three well-known algorithms, including artificial neural network (ANN), support vector regres
sion (SVR) and decision tree (DT) has been established to deal with the multi-scale and complex plasma tar 
reforming process. The optimization of the hyper-parameters of each algorithm in the hybrid model has been 
achieved by using the genetic algorithm (GA), which shows a fairly good agreement between the experimental 
data and the predicted results from the ML model. The steam-to-carbon (S/C) ratio is found to be the most critical 
parameter for the conversion with a relative importance of 38%, while the discharge power is the most influ
ential parameter in determining the energy efficiency with a relative importance of 58%. The coupling effects of 
different processing parameters on the key performance of the plasma reforming process have been evaluated. 
The optimal processing parameters are identified achieving the maximum tar conversion (67.2%), carbon bal
ance (81.7%) and energy efficiency (7.8 g/kWh) simultaneously when the global desirability index I2 reaches the 
highest value of 0.65.   

1. Introduction 

Biomass has been regarded as one of the most important renewable 
energy sources for meeting the increasing energy demand as well as the 
mitigation of global climate change. Biomass gasification provides a 
sustainable and promising technical route for the production of high- 
value syngas (a mixture of H2 and CO), which can be utilized to pro
duce electricity, heat, chemicals, and fuels. However, the formation of 
undesirable contaminates (e.g. tars) in syngas remains a significant 
challenge to advance the gasification technology for large scale appli
cations. Tar, consisting of a range of aromatic hydrocarbons with rings, 
causes serious operational problems, including blocking, corrosion, and 
crashing the whole system. These tars contain a range of polycyclic ar
omatic hydrocarbons (PAHs), some of which can be toxic and carcino
genic. The content of tars in the syngas can range from 1 g/Nm3 up to 
100 g/Nm3, limiting the use of syngas for gas turbines, fuel cells and 
chemical/fuel synthesis. Therefore, effective removal of tars in biomass 
gasification to produce high-quality and clean syngas is critical for the 
biomass and bioenergy industries. 

Non-thermal plasma (NTP) has been regarded as a promising and 

emerging technology for the synthesis of fuels and chemicals at low 
temperatures and ambient pressure (Bogaerts et al., 2020; George et al., 
2021; Liu et al., 2019, 2017; Wang et al., 2019; Mei et al., 2019; Craven 
et al., 2020). Plasma processes can generate abundant energetic electrons 
and reactive species, which can break chemical bonds and rings of tar 
compounds, enabling thermodynamically unfavourable tar reforming to 
proceed at low temperatures. In addition, plasma processes can be oper
ated responsively with a quick start-up and shut-down, which offers the 
flexibility for integration with renewable energy sources (e.g., wind and 
solar power) for distributed chemical energy storage, especially when 
using surplus or intermittent electricity from renewable energy during 
peak moments on the grid. Up till now, the reported experimental studies 
mainly focused on the reforming of a range of tar model compounds, 
including toluene (Zhang et al., 2019; Trushkin et al., 2013; Liu et al., 
2017; Saleem et al., 2019a, 2019b; Zhu et al., 2020), benzene (Chun et al., 
2012; Gao et al., 2016; Mao et al., 2018), naphthalene (Wang et al., 2019; 
Wu et al., 2017; Liu et al., 2019; Mei et al., 2019), anthracene (Chun et al., 
2011), and phenanthrene (Kong et al., 2019), using different plasma 
sources (e.g., dielectric barrier discharge (DBD) (Liu et al., 2018; Xu et al., 
2018; Wu et al., 2018), gliding arc discharge (GAD) (Liu et al., 2017; 
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Zhang et al., 2019; Yang and Chun, 2011; Du et al., 2007; Yu et al., 2010; 
Nunnally et al., 2014; Zhu et al., 2016), and microwave (MW) plasma 
(Jamróz et al., 2018; Sun et al., 2018), etc.). However, plasma reforming 
of tars is a complex process and the process performance is influenced by a 
wide range of processing parameters (Młotek et al., 2020; Tao et al., 
2013). Most of the previous works have simply investigated the effect of 
an individual processing parameter on the plasma tar reforming, while no 
efforts have been dedicated to investigating the coupling effects of various 
parameters on the plasma reforming of tars, which is critical for the 
further optimization and development of plasma reforming technologies. 
Although plasma modeling can be helpful to understand the plasma 
reforming process to some extents, developing a plasma chemical kinetic 
model to predict and understand the plasma tar reforming process re
mains a significant challenge as key reaction data (e.g., cross-section, rate 
constant) for large carbon molecules is not available. In addition, the 
multi-length-scale complexity in the plasma tar reforming process cannot 
be fully captured by plasma modeling. 

