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A B S T R A C T

Characterizing wind farm flow fields at high temporal and spatial resolutions is critical prerequisite for
the optimal design and operation of utility-scale wind farms and for reducing the levelized cost of energy.
However, due to the large disparity of underlying scales, measurements or simulations alone cannot provide
high resolution wind fields, which are informed by and account for the effect of both large scale (i.e. hour,
day, month and year) and small scale (i.e. second and minute) site-specific variations in the atmosphere.
We explore the feasibility of integrating field measurements and high-fidelity large-eddy simulation (LES) to
characterize the wind field in a utility-scale wind farm while accounting for flow phenomena across multiple
temporal scales. Specifically, we employ field measurements to characterize the monthly wind speed and
wind direction distributions and investigate the wind characteristics in turbine wakes. It was found that the
probability density function (PDF) of the wind speed in turbine wakes can be reasonably represented using
the Weibull distribution but with shape factors smaller than those not in the wake. LES of the wind farm
under statistically steady inflow is subsequently carried out for one wind direction. The LES predictions are
compared with the measured data conditionally averaged based on the wind speed, wind direction and the
root-mean-square of wind speed fluctuations over time intervals of 30 min. Good agreement is obtained for
both mean wind speed and turbulence intensity. The present work shows the possibility of integrating field
measurements and high-fidelity simulations for improved characterization of the site-specific wind fields in
utility-scale wind farms.
1. Introduction

It is anticipated that wind will account for one-quarter to one-third
of electricity supply across the world by 2050 based on the wind energy
outlook by IEA [1], the energy transition outlook by DNV [2], and
the new energy outlook by BNEF [3]. Characterizing the atmospheric
turbulent flows in wind power plants [4] will be essential to the
next generation wind technologies for even larger wind turbines and
advanced turbine control at farm level [5]. In current practice, wind
resource assessment can only give the mean wind speed distribution at
very coarse grids and the annual distributions of wind speed and wind
directions, which are then employed together with the engineering
models for turbine wakes for the layout design of wind farms [6–8].

∗ Corresponding author.

Such approaches cannot properly incorporate the spatially heteroge-
neous wind distribution or take into account turbine wake interactions
in the design process. Consequently, the power production from the
designed wind farm could be lower than expected, while the fatigue
loads on turbine structures may be significantly higher. To design wind
farms with high power output and low maintenance cost requires not
only time-averaged wind speed data at several meteorological tower
locations but also field data at a high spatial resolution, which can-
not be easily obtained from field measurements [9,10] or mesoscale
simulations [11,12]. On the other hand, high-fidelity simulations can
predict wind field at high spatial and temporal resolutions but often
for a short time interval limited to hours or even less. Combining
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Fig. 1. Contours of terrain elevation with black line segments for turbine locations and purple points for SODAR locations. Positive 𝑥 axis aligns with the north direction.
Table 1
Dates for data collection in the wind farm located in Pleasant Valley, Minnesota, United
States in 2017.

S30 S33 S75 S78 S96

05/03–06/05 06/07–07/10 07/12–08/14 08/16–09/18 09/19–10/26

the power of field measurements and high-fidelity simulations has the
potential to characterize the wind field at high spatial and temporal
resolutions and for a long time interval, which will enable realizing
significant increases in annual energy production and reductions in the
levelized cost of energy. We propose integrating field measurements
and high-fidelity simulations results for characterizing turbulent flows
in utility-scale wind farms. As the first step towards this direction,
in this work we employ field measurements to study the wind speed
distribution in turbine wakes and examine the predictive capability of a
30-minutes high-fidelity simulation by comparing the computed results
with conditionally-averaged wind data measured over months.

Wind resource assessment methods include global reanalysis
datasets, measurements, mesoscale modeling, combined
meso/microscale modeling and others as reviewed by Landberg [13].
Other reviews on wind resource assessment techniques can be found
in other literatures for [14] focusing on computational models, [15]
focusing on offshore wind resource assessment and [16] for the trends
in wind resource assessment, respectively. The coarse resolution global
reanalysis is often employed for global or large-scale regional wind
resource analysis. For instance, Christiansen et al. [17] constructed
wind maps using satellite synthetic aperture radar (SAR) data and
validated the results against in situ measurements from an offshore
mast in the North Sea. He and Kammen [18] employed GIS modeling
utilizing 10 years of hourly wind speed data at 200 representative
locations to assess provincial wind resources in China. The global
reanalysis is also integrated with other approaches for detailed resource
assessment. For instance, Doubrawa et al. [19] employed satellite wind
data, in-situ measurements at coastal stations and buoys, and WAsP
(Wind Atlas Analysis and Application Program) to obtain the wind
climate map at Great Lakes. Using the global wind data as boundary
2

conditions, mesoscale simulations can be employed for wind resource
assessments of potential sites in a region. For instance, Acker [20]
employed a mesoscale numerical weather prediction (NWP) model and
30-years historical data for wind resource assessment in the state of
Arizona, United States. Jafari et al. [21] examined the effects of hor-
izontal spatial resolutions when using NWP models for wind resource
assessments. Al-Yahyai [22] reviewed the use of NWP models for wind
resource assessments and stated the advantages of using NWP models as
compared with measurements, e.g. cost, spatial resolutions and others.
Mesoscale simulations are often coupled with microscale simulations
for detailed wind resource assessment. Carvalho et al. [23] evaluated
three different approaches for coupling the mesoscale simulations using
Weather Research and Forecasting model (WRF) with the microscale
simulations using WAsP. Gasset et al. [24] compared various models
for coupled mesoscale/microscale simulations by comparing simulated
mean wind speeds with measurements, and showed improved results
by resolving more topography features of the terrain. Defforge [25]
employed the iterative ensemble Kalman smoother to assimilate the
observation data to improve the accuracy of boundary conditions in
local scale simulations, which are often obtained from mesoscale sim-
ulations and affect the reliability of simulations at local scale. Veronesi
et al. [26] employed an approach based on regression trees to estimate
wind speed and direction distributions over the United Kingdom.

