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A B S T R A C T   

A series of quasi-static and dynamic uniaxial compression experiments over a wide range of temperatures were 
conducted on polyurea elastomer. The stress-strain response of polyurea exhibits extreme nonlinearity, tem-
perature and strain-rate sensitivity. How to comprehensively describe these complex behaviors regulated by the 
unique micro-structure of polyurea is still an open question. In this paper, a nonlinear viscoelastic constitutive 
model for polyurea is developed. The nonlinear viscoelasticity, entropic and energetic elasticity are taken into 
account, correlated with the interaction of chain segments, the stretch of molecular chains and covalent bonds 
from the perspective of molecular structure. The viscoelastic response is formulated by the hereditary integral of 
relaxation modulus and strain rate with time. The real time is accelerated by shift factor, which depends on the 
free volume. A new mechanism of shear-induced increase of free volume, which gives rise to the nonlinearity of 
viscoelasticity, is proposed, and the corresponding rate-dependent evolution equation of fractional free volume is 
developed. Parameters in the model are determined through the compression experiments and DMA test. 
Comparison with experimental data, as well as the data from references, verifies the ability of the model to 
predict the nonlinear stress-strain response of polyurea over a wide range of temperatures and strain rates.   

1. Introduction 

Polyurea, formed through the rapid chemical reaction between iso-
cyanates and amines, is a kind of elastomer which is usually called the 
microphase-segregated and thermo-plastically linked block copolymer 
(Grujicic et al., 2011; Holzworth et al., 2013; Li et al., 2018). Because of 
its excellent mechanical and chemical properties, such as remarkable 
resilience and yet high dissipation, outstanding impact and shock 
resistance, excellent adhesion to a wide range of substrates, good 
abrasion and corrosion resistance (Amini et al., 2010a, 2010b; Amir-
khizi et al., 2006; Chevellard et al., 2011; Clifton et al., 2016; Gamo-
npilas and McCuiston, 2012; Remennikov et al., 2017; Samiee et al., 
2013; Xue et al., 2010), it has been used in many engineering fields. 
Over the past decade, the mechanical behavior of polyurea has been 
widely investigated by experiments, including quasi-static to high-rate 
tension and compression even at different temperatures (Amirkhizi 

et al., 2006; Chevellard et al., 2011; Guo et al., 2016, 2017; Mohotti 
et al., 2014; Roland et al., 2007; Sarva et al., 2007; Shim and Mohr, 
2011), dynamic mechanical analysis (Holzworth et al., 2013; Nanta-
setphong et al., 2016b; Qiao et al., 2011), ultrasonic measurements 
(Nantasetphong et al., 2016a, 2016b; Qiao et al., 2011) and 
pressure-shear plate impact experiments (Jiao and Clifton, 2014; Jiao 
et al., 2009). These studies demonstrated the main mechanical features 
of polyurea, such as highly nonlinear stress-strain behavior, hyper-
elasticity with large deformation, significant strain-rate and tempera-
ture sensitivity, pressure dependence and cyclic softening (Gamonpilas 
and McCuiston, 2012; Grujicic et al., 2012; Li and Lua, 2009; Sarva 
et al., 2007). Like other polymers, polyurea is constructed by long mo-
lecular chains with multiple unites in different spatial and temporal 
scales. Due to strong hydrogen bonding between urea linkages of the 
neighboring chains or the neighboring portions of the same chain, hard 
segments in polyurea are typically segregated into hard domains (Choi 
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et al., 2012; Das et al., 2007; Li et al., 2018). These hard domains 
distribute within the compliant/soft matrix composed of isolated hard 
segments and soft segments, which leads to a special heterogeneous 
structure of polyurea. The molecular- and domain-level microstructure 
dominates the highly complex macro-response in polyurea. 

Varieties of constitutive models have been proposed to describe the 
mechanical behavior of polyurea. There are mainly three approaches to 
model the viscoelastic response of polyurea, including the hereditary 
integral approach (Amirkhizi et al., 2006; Chevellard et al., 2011; Clif-
ton et al., 2016; Li and Lua, 2009), the framework of multiplicative 
decomposition of the deformation gradient (Cho et al., 2013; Elsayed, 
2008; Jiao et al., 2009; Shim and Mohr, 2011), and the approach via 
decoupling the strain-dependent term and rate-dependent term (Gam-
onpilas and McCuiston, 2012; Mohotti et al., 2014). The hereditary in-
tegral approach is developed based on the linear viscoelasticity, and is 
expressed by the integration of relaxation (/memory) function and 
strain history. Various relaxation functions and fading memory func-
tions are also used in different models through this approach. In the 
framework of multiplicative decomposition of the deformation gradient, 
several branches in parallel, such as hyperelastic branch, elasto-plastic 
branch and viscoelastic branch, are usually adopted to describe the 
deformation mechanism of materials. The third approach decouples the 
strain-dependent term and rate-dependent term of stress function 
(Gamonpilas and McCuiston, 2012) or strain energy density (Mohotti 
et al., 2014), and then constructs the specific formulas respectively. 
These former constitutive models achieve great success in describing the 
mechanical behavior of polyurea in specific cases, and provide an 
important foundation for a better description of the macro-responses in 
polyurea. 