Recently, machine learning (ML) has attracted increasing interest as 
a powerful tool for the prediction and optimization of a range of 
chemical processes. The use of ML for plasma gas conversions and air 
pollution control has also been explored. (Liu et al., 2014; Zhu et al., 
2016; Istadi and Amin, 2007; Chang et al., 2019; Ye et al., 2020) Tu and 
co-workers developed a three-layer back-propagation (BP) artificial 
neural network (ANN) for the prediction of a complex plasma 
non-oxidative methane conversion process (Liu et al., 2014). The 
discharge power was found to be the most important parameter in the 
plasma conversion of methane, while the excitation frequency of the 
plasma system was identified as the least important parameter affecting 
the plasma process. Zhu et al. (2016) developed a three-layer ANN 
model to get new insights into the effect of different operating param
eters on the post-plasma catalytic removal of methanol. The catalyst 
composition (i.e. Mn/Ce molar ratio of Mn-Ce oxide catalysts) was found 
to be the most critical parameter in determining the methanol removal 
efficiency. Chang et al. developed an ANN model to better understand 
the effect of four experimental parameters (discharge power, initial 
concentration of toluene, flow rate, and relative humidity) on the 
post-plasma catalytic removal of toluene over MnCoOx/γ-Al2O3 cata
lysts (Chang et al., 2019). A multi-objective optimization model was 
proposed to determine the optimal experimental parameters using a 
genetic algorithm (GA). However, the use of ML for plasma chemical 
processes is still limited. 

A variety of supervised ML algorithms are available for the predic
tion of chemical processes, including plasma-based processes. Each al
gorithm has its strengths and weaknesses, and there is no single ML 
algorithm that works best on all supervised learning problems, including 
regression and prediction problems. Artificial neural networks, are one 
of the classic supervised learning algorithms (Sun et al., 2016), with the 
advantages of self-adaptation, self-configuration, and self-learning. ANN 
usually requires a relatively large set of training data to avoid overfitting 
and enhance the generalization capability. However, the experimental 
data sets are often relatively small in plasma-based chemical processes 
as the process parameters in the experiments are often varied within a 
narrow range due to the complexity of the plasma chemical processes, 
and the relatively small data sets might lead toinstability of the pre
dicted result of the plasma process when using the ANN. 

Meanwhile, other supervised learning algorithms, such as support 
vector machine (SVM) and decision tree (DT), are also well-known for 
solving classification and regression problems (Smola and Schölkopf, 
2004; Drucker et al., 1997). A SVM algorithm can create a hyperplane to 
classify the data sets into different categories, and then optimize the 
hyperplane by maximizing the margin between each data set and the 
hyperplane. This algorithm can efficiently handle both non-linear and 
high-dimensional regression problems, and is also known as support 
vector regression (SVR). It has excellent generalization capability to 
avoid overfitting of training data. However, the SVR algorithm often 
requires a relatively long training time with an unsatisfactory 

performance if the data sets are boisterous, which is likely to be the case 
for plasma chemical reactions. DT can solve regression problems by 
transforming a data set into a visualized tree representation, with an 
excellent noise tolerance character and strong robustness (Safavian and 
Landgrebe, 1991). Thus, the DT algorithm has the advantages required 
to deal with data sets with either limited samples or incomplete data. 
Compared to other ML algorithms, DT does not need pre-processing of 
data sets, such as normalization and standardization. However, the DT 
algorithm can easily cause over-fitting problems due to its weak 
generalization ability. It is also not effective at handling a complex 
system with large-scale data sets. 