Wind field characteristics at farm scale are often obtained using
WAsP simulations or Reynolds-Averaged Navier–Stokes (RANS) simu-
lations together with measurements. For instance, Aukitino et al. [28]
carried out the wind resources assessment of Kiribati using measure-
ments at two locations and WAsP. Palma et al. [29] employed WAsP
and RANS model for wind resource assessment in complex terrain.
Jimenez et al. [30] found that the accuracy of the WAsP predic-
tions depends on the measurement station used for reference. Yan and
Li [31] employed RANS simulations and measurements using the cup
anemometer at one location to assess the wind resource of a complex
terrain site in Hong Kong, China. Tang et al. [32] employed RANS
simulations with corrections based on measurements at several masts to
characterize wind resource in complex terrain. Song et al. [33] devel-
oped an anemometer graph approach using the observations at a single
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Fig. 2. The employed turbine design for (a) radial distributions of twist angle and chord of the blade, (b) lift and drag coefficients of the employed airfoil FFA-W3 [27], (c) power
curve and (d) thrust coefficient. In (c) and (d), MFR for 𝑃 or 𝐶𝑇 curve from the wind turbine manufacturer and BEM for results from blade element momentum method.
Fig. 3. PDF of wind direction at 𝑧 = 45 m, 𝑧 = 95 m and 𝑧 = 145 m above the ground for all wind speeds at different SODAR locations. The figure shows the angle in degrees. It
is noticed that the PDF is calculated based on radians instead of degrees.
anemometer to find the proper velocity conditions at the inlet for RANS
simulations for wind resource assessment in complex terrain. Simões
and Estanqueiro employed RANS [34] for wind resource assessment
in urban areas. A measure-correlate-predict (MCP) approach is often
employed for long-term wind resource assessments based on measure-
ments or simulations at the selected site and the long-term dataset at
the reference site. For instance, Bechrakis et al. [35] employed the
artificial neuron network to obtain annual wind resource by relating
the short term measurements at the site of concern with the one year
wind data at another reference site. Weekes and Tomlin [36] compared
3

MCP approaches based on different regression techniques for long-
term wind resource using three months measurements. Vanvyve [37]
developed an ensemble analog approach for long-term wind speed
estimations using the short-term observation record from the target site
and the long-term historical data from a nearby site. Sharma et al. [38]
employed LiDAR (light detection and ranging) and MCP method for
offshore wind resource assessment. Lackner et al. [39] carried out
uncertainty analysis for MCP based wind resource assessment, which
includes the wind speed measurement uncertainty and the uncertainty
in the parameter for the Weibull distribution. Miguel et al. [40] found
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Fig. 4. PDF of wind speed at 𝑧 = 45 m, 𝑧 = 95 m and 𝑧 = 145 m above the ground for all wind directions at different SODAR locations. The red solid lines show the best-fitted
Weibull distributions.
Fig. 5. Vertical profiles of mean wind speed for different wind directions at different SODAR locations. Black solid line with circles: 0◦ ± 22.5◦; Blue-dashed line with crosses:
45◦ ±22.5◦; Green dash–dot line with asterisks: 90◦ ±22.5◦; Red dotted line with squares: 135◦ ±22.5◦; Cyan solid line with triangles: 180◦ ±22.5◦; Magenta solid line with diamonds:
225◦ ± 22.5◦; Blue solid line with asterisks: 270◦ ± 22.5◦; Green dashed line with points: 315◦ ± 22.5◦.
that the level of uncertainty decreases by increasing the duration of
data collection campaign.

We can summarize that there are two major limitations in the
current approaches for wind resource characterizations, i.e. (1) can-
not properly consider the effects of turbine wakes, and (2) cannot
accurately predict velocity fluctuations due to atmospheric turbulence.
To address these issues, in this work we propose to integrate field
measurements and large-eddy simulation (LES) for characterizing wind
fields at farm scale. Considering wake effects in wind farm design
requires knowledge of the wind speed distribution in turbine wakes.
The annual distributions of wind speeds and wind directions are often
4

characterized using the Weibull distribution as follows,

𝑝(𝑈 )𝑑𝑈 = 𝑘
𝑐

(𝑈
𝑐

)𝑘−1
exp

[

−
(𝑈
𝑐

)𝑘]

𝑑𝑈 (1)

where 𝑘 is the shape factor (dimensionless), 𝑐 is the scale factor (m/s)
related to the annual mean wind speed 𝑈 by the relationship, 𝑐 =
𝑈∕𝛤 (1+1∕𝑘), where 𝛤 is the complete gamma function. In the literature
the value of the shape factor 𝑘 is around 2 without considering specific
locations or wind directions [41,42]. Veronesi et al. [26] studied the
spatial distributions of the shape factor and the scale factor over the
United Kingdom based on the measured data and the random forest
method. Whether the Weibull distribution is a proper choice for the
wind speed in turbine wakes is not clear and cannot be verified using
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Fig. 6. Contours of the flowfield from LES for (a) time-averaged downwind velocity 𝑈 and (b) turbulence kinetic energy 𝑘 on a plane 𝑧ℎ from the ground for different cases.
high-fidelity simulation without taking into account daily or monthly
variations of wind speeds, which, on the other hand, can be obtained
from field measurements. In this work we employ the data measured
using SODAR (SOnic Detection And Ranging), which can be placed in
the wind farm without impacting its operation, to examine the wind
speed distribution in turbine wakes.

Validation of high-fidelity LES models against field measurements
is often carried out for a short time interval ( minutes to hours) during
which the wind does not change significantly. In such studies idealized
inflow conditions (e.g. uniform inflow and statistically steady inflow)
can be employed in LES. For instance, in [43] LES results under uniform
inflow condition are compared with field data measured for wind speed
in the range of 5–74 m/s. In [44] LES results of a wind farm were
compared with measured data for an hour during which the atmo-
spheric stability was near-neutral, and the magnitude and the direction
of the wind were quasi-stationary. In [45], LES results of five turbines
in a wind farm, simulated by prescribing inflow velocity field obtained
from a mesoscale simulation and superimposing velocity fluctuations
obtained using the synthetic turbulence method, are compared with the
wind data measured over two hours when the wind of speed 11 m/s
was from the south direction. In [46] LES results of a wind farm in
complex terrain were compared with measurements for 30 min during
which the wind direction was in the range of 280◦–290◦ and the wind
speed was about 9–11 m/s. To apply high-fidelity simulations to the
5

design of a wind farm, it is important to limit the number of required
simulations for design efficiency. This is possible, however, only if
one simulation can be a representative of different wind conditions.
Therefore, and the second objective of this work, we will examine
herein how well simulation results from a high-fidelity simulation for
a short time compare with data measured over months.