As the micro-structure of polyurea is the origin of their macro- 
response, to take into account the micro-structure in the constitutive 
modeling is essential for a satisfactory description of the complex me-
chanical behaviors. Polyurea consists of long molecular chains with 
multiple spatial- and temporal-scaled units similar to other polymers, 
and what’s more, it has the special microphase-segregated structure. 
From the perspective of molecular structure, there are three levels of 
micro-processes, namely, the interaction of chain segments, the stretch 
of molecular chains and covalent bonds. These processes will give rise to 
different responses. The interaction of chain segments as main reason for 
viscoelasticity, is greatly influenced by free volume, which is regarded as 
the difference between the total volume and the occupied volume of 
polymer chains (Fox and Flory, 1950, 1954). Normally more free vol-
ume makes the motion of chain segments easier to take place, and the 
interactions of chain segments become weaker, indicating a decrease of 
viscosity macroscopically. The stretch of molecular chains will cause a 
change of configurational entropy and thus leads to an entropy elastic 
stress or hyperelastic stress. On a smaller spatial scale of a molecular 
chain, atoms are connected by covalent bonds that are much stronger 
than the intermolecular interactions. The small changes of bond length 
and angle during deformation give rise to an internal energy change, 
which induces an energy elastic stress. The three micro-processes from 
intermolecular scale to intramolecular scale coexist and work together 
in response to external loadings. 

So far, how to correlate micro-structure and macro-response by 
constitutive modeling is still an open issue to be studied for polyurea. 
Free volume is a vital factor affecting the viscoelastic property of poly-
mers. Besides mechanical property, thermal property and transport 
property of small molecules through polymer are also strongly influ-
enced by free volume (Budd et al., 2005; Sharma and Pujari, 2017), 
which means that free volume is an important parameter at 
micro-structural level in determining the macro-properties of polymers. 
Doolittle (1951) is the first one who presented an equation establishing 
the relationship between the free volume and the viscosity of liquids. 
Later, based on the assumption that the fractional free volume of poly-
mers changes linearly with temperature above the glass transition 
temperature, Williams et al. (1955) found the consistency of Doolittle 

equation and WLF equation. After that, Knauss and Emri (1981) sug-
gested that the fractional free volume should depend on temperature, 
solvent concentration and mechanically induced dilatation. Based on 
this idea, they proposed a nonlinear viscoelastic model through hered-
itary integral approach, which is able to predict the nonlinear 
stress-strain curve of tension at small strain. Popelar and Liechti (1997) 
further added a distortional term to the shift factor function in 
phenomenological way, simply following the form of the dilatational 
term. The modified model can properly model the nonlinear viscoelas-
ticity of polymers in both dilation-dominated and shear-dominated 
loading cases. Pressure has also been found to be an important influ-
encing factor on viscoelastic properties, and the dependent relations of 
free volume on pressure have been proposed (Fillers and Tschoegl, 1977; 
Tschoegl et al., 2002). Nantasetphong et al. (2016a) developed a 
constitutive model for polyurea based on WLF equation by introducing 
the combined effect of pressure and temperature. Obviously, free vol-
ume as an internal parameter can naturally bridge the micro-structure 
and macro-properties. It is known that fractional free volume in poly-
mer materials increases with the decrease of crosslinking density (Ogata 
et al., 1993). This means new free volume can be produced via breaking 
crosslinks. However, most crosslinking polymers only possess chemical 
crosslinks, which are hard to be broken by deformation. Differently, 
polyurea is a kind of microphase-segregated polymer with hard domains 
and hydrogen bonds as physical crosslinks. Upon deformation, hard 
domains and hydrogen bonds break down, as observed by experiments 
(Choi et al., 2012; Pathak et al., 2008; Rinaldi et al., 2011), which 
largely decreases the crosslinking density of polyurea and creates lots of 
free volume. Because of these new traits, to comprehend the free volume 
evolution mechanism for polyurea and develop a proper description of it 
are quite necessary. 

In this paper, a new free volume evolution mechanism for polyurea is 
proposed, and based on it, a nonlinear viscoelastic constitutive model is 
developed for polyurea with application over wide strain-rate and 
temperature ranges. The total stress response in the model consists of a 
rate-dependent nonlinear viscoelastic term, a rate-independent entropy 
elastic term and a rate-independent energy elastic term correlated to the 
aforementioned three micro-processes respectively, i.e. the interaction 
of chain segments, the stretch of molecular chains and the small stretch 
of covalent bonds. Dynamic mechanical analysis (DMA) was performed 
to exam the linear viscoelasticity of polyurea. Quasi-static and dynamic 
compression at different temperatures ranging from − 30 ◦C to 60 ◦C 
were implemented to acquire the nonlinear stress-strain curve. The 
experimental results are used to parameterize the constitutive model. 
Over a wide range of temperatures and strain rates, the model achieves a 
satisfactory prediction of the mechanical behavior of polyurea. 

The manuscript is organized as follows: Section 2 presents the details 
of experimental investigation on polyurea. The constitutive model is 
formulated in Section 3. Parameter identification is shown in Section 4. 
The model is validated by comparison with experimental data in Section 
5. 

2. Experiments 

2.1. Material and specimen preparation 

The specific polyurea used in this research was produced by bulk 
polymerization of CDMDI-100L (Wanhua Chemical Group Co., Ltd.) and 
Versalink P1000 (Air Products) with 5% stoichiometry excess CDMDI- 
100L, which produces a lightly cross-linked polymer according to the 
references (Amirkhizi et al., 2006; Nantasetphong et al., 2016a). The 
two components were degassed under 0.1 MPa with continuous stirring 
for more than 6 h before being mixed. Then they were allowed to react 
for about 3 min and the mixture was poured into the Teflon molds to 
form sheets of 3.5 mm in thickness and cylinders of 10 mm and 6 mm in 
diameter. A curing process at room temperature for 24 h and at 70 ◦C for 
12 h were followed to make sure the complete reaction. The sheets were 
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then cut into 35 mm × 12.5 mm × 3.5 mm block for DMA test. The two 
kinds of cylinders were cut into small cylinders with aspect ratio 
(length/diameter) of 0.5 for quasi-static and dynamic uniaxial 
compression respectively. 