Clearly, choosing an appropriate algorithm is essential to achieve the 
best performance of the ML model in solving a specific problem (e.g. 
prediction, optimization), especially when dealing with multi-scale, 
non-linear, and complex chemical processes such as a plasma tar 
reforming process. In the practical experiments, we often encounter 
some difficulties, such as long cycle time, complicated procedures, and 
susceptibility to environmental interference, all of which cost us more 
time and resources to get reliable results. In addition, experimental 
complexity scales exponentially with the number of variables, restrict
ing the number of experiments and narrowing the range of process pa
rameters. In some cases, the experimental complexity might lead to 
issues, such as large random error, missing data, and bad points, etc., 
these make it difficult for the training of experimental data using a single 
ML algorithm. Hence, developing a hybrid ML model offers a promising 
solution for the fast and effective prediction and optimization of multi- 
scale and complex plasma processes with limited experimental data 
(Shao and Lunetta, 2012). However, up till now, only ANN has been 
used for plasma-based chemical processes, while the use of a hybrid ML 
model for the optimization of plasma chemical processes has not been 
reported yet. 

In this work, a novel hybrid ML model combining ANN, SVR, and DT 
algorithms has been developed to predict and evaluate the critical per
formance of the plasma steam reforming of tar for the first time. 
Compared to the ML model using a single algorithm, the hybrid model 
combining three different algorithms can enhance the robustness and 
generalization ability of the ML model for fast and effective predictions. 
In addition, a genetic algorithm has been used to determine the optimal 
hyper-parameters of each algorithm (ANN, SVR, and DT) to enhance the 
adaptive ability and increase the accuracy of the prediction. Based on 
the well-trained hybrid model, the plasma tar reforming process has 
been analyzed to get new insights into the effect and relative importance 
of different process parameters, including discharge power, steam-to- 
carbon (S/C) ratio, and naphthalene concentration on the plasma re
action performance in terms of three key performance indicators (KPIs) 
including tar conversion, carbon balance and energy efficiency. The 
coupling effects of any two process parameters on the KPIs of the plasma 
process have also been evaluated. Furthermore, two indexes have been 
introduced to determine the optimal process parameters to maximize 
the key performance of the plasma tar reforming process. 

2. Methodology and experiment 

2.1. Experimental method 

A GAD reactor with two stainless-steel electrodes has been developed 
for plasma tar reforming (Wang et al., 2019). The electrode gap was 
fixed at 2 mm for the initiation of the arc. Naphthalene (powder) was 
vaporized at 60–75 ◦C using a water bath and then mixed with nitrogen. 
The mixed naphthalene and nitrogen flow (with or without steam) was 
preheated to 200 ◦C before being injected into the GAD reactor. The total 
gas flow rate was maintained at 4 L/min, and the inlet concentration of 
naphthalene can be controlled between 1.1 mg/L and 1.7 mg/L. The S/C 
ratio can be varied between 0 and 4.0 to investigate the role of steam in 
the plasma reforming of naphthalene. The GAD reactor was connected to 
an alternating current high voltage transformer (10 kV/50 Hz). The 
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electrical signals (arc voltage U and arc current I) were recorded using a 
digital oscilloscope (Tektronix, MDO3024). The discharge power was 
determined through the integration of arc voltage and arc current in a 
cycle T. 

Discharge power(W) =
1
T

∫ t=T

0
U(t) × I(t)dt (1) 

The gaseous products were measured and quantified using gas 
chromatography (Agilent 7820A) fitted with a flame ionization detector 
and a thermal conductivity detector. A Molecular Sieve 5A column (HP 
MOLESIEVE) was used for the measurement of CO and H2, and an HP- 
PLOT/Q column was used to separate CO2, CH4, and C2-C4 hydrocar
bons. The liquid products were condensed and dissolved in dichloro
methane using a cold trap. 

The conversion of naphthalene is defined as 

XC10H8 (%) =
Ci − Co

Ci
× 100% (2)  

Where Ci is the inlet concentration of naphthalene, and Co is the con
centration of naphthalene after the plasma reaction. 

The converted rate is defined as 

RC10H8 (mg/min) = Ci × XC10H8 (%) × Total flow rate (L/min) (3) 

The carbon balance of the plasma tar reforming process is given by. 
Without steam 

Carbon balance(%) =
∑ Produced CxHy(x = 1, 2, 3, 4)

Converted C10H8
× 100% (4) 

With steam 

Carbon balance(%) =
∑ Produced CxHy(x = 1, 2, 3, 4) and COx(x = 1, 2)

Converted C10H8

× 100%
(5) 

The energy efficiency for tar conversion is defined as: 

E(g/kWh) =
Mass of converted tar (g/h)

Discharge power (kW)
(6) 

Non-dimensional indexes, I1 & I2 (0 < I1, I2 < 1), are defined to 
evaluate the effectiveness of the plasma tar reforming process. Specif
ically, I1 is defined as the product of the normalized (N) tar conversion 
and carbon balance to evaluate the effective conversion of C10H8 (Eq. 7). 
I2 is defined as the product of three normalized KPIs to determine the 
optimal process parameters to maximize the conversion, carbon bal
ance, and energy efficiency simultaneously (Eq. 8). All the normalized 
parameters are in the range of 0–1.  