The rest of the paper is organized as follows. First, we describe
numerical methods, computational setup and field measurements in
Section 2. Then we present the measured and computed results, and
propose a potential solution for integrating the measurements and
simulations for the optimization of wind farm layout and operation in
Section 3. Finally we draw the conclusions in Section 4.

2. Field site, numerical methods, and computational setup

2.1. Field site

The studied wind farm is located in Pleasant Valley, Minnesota,
United Stated. The turbines installed are the Vestas V100-2.0 MW wind
turbine of rotor diameter 100 meters and hub height 95 m. The cut-
in, rated and cut-out wind speed are 3 m/s, 12 m/s and 20 m/s,
respectively. Fig. 1 shows the contours of the terrain elevation of the
studied site. It is seen that the range of terrain elevations is about
0.3𝐷, which is 30 m. In this figure, turbines are represented by black
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Fig. 7. PDF of wind speed fluctuations in a turbine’s wake for different vertical locations. The measured data at S30 and S75 SODAR locations when the wind blows from the
south direction (180◦ ± 22.5◦) are examined. The wind direction is determined using the one measured at 𝑧 = 200 m. The vertical profiles of the corresponding wind speed are
shown in the far left column. The solid lines are the best-fitted Weibull distributions.
line segments. It is seen that the turbines are mostly positioned along
the ridges of the terrain. The five SODAR measurement locations are
denoted by purple dots. In the simulations with the VFS-Wind code
we only consider the case when wind blows from the south direction
(negative x in Fig. 1). To facilitate the comparison between simulations
and SODAR measurements the turbines are divided into 21 groups
based on their relative locations. The data collection campaign for this
study in this wind farm was conducted from March 17, 2017 to October
26, 2017. SODAR was employed for measuring the wind speed and
wind direction at five different locations in the wind farm. The wind
data collected from 𝑧 = 30 m to 𝑧 = 200 m at increment of 5 meters
for every minute will be analyzed in this work. As shown in Fig. 1
the five SODAR locations S30, S33, S75, S78 and S96 are close to five
wind turbines named as T30, T33, T75, T78 and T96, respectively. The
measurement was taken for about a month at each SODAR location as
listed in Table 1.

2.2. Numerical methods

The high-fidelity Virtual Flow Simulator (VFS-Wind) code [45,47]
is employed for simulating the atmospheric turbulent flow over the
6

wind farm. The governing equations are the spatially filtered con-
tinuity equation and the incompressible Navier–Stokes equation in
non-orthogonal, generalized, curvilinear coordinates 𝜉𝑖, which read in
compact tensor notation (repeated indices imply summation) as follows
(𝑖, 𝑗 = 1, 2, 3):

𝐽 𝜕𝑈 𝑗

𝜕𝜉𝑗
= 0, (2)
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where 𝜉𝑖𝑙 = 𝜕𝜉𝑖∕𝜕𝑥𝑙 ((𝑥𝑖 (i = 1, 2, 3) for Cartesian coordinates)) are
the transformation metrics, 𝐽 is the Jacobian of the geometric trans-
formation, 𝑢𝑖 is the 𝑖th component of the velocity vector in Cartesian
coordinates, 𝑈 𝑖 = (𝜉𝑖𝑚∕𝐽 )𝑢𝑚 is the contravariant volume flux, 𝑔𝑗𝑘 =
𝜉𝑗𝑙 𝜉

𝑘
𝑙 are the components of the contravariant metric tensor, 𝜌 is the

density, 𝜇 is the dynamic viscosity, 𝛼 is the thermal diffusivity, 𝑝 is
the pressure, 𝑓𝑙(𝑙 = 1, 2, 3) are the body forces introduced by the wind
turbines, and 𝜏𝑖𝑗 represents the anisotropic part of the subgrid scale
stress tensor, which is modeled by the dynamic eddy-viscosity subgrid
scale model [48]. Second-order central differencing is employed for
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Fig. 8. Contours of the shape factor 𝑘 for the best-fitted Weibull distribution at different SODAR locations for days (left column) and nights (right column).
spatial discretization. A second-order accurate fractional step method
is used for advancing the continuity and momentum equations. An al-
gebraic multigrid acceleration along with GMRES (Generalized minimal
residual method) solver is used to solve the pressure Poisson equation
and the matrix-free Newton–Krylov method is used for solving the mo-
mentum equation. The VFS-Wind code has been validated extensively
using laboratory and field measurements [45,47,49,50] and applied to
utility-scale wind turbines [51–54].

In this work, an actuator line model [45] is employed for pa-
rameterizing the effect of turbine blades. In the employed actuator
line model, the rotor blade is represented using a rotating line with
distributed forces to model the interaction between the rotating blades
and the incoming wind. The force on the actuator line is a function of
geometry (e.g. twist angle and chord length) and aerodynamic (e.g. lift
and drag coefficients) characteristics of the blade, and is computed
7

based on the blade element approach. The nacelle is modeled by
simply extending the actuator line to the center of the rotor. The
grid nodes discretizing the actuator line in general do not coincide
with the background grid nodes employed for solving the flow. The
discrete delta function is employed for distributing forces from the
actuator line grid nodes to the surrounding background grid nodes,
which can guarantee the conservation of force and torque during the
force distribution [55]. Actuator surface models, which have also been
proposed in the literature for both horizontal axis and vertical axis wind
turbines [47,56,57], which generally require spatial resolution higher
than actuator disk/line models, are not employed in this work.