2.2. Dynamic mechanical analysis 

A TA Instruments DMA Q800 with a single cantilever clamp test 
fixture was used to characterize the linear viscoelasticity of polyurea. A 
controlled strain temperature step/frequency sweep experiment is con-
ducted on polyurea. The specimen was clamped at a free length of 17.5 
mm with both ends constrained from rotation. A sinusoidal transverse 
displacement was applied to one end of the specimen with a 0.05% 
maximum strain. The temperature range was − 90 ◦C–60 ◦C with tem-
perature step of 3 ◦C, which covers the glass transition zone. The 
sweeping frequencies at each temperature step were 10, 5.6, 3.2, 1.8 and 
1 Hz. At the beginning of each sweep, a soaking time of 5 min was 
adopted to minimize the temperature gradient in specimen. Liquid ni-
trogen was used as the cooling source. 

Fig. 1 shows the results of DMA tests. The storage modulus decreases 
monotonically with increasing temperature from glassy region to 
rubbery plateau, and it increases with the growing frequency. One 
relaxation peak is observed in loss modulus, which is attributed to the 
glass transition of the soft segment in polyurea. The more results based 
on DMA tests will be presented in Section 4. 

2.3. Quasi-static uniaxial compression 

A servo hydraulic dynamic test system (Instron 8852) with an 
environmental chamber was used to perform quasi-static uniaxial 
compression at different temperatures (− 30 ◦C, − 15 ◦C, 0 ◦C, 20 ◦C, 
40 ◦C and 60 ◦C). Cylindrical specimens of 10 mm in diameter and 5 mm 
in height were used in this experiment. A preliminary experiment was 
done to exam the proper thermal soaking time, in which a polyurea 
sample with a thermocouple planted inside was placed between the 
loading rods. The time used for the sample reaching the setting tem-
perature varies from 15 min to 25 min, depending on the setting tem-
perature. Thus, 30 min was selected as the thermal soaking time to 
ensure no temperature gradient effect. The nominal strain rate was 4 ×
10− 3/s. Repeated experiments were performed for every temperature 
and reasonable results were achieved. 

The results are presented in Fig. 2a. The true stress was calculated 
based on the widely accepted assumption that the volume is conserved 
during deformation (Amirkhizi et al., 2006; Gamonpilas and McCuiston, 
2012; Li and Lua, 2009; Roland et al., 2007; Sarva et al., 2007). The 

stress-strain relation is extremely nonlinear, where an initially stiff 
response is followed by a much more compliant stage, and the stiff 
response appears again at large strain. Besides, a highly temperature 
dependence of stress-strain curve is observed: Polyurea exhibits a stiffer 
behavior with the decrease of temperature. The initial tangent modulus 
increases from about 60 MPa to 180 MPa when temperature decreases 
from 60 ◦C to − 30 ◦C. The flow stress apparently increases with the 
decrease of temperature. And the rollover of stress-strain curve at a 
strain of about 0.1 becomes more apparent when temperature decreases, 
though the stress-strain curves at different temperatures all exhibit a 
rubbery behavior, which is known from the curves that there is no 
apparent yield point and strain softening behavior. 

2.4. High strain rate dynamic uniaxial compression 

The high strain rate compression was conducted on a Split- 
Hopkinson Pressure Bar (SHPB) apparatus. Considering the low 
impedance of polyurea, the aluminum bars were used for the experiment 
and a semiconductor strain gauge was adopted for transmitted bar to get 
a higher signal to noise ratio. The incident and transmitted bars were 1 
m in length and 13 mm in diameter, and the striking bar was 300 mm in 
length and 13 mm in diameter. Cylindrical specimens of 6 mm in 
diameter and 3 mm in height were used in this experiment. An envi-
ronmental chamber was also used for experiments at different temper-
atures (− 30 ◦C, − 15 ◦C, 0 ◦C, 20 ◦C, 40 ◦C and 60 ◦C) with similar 
temperature controlling procedure adopted in quasi-static compression. 
Repeated experiments were performed and the average true strain rate is 
about 9000/s. 

The results of dynamic compression are presented in Fig. 2b. The 
temperature dependence is similar to that in quasi-static compression. 
We can find the rate dependence of stress-strain response by comparing 
the stress-strain curves at the same temperature in Fig. 2a and b. The 
dynamic stress-strain curves show a much higher stress level than the 
corresponding quasi-static ones, especially at the small and intermediate 
strain. 

3. Theory 

The experiments in Section 2 indicate that the stress-strain response 
of polyurea is highly nonlinear, strain-rate and temperature sensitive. 
Herein, a nonlinear viscoelastic constitutive model is established for 
polyurea based on free volume concept, in which three basic micro- 
processes, i.e., the interaction of chain segments, the stretch of molec-
ular chains, and the stretch of covalent bonds, are taken into account. 

For solid polymer, the whole molecular chains are not able to slide 
unless the temperature is higher than the melting point. But the shorter 
chain segments can rotate to accommodate the imposed deformation as 
long as the temperature is higher than the glass transition temperature 
Tg, below which the segment rotation freezes due to the extremely high 
viscosity and low free volume (Ferry, 1980; Treloar, 1975). When the 
viscosity is not high enough to freeze the rotation and yet not small 
enough to enable the fully free motion of the chain segments, a kind of 
stress is produced due to the interaction of chain segments, which gives 
rise to the viscoelasticity. The viscosity of polymer is closely related to its 
free volume. In addition to the motion of chain segments, there are other 
micro-processes. On the basis of second law of thermodynamic, if no 
external stress is applied, a molecular chain shall fold itself into random 
coil to maximize the entropy (Treloar, 1975). Upon deformation, the 
molecular chains are stretched along the direction of the deformation, 
which changes the configurational entropy. Thus, the second kind of 
stress is induced to resist this change, which is usually called entropy 
elastic stress or hyperelastic stress. On a smaller spatial scale of a mo-
lecular chain, covalent bonds among atoms are much stronger than the 
intermolecular interactions. An internal energy change will be contrib-
uted by the small changes of bond length and angle, and then induces an 
energy elastic stress. Based on the three micro-processes from 

Fig. 1. The Young’s storage modulus and loss modulus at different tempera-
tures and frequencies. 
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intermolecular scale to intramolecular scale, the overall response of 
polyurea is thus treated as a combination of a rate-dependent nonlinear 
viscoelasticity, a rate-independent entropic elasticity and a 
rate-independent energetic elasticity. Fig. 3 shows the corresponding 
rheological schematic of the present model. 