I1 = N (tar conversion) × N (carbon balance)                                      (7)  

I2 = N (tar conversion) × N (carbon balance) × N (energy efficiency)     (8)  

2.2. Description of the hybrid model 

The key reaction performance (P) of the plasma tar reforming pro
cess was simulated using a hybrid ML model via a linear combination of 
ANN, SVR, and DT algorithms, as shown in Eq. 9. 

P = W1 × PANN + W2 × PSVR + W3 × PRT(0 ≤ W1, W2, W3 ≤ 1) (9)  

Where W1, W2, and W3 are the relative weight of ANN, SVR, and DT 
algorithms, respectively. The mean squared error (MSE), one of the most 
common criteria, is defined as the mean difference between the exper
imental data (Ri) and the predicted results (Pi), 

MSE =
1
n
∑n

i=1
(Pi − Ri)

2 (10) 

In this study, the MSE can be used to evaluate the performance of the 
hybrid ML model in the optimization of the relative weight for each 
algorithm using an exhaustion method. The optimal relative weight for 
each algorithm in the hybrid model is achieved when the minimum MSE 
of the ML model is reached. 

Fig. 1 shows the logical structure for the prediction, evaluation, and 
optimization using this hybrid ML model. Three key processing pa
rameters, including discharge power, inlet C10H8 concentration, and S/C 
ratio are taken into account and used as the input in the model. The 
conversion of naphthalene, carbon balance, and energy efficiency are 
selected as the KPIs in this study. GA is applied to optimize the hyper- 
parameters of these three algorithms (ANN, SVR, and DT) in the 
hybrid ML model, such as the learning rate for ANN, the variable C and γ 
(Radial Basis Function (RBF) kernel) for SVR, and the depth for DT. 

2.2.1. Artificial neural network 
For the ANN model, Adaline (Adaptive linear neuron, Fig. 2), a 

single-layer neural network, was developed to simulate the plasma tar 
reforming process. The model includes three key process parameters as 
the inputs, including discharge power (X1), inlet C10H8 concentration 
(X2), and S/C ratio (X3). Bias (b) is a basic parameter in the neural 
network, which can be used to adjust the output along with the weighted 
sum of the inputs to the neuron. The bias can be used to shift the acti
vation function (σ(z)) and offset the predicted results, enhancing the 
flexibility and generalization of the ANN model. Z-score normalization 
has been used to pre-process all data sets, including the input process 
parameters and the predicted KPIs. 

In this case, the cost function (J(w), Eq. 11) is determined as the sum 
of squared errors (SSE) between the predicted results (σ(z(i))) and the 
experimental data (y(i)), and can be minimized using a gradient descent 
algorithm to get the optimized weight for each processing parameter 
(input). 

J(w) =
1
2
∑

i

(
y(i) − σ

(
z(i)

) )2 (11)  

2.2.2. Support vector regression 
The SVR is a robust learning algorithm and has been widely used to 

solve regression problems with small samples, high-dimensions, and 
non-linearity. It can be formulated as an optimization problem (Eq. 12) 
to minimize the norm of the weight vector (w) with some slack variables 
(ξi and ξi*) introduced to increase the tolerance of regression errors. 
With a Lagrange dual formulation, the optimization (Eq. 12) can be done 
by solving its dual problem (Eq. 13). 

min
w,b,ξ,ξ∗

1
2
‖w‖

2
+ C

∑m

i=1
(ξi + ξi

∗), ξi, ξi
∗ ≥ 0, i = 1, ..., m (12)  

max
∑m

i=1
yi(αi

∗ − αi) − ε
∑m

i=1
(αi

∗ + αi) −
1
2
∑m

i,j=1
(αi

∗ − αi)(αi
∗ + αi)xi

Txj

(13)  

Where C is the penalty term that determines the trade-off between the 
misclassifications of the training data and the width of the margin. αi and 
αi* are the Lagrange multipliers, and ε is the tolerance of margin. 