2.3. Computational setup

Three cases have been carried out. In two of the three cases for wind
from the south direction, we consider two different roughness lengths,
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Fig. 9. Variations of the vertical averaged shape factor 𝑘 as a function of vertical
averaged wind speed, in which the data points are from eight evenly divided wind
direction sectors for days and nights for all SODAR locations. The red points show the
SODAR measurements in turbine wakes. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)

Fig. 10. Comparison of incoming wind speed between LES predictions (black lines
with circles and triangles) and SCADA data (red solid lines with squares) for different
groups of wind turbines for (a) wind from south and (b) wind from north, respectively.
The SCADA data for wind direction in the ranges of 180◦ ±5◦ and 0◦ ±5◦ are employed
in (a) and (b), respectively. The wind blows from small group number to large group
number for (a) and vice versa for (b).

i.e. 𝑧0 = 0.00016 m and 0.1 m, which are typical for calm open sea
or snow-covered land [58,59] and surface covered by thick grass [59]
representing two extreme surface conditions of the wind farm region.
In the third case, the wind blows from the north direction with the
surface roughness fixed at 𝑧0 = 0.1 m. In the simulation, the terrain is
represented using a terrain-fitted curvilinear grid. The computational
domain is 𝐿𝑥 × 𝐿𝑦 = 240𝐷 × 150𝐷 in the downwind and spanwise
directions, respectively. In the vertical direction, the top boundary is a
flat plane located at 10𝐷 from the ground measured in the region near
the inlet, where the surface is set as flat as shown in Fig. 1. In other
regions, the height of the computational domain is not necessarily 10𝐷
because of the elevation of the terrain. The number of grid nodes is
𝑁𝑥 × 𝑁𝑦 × 𝑁𝑧 = 1183 × 1487 × 61 with the grid spacing of 𝛥𝑥 ≈ 𝐷∕5,
𝛥𝑦 = 𝐷∕10 and 𝛥𝑧 = 𝐷∕20 in the downwind, spanwise and vertical (for
𝑧 < 2𝐷) directions, respectively. The mesh is evenly distributed in the
8

horizontal directions. In the vertical direction, the mesh is uniform for
𝑧 < 2𝐷 and stretched upward to the top boundary. The size of the
computational time step is 𝛥𝑡 = 0.01𝐷∕𝑈ℎ. The time and spanwise-
averaged incoming wind speed at turbine hub height is 𝑈ℎ ≈ 8 m∕s from
the south/north direction. The free slip boundary condition is applied
at the top and spanwise boundaries. At the bottom boundary, a wall
model is applied along with non-flux boundary condition and the wall
shear stress 𝜏𝑤 computed from the logarithmic law for rough walls. The
incoming turbulent flow is generated from a precursory simulation of
flat terrain with periodic boundary conditions applied in the horizontal
directions.

In this precursory simulation, the flow is driven by a mean pres-
sure gradient obtained by maintaining a constant mass flux without
considering the Coriolis force. The size of the employed computational
domain is 𝐿𝑥 × 𝐿𝑦 × 𝐿𝑧 = 225𝐷 × 150𝐷 × 10𝐷 with number of grid
nodes 𝑁𝑥 × 𝑁𝑦 × 𝑁𝑧 = 1126 × 1487 × 152. The size of time step is
𝛥𝑡 = 0.1𝐷∕𝑈ℎ. The roughness length is 𝑧0 = 0.00016 m. For the wind
farm case with the same roughness length, the generated inflow is
directly applied at the inlet of the computational domain. For the cases
with 𝑧0 = 0.1 m, we do not generate the inflow from another simulation
with periodic boundary conditions in downwind direction. Instead we
apply the inflow from the precursory simulation with 𝑧0 = 0.00016 m
to a simulation with inlet–outlet boundary condition in the downwind
direction and surface roughness length of 𝑧0 = 0.1 m, and employ
the velocity field close to the outlet of this simulation as the inflow
for the wind farm simulation. Other setups of this simulation are the
same as the precursory simulation with 𝑧0 = 0.00016 m. Streamwise
development of the downwind velocity and turbulence kinetic energy
for this precursory simulation with inlet–outlet boundary condition can
be found in the appendix. It is noted that spatial and temporal interpo-
lation is performed on the generated inflow to account for different grid
spacings and sizes of time step employed in the precursory simulation
and the wind farm simulation. To specify the inflow conditions, a flat
plane bottom boundary is applied at the inlet of the computational do-
main starting at 𝑥 = −120𝐷 and extending up until approximately 𝑥 =
−110𝐷 where the bottom boundary transitions to the natural terrain
elevation. The atmospheric stability is set as neutral in the present cases
because of the lack of temperature measurements (only available at
one vertical position), which may not be correct especially for the time
during nights. This introduces uncertainties to LES and may contribute
to the discrepancies between the LES predictions and measurements.
The wind farm simulation is first carried out until the total kinetic
energy reaches a quasi-steady state, and subsequently the instantaneous
flowfields are averaged for 100𝐷∕𝑈ℎ time units (approximately 30 min
of physical time) for computing the statistics of oncoming velocity for
different turbines and the velocity at different locations.

The blade geometry information of the actual Vestas V100 wind
turbine is not available. In this work, we employ the FFA-W3 airfoil
for the entire blade, which was employed in [60] for the Vestas V80-
2MW wind turbine. This is certainly not an optimal design of the blade
considering many other constraints like the cost of the material and the
strength of the structure, while is just to ensure the power production
and thrust coefficient of the employed design the same as the actual
Vestas V100 wind turbine. The radial distributions of the twist angle
and chord of the blade (shown in Fig. 2(a)) are tweaked in a way that
the rated power is 2 MW, i.e. the same as the installed wind turbine.
The lift and drag coefficients of the airfoil FFA-W3-241 at 𝑅𝑒 = 1.6×106