3.1. General definition 

Firstly, we define the deformation gradient tensor as F = ∂x/∂X, 
which maps the point X in the reference configuration to the point x in 
the deformed configuration. Since the three branches of elements in 
Fig. 3 are in parallel, the deformation gradient of each branch is equal to 
the macroscopic deformation gradient, 

F=Fv = Fe
1 = Fe

2 (1)  

where Fv, Fe
1 and Fe

2 are the deformation gradient tensors of viscoelastic 
branch, entropy elastic branch and energy elastic branch respectively. 
The left Cauchy-Green deformation tensor and the spatial velocity 
gradient tensor are defined as B = FFT and L = ḞF− 1 respectively. In 
addition, we decompose the spatial velocity gradient tensor into rate of 
deformation and spin, 

D=
1
2
(
L+LT) (2)  

W=
1
2
(
L − LT) (3) 

Upon the macroscopic deformation, the stress response of polyurea 
consists of a viscoelastic stress, an entropy elastic stress and an energy 
elastic stress, 

σ=σv + σe
1 + σe

2 (4) 

In the following sections, the three kinds of stress will be derived in 
details. 

3.2. Viscoelastic response 

The viscoelastic response can be formulated through Boltzmann su-
perposition principle of linear viscoelasticity, whose mathematical 
expression is (Amirkhizi et al., 2006) 

σv(t)=
∫ t

− ∞
χ(t − τ) : D(τ)dτ (5)  

where D is the deformation-rate tensor defined by Eq. (2) and χ is the 
fourth-order relaxation modulus tensor. Considering that polyurea is 
isotropic and the volumetric response is nearly rate-independent, we 
decompose χ into shear modulus and bulk modulus as 

χ(t)= 3KE1 + 2G(t)E2 (6)  

where K and G(t) are bulk modulus and shear relaxation modulus 
respectively and the fourth-order tensor E1 and E2 are defined as 

E1
ijkl = δijδkl

/
3 (7)  

E2
ijkl =

(
δikδjl + δilδjk

) /
2 − δijδkl

/
3 (8)  

where δij is the Kronecker delta. Since the bulk modulus is time- 
independent, the stress in Eq. (5) can be decomposed into bulk stress 
and shear stress, 

− p = Kln J/J (9)  

sv(t)=
∫ t

− ∞
2G(t − τ)E2 : D(τ)dτ (10)  

where p is the hydrostatic pressure, J is the Jacobian of the deformation 
and sv is the shear stress. In addition, we adopt the linear dependence of 
bulk modulus on temperature as the model of Amirkhizi et al. (2006), 

K(T)=Kref + m
(
T − Tref

)
(11)  

where Tref is a reference temperature, Kref is the bulk modulus at 
reference temperature, m is a temperature coefficient. For the shear 
relaxation modulus, there are several functional forms available. Among 
them, Prony series are mostly used. However, a large number of pa-
rameters are usually needed for good fitting especially when the time 
range involved is wide which is the case for polyurea. For a simple but 
reasonable expression, a power law representation is chosen here, 

G(t)=Gr +
ΔG

(1 + t/τ0)
q (12)  

where Gr is the rubbery modulus at small strain, which is not used in the 
model but be replaced by the entropy and energy elastic responses dis-
cussed below due to the nonlinearity of the elastic response, ΔG is the 

Fig. 2. The stress-strain curves of (a) quasi-static (4 × 10− 3/s) and (b) dynamic compression (9000/s) at different temperatures.  

Fig. 3. 1-D rheological schematic of the constitutive model.  
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difference of glassy modulus and rubbery modulus, τ0 is the average 
characteristic relaxation time and q is a constant characterizing the 
discrete distribution of relaxation times. The relaxation modulus can be 
obtained through relaxation experiment. But to extend the time range 
covered, relaxation experiments at different temperatures and the time- 
temperature superposition are usually adopted. In this paper, we acquire 
the storage modulus and loss modulus through the DMA test described in 
Section 2.2 and calculate the relaxation modulus based on the DMA 
results. The more details are presented in Section 4. 

Up to this point, the viscoelastic response is limited to the isothermal 
case. When temperature rises, the relaxation processes of molecule are 
more frequently activated due to smaller energy barrier, equivalent to 
the decrease of characteristic relaxation time τ0 or the increase of the 
real time t. A shift factor is used to modify the relaxation modulus, 

G(t,T)=G
( t

a(T)

)
=Gr +

ΔG
[1 + t/(a(T)τ0)]

q (13) 

Thus, in more general condition, the shear stress representation can 
be modified as 

sv(t)=
∫ t

− ∞
2G(t′ − τ′

)E2 : D(τ)dτ (14)  

where t′ − τ′ is the so-called reduced time, and it is expressed as 

t′ − τ′

=

∫ t

τ

dξ
a[T(ξ)]

(15) 

The analytical expression of a(T) is given by Williams et al. (1955) 
for amorphous polymers, 

lga(T)= −
C1

(
T − Tref

)

C2 + T − Tref
(16)  

where Tref is the reference temperature arbitrarily chosen between the 
glass transition temperature Tg and Tg + 100K. 