In this study, the RBF kernel function (Eq. 14) has been used in the 
SVR model to plot the process parameters and KPIs for effective and 
accurate prediction of the performance in the plasma tar reforming 
process. 

K
(
xi, xj

)
= exp

(
− γ

⃦
⃦xi − xj

⃦
⃦2)

, γ > 0 (14)  

where γ defines the influence of a single sample on the entire classifi
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cation hyperplane. Then, the generic equation of the SVR model based 
on the RBF kernel function can be described as: 

f(x) =
∑m

i=1
(αi

∗ − αi) K(xi, x) + b (15)  

Where b refers to the bias term. 
GA is used to find the optimal hyper-parameters (γ and C) in the SVR 

training process when the minimum MSE for each KPI is reached. One 
hundred iterations are used in the optimization of the hyper-parameters 
using GA, with the hyper-parameters (γ and C) being chosen in the range 
of 0 < γ < 1 and 0 < C < 104, respectively. In this study, the optimized 
hyper-parameter (γ, C) of the SVR model is (1126, 0.56) for three KPIs. 
The SVR algorithm was developed using the “Scikit-learn” library in 
Python. 

2.2.3. Decision tree 
A standard binary decision tree for solving this regression problem is 

defined with several branches, one root, a few nodes, and leaves. Basi
cally, one branch is a chain of nodes from root to a leaf, and each node 
refers to one attribute. The splitting criteria for this regression tree, 
which is also known as CART (classification and regression tree), is the 
MSE, which has been defined in Eq. 10. For each node, the algorithm 
will calculate the predicted value and calculate the MSE for each subset, 
and the regression tree will evolve by seeking the smallest MSE value. In 
our model, a maximum depth of the tree has been set to achieve high 
accuracy for the prediction of the three KPIs. The DT algorithm was also 
developed using the “Scikit-learn” library. 

3. Results and discussion 

3.1. Optimization of the hybrid ML model 

Fig. 3 shows the influence of the relative weights for each algorithm 
on the MSE of the hybrid ML model. When the ML model uses a single 
algorithm, the MSE of the model is 0.110, 0.107, and 0.068 for ANN, 

Fig. 1. Scheme of the logical structure for the prediction and evaluation using the hybrid ML model.  

Fig. 2. Scheme of an adaptive linear neutron (Adaline).  

Fig. 3. Effect of the relative weights of ANN, SVR, and DT on the MSE for the 
predicted KPIs. 
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SVR, and DT, respectively. These values are much higher than the 
minimum MSE (0.043) of the hybrid model, indicating that the opti
mized hybrid ML model is far superior to the models using a single al
gorithm in this study. The optimal weight of ANN, SVR, and DT in this 
hybrid model is 0.31, 0.10, and 0.59, respectively. Thus, the optimal 
hybrid model can be expressed as: 

Hybrid model : P = 0.31 × PANN + 0.1 × PSVR + 0.59 × PDT (16)  

. 

3.2. Output prediction and model validation 

Fig. 4 shows a comparison between the experimental and simulated 
naphthalene conversion in the plasma reforming reaction without steam 
(S/C = 0). The predicted results obtained from the hybrid ML model 
agree reasonably well with those from the experiment. Hence, the model 
can be used to predict the reaction performance. For example, the 
conversion of naphthalene is predicted to be 72% at an inlet C10H8 
concentration of 1.4 mg/L. At a higher tar concentration (e.g., > 1.4 g/ 
Nm3), the change of tar concentration has a weak effect on the con
version of naphthalene. By contrast, the converted rate of naphthalene 
was increased continuously from 3.7 to 5.6 mg/min with the increase of 
inlet C10H8 concentration from 1.1 to 2.0 g/Nm3. In addition, the 
discharge power shows a limited effect on the conversion of naphthalene 

in the reaction without steam. With the increase of discharge power, the 
predicted converted rate remained stable at around 4.7 mg/min, indi
cating that the discharge power had a limited effect on the performance 
of plasma processing of naphthalene. 