(as shown in Fig. 2(b)) are employed assuming the Reynolds number
effect is negligible [61]. The power curve (𝑃 ) and thrust coefficients
(𝐶𝑇 ) are shown in Fig. 2(c) and (d), respectively, in which the 𝑃 and
𝐶𝑇 computed from the blade element momentum method [62] are
compared with those from the wind turbine manufacturer. As seen, the
𝑃 and 𝐶𝑇 of the employed wind turbine agree well with the actual
Vestas V100 wind turbine. In this work, the power is computed using

the rotor rotational speed and the aerodynamic torque on the rotor.
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Fig. 11. Comparison of incoming wind speed between LES predictions (black solid lines with squares) and SCADA measurements (red solid lines with circles) for wind turbines
in each group for the cases with wind from the south direction. The wind direction of the SCADA data is in the range of 180◦ ± 5◦.
It is noted that we only compare 𝑃 and 𝐶𝑇 for a certain range of
velocity, in which the rotor rotates at the optimal tip-speed ratio,
i.e. 𝜆 = 𝛺𝑅∕𝑈∞ = 9 (where 𝜆 is the tip-speed ratio, 𝛺 is the rotor
rotational speed, 𝑅 is the rotor radius and 𝑈∞ is the incoming wind
speed), with blade pitch fixed at 1◦. Outside this velocity range, the
control system of the turbine, which is often not provided by the wind
turbine manufacturer, needs to be inversely designed and calibrated
based on the available information of the turbine (e.g. power curve
and thrust coefficient) to give the relation between the rotor rotational
speed and the aerodynamic torque.

3. Results

In this section we first show the wind speed and wind direction
distributions from the SODAR measurements and the flowfield com-
puted using LES for a general description of the wind in the studied
wind farm. In Fig. 3 we examine the probability density function
(PDF) of measured wind directions. As seen during the data collection
campaign, the wind is roughly along the south–north direction, which is
aligned with the predominant direction of the wind farm layout. During
September and October (S96 measurements), the wind mainly blows
from the south direction, which is the wind direction considered in the
9

LES case. It should be noted that the LES data will be compared with
measured data from all SODAR locations (see Table 1) when the wind
blows from the south direction instead of only the data measured at S96
(see Fig. 1) as a main objective of this work is to examine what LES can
predict for a certain wind direction rather than focusing on a specific
period of time when the wind speed does not change a lot. The vertical
variations of wind direction are also examined in Fig. 3. As seen, the
wind direction distributions are very similar at the three considered
vertical positions, although some differences are observed at S75 and
S33, which are located at the top of the hill and deep in the farm,
respectively, where the vertical distributions of wind directions can
be significantly altered by the topography change and upwind turbine
wakes. In Fig. 4 we examine the PDF of the measured wind speed for
all wind directions, in which the bars are the measured data and the
red lines are the Weibull distributions with coefficients best-fitted using
the measured data. From this figure, it is seen that the PDFs of wind
speed are well represented by the Weibull distribution for all SODAR
locations corresponding to different months of the year, different ter-
rain topography and different local turbine layouts. Different values of
the scale factor 𝑐 and shape factor 𝑘 are observed for different SODAR
locations. At the same location the shape factor is similar at 𝑧 = 45, 95
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Fig. 12. Comparison of incoming wind speed between LES predictions (black solid lines with squares) and SCADA measurements (red solid lines with circles) for wind turbines

in each group for the case with wind from the north direction. The wind direction of the SCADA data is in the range of 0◦ ± 5◦.
and 135 m above the ground, while the scale factor, which depends
on the time-averaged wind speed, is observed to increase with 𝑧 from
𝑧 = 45 m to 135 m. In Fig. 5 we examine the mean wind speed profiles
at different SODAR locations, which are averaged using the wind data
collected during days and nights based on 8 wind direction sectors,
i.e. 0◦±22.5◦, 45◦±22.5◦, 90◦±22.5◦, 135◦±22.5◦, 180◦±22.5◦, 225◦±22.5◦,
270◦±22.5◦ and 315◦±22.5◦. Because of the stable atmospheric condition
the wind speed and the change of wind speed across the rotor plane
are observed greater during nights for the same wind direction. Wake
profiles are observed in Fig. 5 for certain wind directions at some
SODAR locations, for instance, the wake of turbine T30 is observed at
SODAR S30 location for wind from the south direction.

Field measurements can provide monthly and yearly wind varia-
tions at the selected site [63–68]. However, it is challenging to obtain
wind data at the spatial resolution (∼ m) needed to develop new
generation wind turbine and farm control strategies over the entire
wind farm (∼ km) using field measurements. High-fidelity LES, on the
other hand, can complement the wind characterization by providing the
spatial distributions of wind speed and turbulence statistics [46,69–71].
Fig. 6 shows the time-averaged downwind velocity 𝑈 and turbulence
kinetic energy 𝑘 on a plane located at the turbine hub height. It
is observed that the distributions of 𝑈 and 𝑘 are different for cases
10
with different wind directions. For the two cases with the same wind
direction, the overall patterns of the downwind velocity are similar
for different roughness lengths. For the case with wind from south
and 𝑧0 = 0.1 m, the level of turbulence kinetic energy in turbine
wakes is similar to that in the environment, while is significantly higher
compared with that in the environment for the case with 𝑧0=0.00016
m. For the case with wind blowing from the north, it is seen that the
normalized 𝑈 is higher and distributed more uniformly in the wind
farm region. Because of the increase of terrain elevation as wind blows
from north to south, the level of turbulence kinetic energy is signifi-
cantly reduced with the turbulence in turbine wakes prevailing in the
wind farm region. Overall, the spatially non-homogeneous distributions
of downwind velocity and turbulence kinetic energy are well captured
by the LES, which are induced by the terrain topography and turbine
wakes and are important for developing advanced turbine and farm
control algorithms, such as yaw control and pitch control. On the other
hand, the long-term wind variations in turbine wakes, e.g. for months,
weeks, or even days, which are important for predicting the wind farm
production, are difficult to quantify from LES but are relatively easy to
obtain from field measurements. In the next section, we will examine
the wind speed variations in turbine wakes using the field measured
data. In Sections 3.2 and 3.3 we will probe into the predictive ability
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Fig. 13. Comparison of the vertical profiles of the computed time-averaged downwind velocity (top) and the standard deviations of downwind velocity fluctuations (bottom)
between LES predictions (black solid lines) and SODAR measurements (red circles, blue squares) at different SODAR locations. The measured data (red circles and blue squares)
are post-processed using Eq. (4). The red circles are post-processed using all three constraints. The blue squares, on the other hand, are post-processed using constraints 𝐶1 and
𝐶2. Green lines in (c) and (d) denote the LES-predicted vertical profiles located 1.8𝐷 east of S75 and 0.5𝐷 east of S78 (S75 and S78 locations can be found in Fig. 1), respectively.
of LES for a short time period by comparing the computed results with
measurements.