Here, the linear viscoelastic model, where the fractional free volume 
remains constant during deformation, is derived. However, in the 
nonlinear viscoelastic regime, the fractional free volume changes during 
deformation. The evolution rule of free volume with strain history is 
therefore needed. As discussed in Section 1, the viscoelastic stress comes 
from the interaction of chain segments, and more free volume makes the 
motion of chain segments easier, indicating an underlying relationship 
between free volume and shift factor. Doolittle (1951) presented an 
equation which relates the shift factor to the free volume in materials, 

lga=
B

2.303

(
1
f
−

1
f0

)

(17)  

where f is the fractional free volume defined in terms of free volume vf 
and occupied volume v0 of material as f = vf /(vf + v0), f0 is the frac-
tional free volume at a reference state and B is a constant close to 1. 
Knauss and Emri (1981) proposed a linear dependence of fractional free 
volume on temperature T, solvent concentration c and mechanical 
dilatation θ, which correlates the shift factor with temperature, solvent 
concentration and mechanical dilatation, and it further affects the 
time-dependent stress. 

Different from that the nonlinearity of viscoelasticity is normally 
caused by dilatation as those in glassy polymers, the nonlinearity of 
viscoelasticity is clearly found in polyurea in shear-dominated defor-
mation (Chevellard et al., 2011; Liang and Liechti, 1996; Popelar and 
Liechti, 1997, 2003). This means that shear exerts an important effect on 
the free volume evolution and then influences the nonlinear viscoelas-
ticity. Popelar and Liechti (1997) realized the influence of distortion on 
free volume, and simply introduced this effect similar to the form of 
dilatation term in shift factor function. Actually, the shear-induced free 
volume evolution in polyurea should have quite a different mechanism 
than that of dilatation. As is known, crosslinks firmly connect different 

molecular chains, restricting the mobility of chains. The decrease of 
crosslinking density will cause a growth of free volume, enhancing the 
mobility of molecular chains. For most crosslinking polymers, they only 
possess chemical crosslinks which are hard to be destroyed by defor-
mation. However, polyurea has a unique microphase-segregated struc-
ture, where hard domains and hydrogen bonds are physical crosslinks. 
Through shear deformation, these hard domains and hydrogen bonds 
will break down, which greatly reduces the crosslinking density and 
improve the content of free volume. Thereby, we propose a new 
rate-dependent evolution equation for free volume: 

ḟ = αvṪ + γċ + δθ̇ + δsε̇eff (18)  

and 

δs = δs0(fc − f )2
, δs0 > 0 (19)  

where αv is the volumetric thermal expansion coefficient of free volume, 
γ is the volumetric expansion coefficient of free volume due to changes 
in solvent concentration, δ is fractional free volume change per me-
chanical dilatation, ε̇eff is rate of effective strain and δs is fractional free 
volume change per effective strain and can be an index to measure 
shear-induced dilatancy. To be noted, δs is not a constant but related 
with the current fractional free volume, as described by Eq. (19). In this 
equation, δs0 is a constant and fc is the critical fractional free volume. 
When the fractional free volume is greater than fc, no more free volume 
can be produced by shear strain. 

The first three terms in Eq. (18) are the same as the model proposed 
by Knauss and Emri (1981) but in a rate-dependent form. The fourth 
term is introduced to characterize the free volume generation caused by 
shear strain. During shear deformation, some entanglements and 
crosslinks of the polymer chains are freed or broken due to the relative 
motion of different chain segments, and the polymer chains are sepa-
rated, which creates new free volume. For polyurea specifically, break of 
hard domains and hydrogen bonds by shear deformation makes a 
considerable contribution to the creation of free volume. We note that, 
when the fractional free volume becomes more enough, there are plenty 
spaces for molecular chain motion and the break of crosslinks becomes 
seldom. Less or even no free volume is then generated by shear 
deformation. 

So far, the bulk response is determined by Eqs. (9) and (11), and the 
viscoelastic shear response is determined by Eqs. (12) and (14) and (15) 
and (17)–(19). Firstly, the evolution of fractional free volume is deter-
mined by Eqs. (18) and (19). Through Eq. (17), the shift factor is derived 
which is then used in Eq. (15) to calculate the reduced time. Finally, 
substitute Eqs. (12) and (15) into Eq. (14) to obtain the viscoelastic shear 
stress. 

3.3. Entropy elastic response 

The entropy elastic stress comes from the configurational entropy 
change due to molecular chains orientation. The non-Gaussian chain 
based Arruda-Boyce eight-chain model is a suitable choice to describe 
entropy elastic response, considering that just two parameters are 
enough to model different loading cases up to large stretch. 

The strain energy density of the eight-chain model is (Arruda and 
Boyce, 1993) 

W = nkBTN
(

λchain
̅̅̅̅
N

√ β+ ln
β

sinh β

)

− CT (20)  

where μ = nkBT is the initial shear modulus of rubbery elasticity, n is the 
chain density, kB is Boltzmann’s constant, N is the statistic number of 
rigid links between crosslinks, λchain is the stretch of polymer chain in 
eight-chain model which is related to the macroscopic stretch by λchain =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(λ2
1 + λ2

2 + λ2
3)/3

√

, C is a constant and β is the inverse Langevin function 
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(β = L− 1(λchain /
̅̅̅̅
N

√
) and the Langevin function is defined as L(β) =

coth β − 1/β). 
Then the Cauchy stress is obtained by differentiating the strain en-

ergy density, 

σe
1 =

2
J

dW
dI1

B − p1I (21)  

where J = det(F), B is the left Cauchy-Green deformation tensor as 
defined in Section 3.1, I1 is the first invariant of B, p1 is the hydrostatic 
pressure which can be determined by boundary condition and I is the 
second-order identity tensor. For the uniaxial loading case, considering 
that the volumetric strain is negligible (J = 1) and the transversal stress 
equals to zero, the axial stress is derived as 