As previously reported, the key reaction channels in the plasma 
reforming of naphthalene are dehydrogenation and one ring-open re
action. In these two reactions, the initial dissociation of naphthalene can 
proceed via the collisions of naphthalene with excited nitrogen species 
N2*(e.g., N2 (A3Σ+)) and energetic electrons (R1-R4) (Wang et al., 2019; 
Yu et al., 2010).  

C10H8 + N2* → C10H7 + H + N2                                                    (R1)  

C10H8 + N2* → C10H7 + CH + N2                                                 (R2)  

C10H8 + e → C10H7 + H + e                                                          (R3)  

C10H8 + e → C10H7 + CH + e                                                       (R4) 

Fig. 5 shows the predicted values are in agreement with the experi
mental results at different S/C ratios and discharge powers. As shown in 
Fig. 5a, the conversion of naphthalene in the plasma steam reforming of 
tar gradually increases when increasing the S/C ratio, reaching a peak of 
84.5% at an S/C ratio of 2.0 (Fig. 5a). However, the conversion of 
naphthalene drops by about 20% when further increasing the S/C ratio 
from 2.0 to 4.0. In this study, the optimal S/C ratio is found to be 2.0 to 
achieve the highest conversion of naphthalene. Due to the presence of 
steam in the plasma reforming process, abundant OH radicals can be 
produced via H2O dissociation by energetic electrons (R5) and excited 
N2 species (N2*) (R6) (Wang et al., 2019). The OH radicals are highly 
oxidative and can further oxidize naphthalene (R7) at a relatively high 
rate constant (1 × 10− 11 cm3 molecule− 1 s− 1).  

H2O + e → H + OH + e                                                               (R5)  

H2O + N2* → H + OH + N2                                                         (R6)  

C10H8 + OH → products                                                                (R7) 

. 
However, adding excessive H2O (e.g. at a higher S/C ratio) to the 

plasma tar reforming process consumes a large number of energetic 
electrons due to the electron attachment effect of water, which in turn 
negatively affects the conversion of naphthalene. Thus, choosing the 
appropriate S/C molar ratio is critical to maximizing the performance of 
the plasma steam reforming process. 

Moreover, the carbon balance increases significantly from 30% to 
66% when adding steam into the reaction, but only weakly changes with 
the change of the S/C ratio (Fig. 5b). The presence of steam in the 
plasma reforming reaction enhances the oxidation of naphthalene and 
its intermediates due to the formation of OH radicals, thus reducing the 
carbon deposition. In addition, we found that the energy efficiency of 
the plasma tar reforming process as a function of the S/C ratio follows 
the same evolution as the conversion of naphthalene (Fig. 5c). 

Figs. 5d-5f shows the effect of discharge power on the three KPIs with 
an S/C ratio of 2.0. Increasing the discharge power gradually enhances 
the conversion of naphthalene but decreases the energy efficiency of the 
plasma process. At a low discharge power (< 45 W), the influence of 
discharge power on the conversion of naphthalene is not as substantial. 

In this study, 20% of the experimental data was selected randomly as 
a test set to validify the hybrid model using GA. The regression plots for 
the comparison between the experimental and simulated KPIs are pre
sented in Fig. 6. The solid line represents the simulated results that are 
equal to the experimental data. The experimental data shows a fairly 
good agreement with the results simulated from the hybrid model for all 
three KPIs, as evidenced by the high correlation coefficients (R2) of 
0.997 (conversion), 0.998 (carbon balance), and 0.997 (energy 
efficiency). 

Fig. 4. (a) Effect of inlet C10H8 concentration on the conversion and predicted 
converted rate (discharge power = 77 W, S/C = 0); (b) Effect of discharge 
power on the conversion and predicted converted rate (C10H8 concen
tration = 1.7 g/Nm3, S/C = 0). 
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3.3. Importance of different process parameters 

Fig. 7 shows the relative importance of different operating parame
ters in the plasma steam reforming of naphthalene. The S/C ratio is 
found to be the most critical parameter affecting the conversion of 
naphthalene with a relative importance of 48%. Moreover, the relative 
importance of the S/C ratio and discharge power for the carbon balance 
is over 40%, which indicates that both parameters significantly affect 
the carbon balance. For the energy efficiency, the discharge power 
shows much higher importance of ~58% compared to other two process 
parameters, suggesting that the discharge power is the most crucial 
parameter in determining the energy efficiency of the plasma process for 
naphthalene conversion. Note that the relative importance of the inlet 

naphthalene concentration is 13–16% for all three KPIs. These findings 
show that the input concentration of naphthalene in the range of 
1.0–2.0 g/Nm3 makes the least contributions to this plasma steam 
reforming process. 