3.1. Wind speed distribution in turbine wakes

The Weibull distribution is often employed in the literature for
characterizing wind distribution as we discussed in the introduction
section. In this section, we examine whether the Weibull distribution
is still valid for the wind speed in turbine wakes. At the S30 and
S75 SODAR locations, velocity deficits are observed for wind from the
south direction. The wind speed PDFs in turbine wakes are examined
in Fig. 7 with the corresponding wind profiles shown in the far left
column, where the top tip and bottom tip of the turbine are indicated
by red dashed lines. It is seen from the velocity profiles that the velocity
deficits are higher during the night, which is reasonable since the stable
stratification condition during nights slow down the wake recovery.
The wake at S75 is observed to be less significant than that at S30,
which is due to the fact that the closest upwind turbine is not located
directly upwind. It should be also noted that S75 is located at the
top of a hill after an abrupt change of terrain elevations, while S30
11
is located deep in the wind farm where terrain topography changes are
small. From the PDF plots shown in Fig. 7, we can see that the Weibull
distribution fits very well with the measured data except for the PDF
of the wind speed measured at 𝑆75 at vertical locations above the hub
height during nights. For all PDFs, it is observed that the shape factor
is lower during nights, which indicates higher variations of the wind
speed.

Before examining the shape factors of the Weibull distribution in
turbine wakes, we plot the contours of shape factors as a function
of wind direction and distance from the ground in Fig. 8. It is seen
that the shape factor remains fairly constant in the vertical direction,
but changes with wind directions for all the SODAR locations. The
values of 𝑘 during nights are observed to be different from those
during days, which become even higher and lower during nights for
the wind direction with higher and lower 𝑘 values, respectively. It is
also observed that the 𝑘 values can be significantly higher than the
recommended value [72], which does not consider the terrain and
turbine wake effects. To investigate how the values of the shape factor
𝑘 depend on the wind speed, we average 𝑘 in the vertical location and
plot the vertically averaged ⟨𝑘⟩ as a function of the vertically averaged
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Fig. 14. Comparison of the PDF of wind speed fluctuations between (a) and (b) LES and (c) and (d) SODAR measurements for the cases with wind from the south direction. The
PDFs of measured data shown in (c) and (d) are post-processed using Eq. (4) with the constraints 𝐶1 and 𝐶2, and with all three constraints, respectively. The solid lines are the
fitted Gaussian distribution.
wind speed ⟨𝑈⟩ in Fig. 9. It is seen that the shape factor approximately
increases as a function of the wind speed. The red points show the shape
factors for measurements in turbine wakes. It is seen that the values of
vertically averaged 𝑘 for measurements in wakes are lower than those
out of wakes, which should be considered when designing a wind farm.
In summary, the Weibull distribution in general can be considered valid
in turbine wakes based on the measured data, but with a shape factor
lower than that in the ambient atmosphere.

The wind field in the atmosphere is characterized by varying wind
speed, wind direction, and thermal stratification conditions across all
relevant times scales (i.e. from hours to years). Characterizing the wind
field using LES for different atmospheric conditions and different time
scales requires a huge amount of computational resources, which are
beyond the practical time frame for designing a wind farm. Usually
idealized LES over a short period of time under statistically steady
inflow conditions is feasible for informing wind farm design, as we
do in this work. In the following two sections we aim to examine the
predictive usefulness of such idealized LES by comparing the LES results
with SCADA (Supervisory Control and Data Acquisition) and SODAR
measurements.
12
3.2. Comparison of simulation results with SCADA data

In this section we compare the wind speed computed using LES with
that measured by SCADA. The SCADA wind speeds are averaged every
10 min. To facilitate the comparisons, the simulated wind speeds are
averaged over a circular disk with the same radius and orientation as
the turbine rotor located one rotor diameter upwind. The SCADA data
in the range of [175◦, 185◦] are employed for comparison while the wind
in the simulation is exactly from the south direction. There are 100
turbines in the wind farm, which makes the comparison per turbine
difficult and not helpful for analyzing the spatial wind speed variation.
We thus divide the turbines into 21 groups (as shown in Fig. 1) and
investigate the wind speed variations among groups and within each
group.

We first compare the group-averaged wind speed between LES and
SCADA results in Fig. 10. It is seen that LES predicts the overall pattern
of the downwind variation of wind speed for both wind directions,
which is caused by the terrain elevation as well as turbine wakes.
However, there are some differences between the LES predictions and
measurements especially near the inlet of the computational domain,
i.e. groups G1-2 and groups G18-21 as shown in Fig. 10 for wind
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Fig. 15. Comparison of the PDF of wind speed fluctuations between (a) LES and (b) and (c) SODAR measurements for the case with wind from the north direction. The PDFs
of measured data shown in (b) and (c) are post-processed using Eq. (4) with the constraints 𝐶1 and 𝐶2, and with all three constraints, respectively. The solid lines are the fitted
Gaussian distribution.
from the south and north directions, respectively. These differences are
probably caused by the fact that the inflow generated from a precursory
simulation of flat terrain does not take into account the effects of the
actual terrain far upwind of the wind farm. For the case with wind
blowing from the south, the differences between results from different
roughness lengths are minor until group G14 especially for group G18,
for which the velocity predicted by the simulation with 𝑧0 = 0.00016 m
is significantly lower than that from 𝑧0 = 0.1 m case. For the case with
wind from the north direction, LES fails to predict the velocity increase
from group 6 to 5 and 4, which is probably caused by the relatively
coarse grid employed in LES. In Figs. 11 and 12 we show the wind
speed variation within each group for all the cases. Overall the wind
speed variation within each group is well predicted by LES with some
discrepancies observed in several groups, e.g. G9 and G11 for wind
from the south direction, and G13 and G17 for wind from the north
direction.