σe
1 =

nkBT
3

̅̅̅̅
N

√

λchain
L− 1

(
λchain

̅̅̅̅
N

√

)(

λ2 −
1
λ

)

(22) 

To properly model the entropy elastic response at different temper-
atures, the dependence of chain density on temperature should be 
considered. Assuming the total number of chains is conserved, the 
change of chain density is purely due to the change of specific volume 
with temperature, which means the chain density is inversely propor-
tional to the specific volume. For polymers, the specific volume in-
creases linearly with temperature above or below the glass transition 
temperature in different rates. Since the present model is aimed at the 
temperature ranging from Tg to Tg + 100K, where the linear relation of 
specific volume with temperature is satisfied, the reciprocal of chain 
density can be proposed as a linear function of temperature, 

1
n
= kB(A1T +A2) (23)  

where A1 and A2 are two constants. 

3.4. Energy elastic response 

Entropy elastic stress of polymers is usually modeled based on the 
assumption that the internal energy keeps constant during deformation. 
However, the internal energy does change with strain, and a part of 
elastic stress comes from the internal energy change (Boyce and Arruda, 
2000; McKenna, 2018; Treloar, 1975; Wolf and Allen, 1975). The initial 
response of polyurea is much stiffer and the rollover of stress-strain 
curve at strain 0.1 is much more apparent than common rubbery ma-
terials, even when the strain rate is very low. This indicates that the 
segmental motion of polyurea is slightly constrained and is not easy to 
happen at small strain. Considering the micro-structure of polyurea, 
hard domains are embedded into soft matrix, and hard domains partly 
constrain the motion of chain segments. At small strain, the stretch of 
local covalent bonds may dominate compared with the motion of chain 
segments, which indicates that energy elastic response of polyurea is 
non-negligible. Based on this, the elastic stress which monotonically 
increases with strain and converges to a maximum stress is proposed in 
the form of: 

σe
2 =

σmax

2

(

1 − exp
(

−
εeff

ε0

))
lnB
εeff

(24)  

where σmax is the maximum elastic stress induced by internal energy 
change, εeff is the effective strain, ε0 is a reference strain, and B is the left 
Cauchy-Green deformation tensor. 

4. Parameter identification 

Based on the experiments described in Section 2, a set of parameters 
for uniaxial loading is determined. Firstly, the parameters of relaxation 
modulus function (Eq. (12)) are determined by the results of DMA test. 
The curve fitting of thermal shift factor in DMA test to WLF equation can 

provide the fractional free volume at reference temperature (f0) and the 
volumetric thermal expansion coefficient of free volume (αv). Consid-
ering no solvent is involved in our experiments and the volumetric strain 
is negligible, parameters of the second term and the third term in Eq. 
(18) are not identified here. The difference between dynamic stress and 
quasi-static stress equals to the difference of viscoelastic stresses in two 
cases because the entropy elastic stress and energy elastic stress are the 
same in both cases since they are rate-independent. Therefore, the pa-
rameters of the fourth term in Eq. (18) and Eq. (19) are identified by 
fitting the difference between dynamic stress and quasi-static stress. In 
addition, we adopt the same values of the parameters in the bulk 
response as Amirkhizi et al. (2006) but with different reference tem-
perature. Finally, the parameters in entropy elastic response and energy 
elastic response are determined by fitting the quasi-static stress-strain 
data with the help of the viscoelastic stress-strain data calculated by the 
model. All the parameters are listed in Table 1. The more details will be 
described below. 

In Section 3.2, we decompose the overall viscoelastic response into a 
rate-independent bulk response and a rate-dependent shear response, 
which means that the shear relaxation modulus needs to be derived. 
However, since we focus on the uniaxial compression, the Young’s 
relaxation modulus can be used directly to achieve the axial viscoelastic 
stress by Boltzmann superposition principle of linear viscoelasticity but 
in one dimensional form, which is 

σv(t)=
∫ t

− ∞
E(t′ − τ′

)
∂ε
∂τ dτ (25)  

where σv is the axial viscoelastic stress, E(t) is the Young’s relaxation 
modulus and ε is the axial strain. Similar to Eq. (12), the Young’s 
relaxation modulus is analytically represented as 

E(t)=Er +
ΔE

(1 + t/τ0)
q (26) 

Time-temperature superposition (TTS) are widely used to acquire the 
master curve of polymers and the corresponding thermal shift factor 
(Holzworth et al., 2013; Jia et al., 2016; Qiao et al., 2011; Xiao and Tian, 
2019). Firstly, a reference temperature is chosen. Here, we chose 21 ◦C 
as reference temperature which is close to the room temperature. Then 
we modify the storage modulus and loss modulus of multiple tempera-
tures by ETref/T, where E represents storage modulus or loss modulus. 
Next, plot the modified storage modulus and loss modulus as a function 

Table 1 
Parameters of the constitutive model for polyurea with Tref = 294K  

Parameter Value Physical meaning 

Kref (MPa) 4633 The bulk modulus at reference temperature 
m(MPa /K) − 15 Temperature coefficient of bulk modulus 
ΔE(MPa) 2616 Difference of glassy and rubbery modulus 
τ0(s) 4.91 ×

10− 13 
Characteristic relaxation time 

q  0.2068 Exponent of relaxation modulus function 
f0(%) 4.09 Fractional free volume at reference temperature 

without deformation 
αv
(
K− 1) 2.62 ×

10− 4 
The volumetric thermal expansion coefficient of free 
volume 

δs0  39.2 The coefficient constant of shear induced free volume 
evolution 

fc(%) 5.75 Critical fractional free volume 
N  2.422 The statistic number of rigid links between crosslinks 