3.4. Coupling effect of process parameters 

The validation of the hybrid ML model enables us to investigate the 
interactions between the process parameters on the KPIs of the plasma 
reforming process. As shown in Fig. 8a, in the plasma reforming of 
naphthalene without steam (S/C = 0), the conversion of naphthalene 
can be enhanced by lowering the input concentration and increasing the 
discharge power in the range of 1.0–1.3 g/Nm3 and 55–80 W, 

Fig. 5. Effect of S/C ratio on (a) tar conversion, (b) carbon balance, and (c) energy efficiency (discharge power = 57 W, concentration = 1.7 g/Nm3). Effect of 
discharge power on (d) tar conversion, (e) carbon balance, and (f) energy efficiency (C10H8 concentration = 1.7 g/Nm3, S/C ratio = 2.0). 
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respectively, with the highest naphthalene conversion being achieved at 
84%. Fig. 8b shows that the carbon balance is almost unchanged when 
the discharge power is lower than 50 W regardless of the change of the 
naphthalene concentration. However, at a discharge power of > 50 W 
(especially > 60 W), increasing the discharge power substantially en
hances the carbon balance if the concentration is in the range of 
1.8–2.0 g/Nm3, but slightly decreases the carbon balance at a lower 
naphthalene concentration (1.0–1.4 g/Nm3). Also, the predicted energy 
efficiency monotonically decreases with the increase of discharge power 
at a constant naphthalene concentration, as shown in Fig. 8c. The 
highest energy efficiency of the plasma process is predicted to be 8.2 g/ 
kWh at 35 W with an inlet naphthalene concentration of 1.7 g/Nm3. 

In the plasma steam reforming of naphthalene, the interaction be
tween the S/C ratio and discharge power on different KPIs is shown in  
Fig. 9. The effect of discharge power and S/C ratio on the conversion 
shows a ridge-shaped surface, with the maximum conversion being 
achieved at an S/C ratio of 1.0–2.0. In contrast, the highest conversion of 
naphthalene is predicted to be 89% at a discharge power of 70 W and an 
S/C ratio of 2.0. Compared to the discharge power, the S/C ratio has a 
more significant effect on the carbon balance, as shown in Fig. 9b. The 
carbon balance can reach the highest value of 85.5% at an S/C ratio of 
2.0–3.0. Fig. 9c shows a higher energy efficiency can be expected when 
lowering both the discharge power and S/C ratio. The maximum energy 
efficiency can be around 8.0 g/kWh with the minimum discharge power 
(30 W) and S/C ratio (S/C = 0). Meanwhile, when the discharge power 

Fig. 6. Regression plots for (a) conversion, (b) carbon balance, and (c) energy efficiency using the hybrid prediction model.  

Fig. 7. Relative importance (%) of different process parameters in the plasma- 
driven steam reforming of naphthalene. 

Fig. 8. Prediction effects of the interaction between naphthalene concentration and discharge power on (a) tar conversion, (b) carbon balance, and (c) energy 
efficiency without steam. (S/C = 0). 
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is greater than 50 W, the energy efficiency can be optimized and 
maximized at an S/C ratio of 2.0, indicating that adding a moderate 
amount of steam to the plasma process could enhance the energy 
efficiency. 

Furthermore, the sliced graphs of the predicted results show the 
simultaneous effects of discharge power, S/C ratio, and inlet naphtha
lene concentration on the three KPIs (Figs. 10a-10c). When the inlet 
C10H8 concentration is lower than 1.3 g/Nm3, the conversion can reach 
more than 80% in the optimal ranges of discharge power (60–80 W) and 
S/C ratio (0–2.0). To achieve a high naphthalene conversion (> 80%) at 

a high C10H8 concentration (> 1.4 g/Nm3), the S/C ratio needs to be 
narrowed between 1.0 and 2.0 (Fig. 10a). 