3.3. Comparison of simulation results with SODAR data

In this section, we compare the LES results with SODAR measure-
ments. However, we do not aim to directly compare the computed
results with a specific period of measured data. Instead we intend to
explore the predictive usefulness of a LES under idealized conditions
over time scales much longer than those LES is typically used for. The
measured wind velocity and turbulence intensity employed for com-
parison are calculated by averaging the corresponding moving-average
values under certain constraints as follows:

⟨𝑓 (𝑧)⟩ = 1
𝑁
∑

(

𝑓𝑚𝑜𝑣(𝑡𝑖, 𝑧)||𝐶1 & 𝐶2 & 𝐶3

)

, (4)
13

𝑁 𝑖=0
where 𝑓 (𝑧) is the quantity of concern, 𝑓𝑚𝑜𝑣(𝑡𝑖, 𝑧) is the moving averaged
value (which can be the mean wind speed or turbulence intensity
normalized using the corresponding moving-averaged wind speed), 𝑁
is the number of all samples that satisfy the three constraints, i.e., 𝐶1 ∶
�̄�𝑚𝑜𝑣(𝑡𝑖, 𝑧ℎ) ∈ [𝑈1, 𝑈2], 𝐶2 ∶ �̄�(𝑡𝑖, 2𝐷) ∈ [𝜙1, 𝜙2] and 𝐶3 ∶ 𝜎𝑢,𝑚𝑜𝑣(𝑡𝑖, 2𝐷) <
𝜎𝑐𝑟𝑖𝑡. The first constraint ensures that the turbine operates in regime 2,
i.e. the same as in the simulations, for comparison with the simulation
results. The second constraint constrains the wind direction. The third
constraint assures that the standard deviations due to low frequency (∼
hours) wind speed variations are not accounted for in the computation
of turbulence intensity as they are beyond the predictive ability of an
idealized LES as defined above. In this work 𝑈1 and 𝑈2 are set as the
cut-in and rated wind speed of the turbine, 𝜙1 = 175◦ and 𝜙2 = 185◦,
and 𝜎𝑐𝑟𝑖𝑡∕𝑈 = 0.18 (where 𝑈 is mean downwind velocity at the same
location), respectively.

In Fig. 13 we compare the simulated (black lines) mean downwind
velocity and turbulence intensity with the SODAR measurements for all
the cases, which are conditionally-averaged using different constraints.
Specifically, the red symbols are the measurements conditionally aver-
aged using all the constraints (equation (4)) while the blue symbols are
the measured data conditionally averaged using only constraints 𝐶1 and
𝐶2 (i.e. allowing for contributions from low frequency variations in the
wind farm and the atmosphere). It is seen that overall good agreement
is obtained between the LES predictions and measurements when the
measured data are conditionally averaged using all the constraints. On
the other hand, discrepancies are observed when only constraints 𝐶1
and 𝐶2 are employed especially for the turbulence intensity. A good
agreement between the computed turbulence intensity and that from
the measured data conditionally averaged using all constraints is also
obtained. Without employing the third constraint 𝐶 , the shapes of
3
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Fig. 16. A schematic for a potential solution for integrating measurements and simulations for (a) wind farm layout optimization and (b) wind farm operation optimization.
the vertical profile of 𝜎𝑢 are very different, and the magnitudes of the
measured 𝜎𝑢 are approximately two times greater than the computed
results. It is noticed that at the S75 location a wake profile is observed
in the measurement when wind blows from the south, which, however,
does not exist in the simulation. This discrepancy is probably caused
by the misalignment of the rotor with the wind direction, which is not
considered in the simulation. To compare the LES-predicted wake pro-
files with measurements, we added the LES-predicted vertical profiles
located 1.8𝐷 east from S75 to Fig. 13(c). It is seen that the vertical
profile of 𝑈 and 𝜎𝑢 are in good agreement with the measurements at
this location. At S78 location, the velocity deficit from LES is observed
being larger than that from the measurements. It is possibly because of
the misalignment of rotor with the downwind direction, such that what
SODAR measured represents the quantities on the boundary of the wake
instead of center of the wake. In order to verify this conjecture to some
extent, we plot the vertical profiles located 0.5𝐷 east of the S78 location
in Fig. 13(d). It is seen that vertical profiles of 𝑈 and 𝜎𝑢 agree better
with measurements at this new location.

The PDF profiles of wind speed fluctuations predicted using LES
are compared with measurements in Figs. 14 and 15 for wind blowing
from the south and north directions, respectively. The PDF profiles
from the LES predictions are computed using the time series of the
downwind velocity averaged over a circular disk of the same radius
as the rotor located at one rotor diameter upwind of the turbine.
The PDF profiles from the SODAR measurements are computed using
the vertically averaged (from 𝑧 = 45 m to 𝑧 = 145) wind speed
for wind directions 180◦ ± 5◦ and 0◦ ± 5◦ for wind from the south
and the north, respectively. The velocity fluctuations for computing
the PDF from SODAR measurements are obtained by post-processing
the vertically averaged wind speed using the moving average and
conditionally-averaged procedure (i.e., Eq. (4)). It is seen that the
computed PDF profiles (the first row of Fig. 14) agree better with the
measured values (the fourth row of Fig. 14), which are post-processed
using all three constraints. It is also noticed that both computed and
measured PDF distributions post-processed using all three constraints
can be approximated reasonably well using the Gaussian distribution.
The measured PDF distributions shown in third column of Fig. 14(c),
which are post-processed without using the constraint 𝐶3, on the other
hand, deviate significantly from the Gaussian distribution. The values
of the standard deviations are also observed to be much larger. For the
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case with wind from the north direction, similar trend is observed in
Fig. 15.

3.4. A potential solution for integrating measurements and simulations

In this section, we attempt to discuss a potential solution for inte-
grating measurements and simulations for wind field characterization
in large-scale wind farms or potential sites. We consider two scenarios,
one for wind farm layout optimization and the other for the optimiza-
tion of wind farm operation. A schematic for this solution is shown
in Fig. 16. Because of its high computational cost, it is not feasible to
directly employ LES for the design and operation of wind farms. The
key element of the proposed solution is the use of site-specific low-order
wind farm models.