A1(MPa− 1) 3.084 The first constant in the chain density function of 
temperature 

A2(K /MPa) − 723.8 The second constant in the chain density function of 
temperature 

σmax(MPa) 4.056 Maximum elastic stress induced by internal energy 
change 

ε0  0.0965 The reference strain in energy elastic stress function  
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of angular frequency at different temperatures as exampled in Fig. 4a. 
Then keep the data of the reference temperature fixed and shift every 
other line horizontally along the frequency axis to overlap the lines of 
neighboring temperatures to achieve the master curve. The shifted 
displacement of each line is the thermal shift factor for the corre-
sponding temperature. Only the data ranging from − 51 ◦C to 30 ◦C is 
used for TTS since the relaxation mechanism changes near and below the 
glass transition temperature, and the slope of storage modulus with 
frequency is quite small above 30 ◦C, which may cause large error in 
shift factor obtained by shifting the data along the frequency axis. 
Fig. 4b shows the averaged thermal shift factor of storage modulus and 
loss modulus, and the fit of WLF equation (Eq. (16)), where C1 = 10.61 
and C2 = 156.24K. The corresponding master curves of storage modulus 
and loss modulus are presented in Fig. 4c. To acquire relaxation 
modulus, we need to translate the independent variable from angular 
frequency to time. Ninomiya and Ferry (1959) provided an approximate 
way, 

E(t)=E′

(ω) − 0.40E′′(0.40ω) + 0.014E′′(10ω)|ω=1/t (27)  

where E(t) is relaxation modulus, E′

(ω) is storage modulus, and E′′(ω) is 
loss modulus. Using Eq. (27), the relaxation modulus at reference tem-
perature Tref = 21◦C is obtained, exhibited in Fig. 4d. Then the relaxa-
tion modulus data is used to fit Eq. (26), which is also presented in 
Fig. 4d. The values of the corresponding parameters are listed in Table 1. 
The value of Er is not listed because it is not used in the model but be 
replaced by the entropy and energy elastic responses due to the 
nonlinearity of the elastic response. 

We have mentioned in Section 1 that Williams et al. (1955) found the 
consistency of WLF equation and Doolittle equation, which is used to 
acquire the initial fractional free volume at reference temperature and 

the volumetric thermal expansion coefficient of free volume. Substitut-
ing the linear relation of free volume with temperature as proposed by 
Eq. (18) or the model of Knauss and Emri (1981) into Doolittle equation 
(Eq. (17)), we obtained a thermal shift factor function of temperature 
consistent with WLF equation (Eq. (16)), 

lga(T)= −
B

2.303f0

ΔT
f0/αv + ΔT

(28)  

where ΔT = T − Tref is the difference between the current temperature 
and the reference temperature. Considering that B is a constant close to 1 
and have no effect on the data fitting, we simply set B = 1. Comparing 
Eq. (16) and Eq. (28), we obtained the values of f0 and αv based on the 
constants of WLF equation from DMA test as f0 = 1/(2.303C1) = 4.09% 
 and  αv = 1/(2.303C1C2) = 2.62× 10− 4/K. 

For the viscoelastic response, parameters in the fourth term of Eq. 
(18) are the last to be determined. To identify these parameters, the 
stress-strain data of uniaxial compression is used. Since the total stress is 
composed of a rate-dependent viscoelastic stress, a rate-independent 
entropy elastic stress and a rate-independent energy elastic stress, 
which means the latter two kinds of stress are identical for quasi-static 
and dynamic loading. Therefore, the difference between dynamic 
stress and quasi-static stress is equal to the difference of viscoelastic 
stresses in two cases, as exampled in Fig. 5a of the data and prediction at 
0 ◦C. Finally, we fit the difference of dynamic and quasi-static stress- 
strain data at − 30 ◦C, 0 ◦C and 40 ◦C simultaneously to obtain the pa-
rameters in Table 1 and the fitting results are shown in Fig. 5b. 

After the identification of parameters in viscoelastic response, there 
are only the parameters in rate-independent parts, including the entropy 
elastic response and energy elastic response. Since the rate-independent 
stress is identical in dynamic loading and quasi-static loading, any one of 

Fig. 4. Parameter identification based on DMA results: (a) the storage modulus as a function of angular frequency at different temperatures, (b) the thermal shift 
factor from experiment and WLF equation, (c) the master curves of storage modulus and loss modulus, and (d) the relaxation modulus from experiments and fit of 
Eq. (12). 
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them can be used to determine the parameters theoretically. However, 
the rate-independent stress only accounts for a small percentage of the 
total stress at high strain rate case, which makes the rate-independent 
stress data from dynamic loading case is not reliable. Thus, we use the 
difference between quasi-static stress and the corresponding viscoelastic 
stress calculated by the present viscoelastic model as the corresponding 
rate-independent stress. Due to the temperature dependence of entropy 
elastic stress, stress-strain data at multiple temperatures are needed. 
Eventually, we use Eqs. (22)–(24) together with the viscoelastic stress 
calculated to fit the quasi-static stress-strain data at all temperatures 
simultaneously and the parameters are obtained. 

5. Results and discussion 

The constitutive model of polyurea is used to obtain the stress-strain 
curves at multiple temperatures and strain rates based on the parameters 
identified in Section 4. Fig. 6 exhibits the overall comparison between 
experimental data and prediction of the model, including quasi-static 
and dynamic compression at multiple temperatures as indicated in the 
figures. The strain rates of quasi-static and dynamic compression are 4 
× 10− 3/s and 9000/s respectively. It is apparent that the prediction 
shows quite satisfactory agreement with the experimental data. The 
characteristics of the stress-strain curve are well captured by the model. 
An initially stiff response is followed by a rollover to a more compliant 
plateau, and eventually the response becomes stiff again due to the 
limited stretch of polymer chains. The temperature dependence and 
strain rate dependence of stress-strain response are also well described 
by the model. Decrease of temperature and increase of strain rate all 
cause the material stiffer. 