Carbon balance shows a similar trend under the coupling effects of 
these three operating parameters (discharge powers, S/C ratios, and tar 
concentration). A carbon balance of > 80% can be obtained if the tar 
concentration is in the range of 1.6–1.8 g/Nm3 (Fig. 10b). As shown in 
Fig. 10c, the energy efficiency of the plasma reforming process is mainly 
affected by the discharge power, rather than the inlet C10H8 concen
tration and S/C ratio. Lower discharge power (30–40 W) is favourable to 
achieve higher energy efficiency. The highest energy efficiency (~8.4 g/ 

Fig. 9. Prediction effects of the interaction between discharge power and steam-to-carbon ratio on (a) conversion, (b) carbon balance and (c) energy efficiency in the 
steam reforming reaction (concentration = 1.7 g/Nm3). 

Fig. 10. Prediction effects of the three-body interactions of discharge power, steam-to-carbon ratio and inlet C10H8 concentration on (a) conversion, (b) carbon 
balance, and (c) energy efficiency; and the comprehensive evaluation indexes (d) I1 and (e) I2. 
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kWh) can be obtained when the discharge power, C10H8 concentration 
and S/C ratio are 30 W, 1.7 g/Nm3, and 0.6, respectively (Fig. 10c). 

Clearly, the overall performance of plasma steam reforming of 
naphthalene strongly depends on a range of plasma processing param
eters. It is essential to optimize the complex plasma-enhanced tar 
reforming process with multiple input processing parameters and mul
tiple KPIs. In this work, I1 has been used to determine the optimal 
processing parameters to maximize the effective conversion of naph
thalene for process optimization. As shown in Fig. 10d, at a C10H8 
concentration of 1.5–1.9 g/Nm3, I1 can be higher than 0.60 if the 
discharge power and S/C ratio are in the optimal range of 60–80 W and 
1.5–2.0, respectively. The highest I1 of 0.69 can be obtained at a 
discharge power of 60 W, an inlet concentration of 1.7 g/Nm3 and an S/ 
C ratio of 2.0. 

In addition, I2, also known as the global desirability function (Mei 
et al., 2016), has been introduced to determine the optimal processing 
parameters to maximize both effective tar conversion and energy effi
ciency simultaneously in the plasma-enhanced tar reforming process. 
Fig. 10e shows that a relatively high I2 (> 0.5) can be obtained when the 
inlet naphthalene concentration and S/C ratio are in the optimal range 
of 1.5–1.9 g/Nm3 and 1.5–3.5, respectively when the discharge power is 
30–45 W. Furthermore, when I2 reaches the highest value of 0.65, the 
optimal discharge power (35 W), input C10H8 concentration 
(1.7 g/Nm3) and S/C ratio (2.0) are determined to achieve the maximum 
KPIs - conversion (67.2%), carbon balance (81.7%), and energy effi
ciency (7.8 g/kWh) simultaneously in the plasma reforming of 
naphthalene. 

4. Conclusions 

A well-trained hybrid ML model incorporating three different algo
rithms (ANN, SVR, and DT) has been developed to predict and evaluate 
the influence of different processing parameters (discharge power, tar 
concentration, and S/C ratio) on the KPIs (tar conversion, carbon bal
ance, and energy efficiency) of the multi-scale and complex plasma tar 
reforming process. The hyper-parameters of each algorithm in the 
hybrid ML model have been optimized with the GA. The predicted re
sults from the model agree very well with the experimental data, as 
confirmed by the high regression coefficient of 0.997. Both the S/C ratio 
and the discharge power are identified as the most critical parameters 
affecting the three KPIs, while the inlet concentration of naphthalene is 
less critical compared to the other two parameters. The hybrid model 
shows that the discharge power is the most important processing 
parameter to determine the energy efficiency of the plasma process with 
a relative importance of 58%, while the S/C ratio is the most critical 
parameter for the tar conversion with a relative contribution of 38%. 
When I2 reaches the highest value of 0.65, the optimal discharge power 
(35 W), input C10H8 concentration (1.7 g/Nm3), and S/C ratio (2.0) are 
obtained to maximize the three KPIs - conversion (67.2%), carbon bal
ance (81.7%), and energy efficiency (7.8 g/kWh) simultaneously in the 
plasma reforming of naphthalene. This work has demonstrated that a 
well-trained hybrid ML model can provide effective, accurate, and fast 
predictions as well as optimization of the plasma tar reforming process, 
and has great potential to be used for a range of plasma-based chemical 
processes. 
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