In the scenario of wind farm layout optimization, the wind field
measurement campaign is firstly carried out at certain locations as
shown in Fig. 16(a). Using the measured wind speed as inputs, sim-
ulations without wind turbines are then carried out for different wind
conditions (e.g. different wind directions, wind speeds, thermal strati-
fication conditions and etc.). With the simulation results, site-specific
low-order wind farm models can then be developed using the measured
and simulation data either based on existing models or totally driven by
the data using the machine learning method [73–75]. This site-specific
low-order models are then combined with an optimization method to
find the optimal turbine locations. With the obtained turbine locations,
simulations with turbines are then carried out to assess the performance
of the layout and to improve the low-order models to better account for
turbine wake effects. Iterations are needed here until the convergence
of the wind farm performance is achieved.

In the scenario of optimizing wind farm operation, simulations for
different wind and turbine operational conditions are first carried out
based on the historical wind measurements and turbine operational
data as shown in Fig. 16(b). With the measured and simulation data,
site-specific low-order models can then be developed based on existing
models or using a data-driven approach. The developed low-order
models are then combined with the advanced wind farm control algo-
rithm for optimal wind farm operations using the real-time wind speed
measurement data and the turbine operational data as inputs.

It should be noted that this is just a blueprint for the integration of

measurements and simulations for wind field characterization. A lot of
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work still needs to be done to realize this solution especially for the
development low-order wind farm models, for instance, how to incor-
porate the effects of complex topography in low-order models using the
data from measurements and high-fidelity simulations [46,49,76,77],
and how to take into account the effect of inflow turbulence, which
can significantly affects turbine wakes and wind farm performance as
shown in this work and in the literature [78,79]. This can be explored
either by calibrating the parameters of the existing models, introduc-
ing more physics to the existing models, or following a data-driven
approach. Moreover, further development of wake models may also
be needed for non-conventional wind farm configurations, e.g. turbine
staggering in the vertical direction [80,81].

4. Conclusions

In this work we presented the field measurements and LES results
obtained with the turbines parameterized as actuator lines of a utility-
scale wind farm of 100 wind turbines to explore the possibility of using
LES and field measurements to characterize wind fields in utility-scale
wind farms across a range of time scales. In the field measurements the
wind speed data were collected at each turbine via the SCADA system
and at several locations within the wind farm using SODAR.

Using the SODAR-collected data the distributions of wind speed
and wind direction are examined at the five locations. It is found that
both wind direction and wind speed distributions can be well approxi-
mated using the Weibull distribution. For certain wind directions wake
profiles were observed at several SODAR locations. Special attention
was paid on the measured wake data. It is observed that the Weibull
distribution is still a reasonable approximation of the wind speed in
the turbine wake with some discrepancies observed for one case at
locations far away (𝑧 = 130, 180 m) from the ground. The shape factor of
the Weibull distribution was examined and shown to increase in general
with the mean velocity. One interesting observation is that the values
of shape factors corresponding to turbine wakes are lower than others
without turbine wake effects. This finding implies a high probability of
having velocities significantly higher or lower than the expected value
in turbine wakes.

The LES predictions are compared with both SCADA data and
SODAR data. For the comparison with SCADA data, the LES is shown to
predict both the variation of group-averaged power and the variation of
power within each group, which is consistent with what we have also
found in our previous work for a wind farm in complex terrain. Some
discrepancies are also observed, which might be caused by unresolved
terrain topography or the inflow not fully taking into account the effects
of terrain far upwind of the wind turbines. The LES computed results
are compared with SODAR for both mean velocities and downwind
turbulence intensities. In the simulation both wind speed and wind
direction are statistically stationary. This assumption, however, is not
fulfilled in the SODAR measurements, which have been obtained over
different seasons and across time scales when significant variations
of wind speed and direction occur. For that, and to avoid computing
contributions of low frequency (hourly) wind speed variation in the
measured turbulence intensity, a moving average procedure with con-
straints on the standard deviation of wind speed at 𝑧 = 200 m was
developed and implemented to process the SODAR measurements. It
is found that the vertical profiles of both wind speed and downwind
turbulence intensity agree well with the conditionally-averaged SODAR
measurements. The computed PDF profiles of velocity fluctuations are
also compared with SODAR data. A good agreement between the
simulation results and the measured data is observed when the above
mentioned constraint is enforced during the post-processing of the
measured data.

In summary, the good agreement between LES prediction and mea-
surements suggests that an idealized LES over a short time interval can
reasonably represent the mean wind speed and turbulence intensities
15

ensemble-averaged over many short time intervals when large-scale
Fig. 17. Streamwise development of (a) the time-averaged downwind velocity 𝑈 and
(b) the turbulence kinetic energy 𝑘 in the simulation for generating inflow for the wind
farm cases with roughness length of 0.1 m.

wind speed variations are absent. The measurements, on the other
hand, can provide statistics over a long time interval, such as the PDFs
of wind speeds and wind directions, which cannot be easily obtained
using high-fidelity simulations. Overall, the present work shows the
possibility of integrating high-fidelity simulations and measurements
for characterizing wind resources in utility-scale wind farms with a
potential solution for integrating measurements and high-fidelity sim-
ulations discussed in Section 3.4. More work, such as considering the
effects of complex terrain, thermal stratification and ocean waves, and
LES under varying wind conditions, needs to be carried out to realize
the possibility of integrating field measurements and LES for wind
resource assessment in the design of very large land-based or offshore
wind farms.
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Appendix

For the wind farm case with roughness length of 0.1 m, the inflow
is generated by applying the inflow from the precursory simulation
with roughness length of 0.00016 m to the simulation with inlet–outlet
boundary condition in the downwind direction, roughness length of 0.1
m and the same parameters for other computational setup. The length
of the computational domain for this simulation is 225𝐷. The velocity
field on the slice located at 220𝐷 from the inlet is employed as the
nflow for the wind farm simulation. In this appendix, we show the
ownwind variations of the time-averaged downwind velocity 𝑈 and
he turbulence kinetic energy 𝑘 in this simulation. As seen in Fig. 17,
t 220𝐷 from the inlet, the flow is very close to the fully developed
tate.
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