Further comparison between the prediction of the proposed model 

and the experimental data at intermediate strain rates in references 
(Sarva et al., 2007) is presented in Fig. 7. Apparently, an excellent 
agreement is found though these data were not used in parameter 
identification, which again confirms the fidelity of the model. 

With the help of the model, the response of polyurea is able to be 
analyzed via decomposing the total stress into different parts, which are 
correlated with different mechanisms respectively. Fig. 8 shows the 

Fig. 5. Fitting of the viscoelastic response: (a) Example data at 0 ◦C to exhibit the fitting process, (b) Comparison of experimental stress-strain data and fitted 
viscoelastic response at multiple temperatures. 

Fig. 6. Comparison between experimental stress-strain curves and model prediction of polyurea compressed at strain rates of (a) 4 × 10− 3/s, and (b) 9000/s for 
various temperatures (the numbers in the legend represents the experimental temperature with a unit of ◦C). 

Fig. 7. Comparison with experimental data at intermediate strain rates in the 
paper of Sarva et al. (2007). 
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viscoelastic stress and the sum of two kinds of elastic stress at multiple 
temperatures and strain rates calculated by the constitutive model. At all 
temperatures involved, the rate-dependent viscoelastic stress is greater 
than the rate-independent elastic stress for dynamic compression and 
the situation is on the contrary for quasi-static compression. This result 
reveals that the stress response of polyurea at high strain rate is visco-
elastic stress dominated and the stress response at low strain rate is 
elastic stress dominated, which explains the reason why there is a 
transition in rate-sensitivity at an intermediate strain rate point as found 
experimentally (Cho et al., 2013; Roland et al., 2007; Sarva et al., 2007). 

The fractional free volume of polyurea during deformation at mul-
tiple conditions is presented in Fig. 9. For all conditions, fractional free 
volume monotonically increases with the increasing strain but the slope 
decreases. This is related to the evolution mechanism of free volume 
during deformation. Under shear strain, new free volume is produced, 
due to break of hard domains and hydrogen bonds. As the free volume 
increases, the interaction of polymer chains becomes weaker and the 
density of physical crosslinks decreases, resulting in a decrease of the 

evolution rate of free volume. The increased amount of fractional free 
volume at different temperatures varies from 1.35% at − 30 ◦C to 0.09% 
at 60 ◦C. As shown in Fig. 9, at the same axial strain ε, the fractional free 
volume of dynamic and quasi-static compression is nearly the same. This 
is because the increase of fractional free volume is induced by the 
effective strain, and the effective strain (ε − σ /(9K) in uniaxial 
compression) is nearly equal to ε since the bulk strain (σ /(3K) in uni-
axial compression) is negligible compared to the axial strain ε. But slight 
difference can still be observed due to the different bulk strain (σ /(3K)
in uniaxial compression) in two cases. 

To understand how important the mechanism of shear inducing free 
volume is, we compared the experimental stress-strain data at 20 ◦C with 
linear viscoelastic model, nonlinear viscoelastic model (only considering 
dilatation inducing free volume) and the model proposed, as shown in 
Fig. 10. The linear viscoelastic model is based on the assumption that 
free volume does not change with deformation. At small strain, it fits the 
data well. But the stress level of it become much higher than the 
experimental data when the strain gets lager. This indicates that the real 

Fig. 8. Rate-dependent viscoelastic stress (V) and rate-independent total elastic stress (E) of dynamic (D) and quasi-static (Q) compression at temperatures of (a) 
− 30 ◦C, (b) − 15 ◦C, (c) 0 ◦C, (d) 20 ◦C, (e) 40 ◦C, and (f) 60 ◦C. 
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stress relaxes faster than the linear viscoelastic model due to the increase 
of free volume with increasing strain. The stress predicted by nonlinear 
viscoelastic model which only considers dilatation inducing free volume 
(third term in Eq. (18) with δ = 0.1) is even higher than that by linear 
viscoelastic model. This is because the bulk strain is negative in 
compression case, and the free volume decreases with compression, 
which makes the stress to relax slower even than that happens in linear 
viscoelastic model. Only the proposed model, which includes the 
mechanism of shear inducing free volume, fits the experimental data 
from small to large strain. This again validated the mechanism and 
evolution equation of free volume proposed. 

6. Conclusions 

A free volume based nonlinear viscoelastic constitutive model for 
polyurea has been established to characterize the mechanical behaviors 
of polyurea, which includes nonlinearity, highly temperature sensitivity 
and strain rate sensitivity of stress response. Considering the three 
micro-processes happening within polyurea during deformation, namely 
the interaction of chain segments, the stretch of molecular chains and 
the stretch of covalent bonds, the stress response is treated as a combi-
nation of nonlinear viscoelasticity, entropic elasticity and energetic 
elasticity. The nonlinear viscoelastic response of the model is formulated 

through the linear viscoelasticity with time accelerated by shift factor, 
which depends on the free volume of polyurea. A new evolution equa-
tion of free volume is proposed from the mechanism that shear strain 
produces free volume, which enables the model to be used in the shear- 
dominated case and gives a new insight to the evolution of free volume 
upon external loading. What’s further, a temperature modified eight- 
chain entropy elastic model and a nonlinear energy elasticity are 
introduced, describing the rate-independent response of polyurea. 

A DMA test has been performed to acquire the linear viscoelasticity 
of polyurea. Uniaxial compression tests at low and high strain rates for 
multiple temperatures ranging from − 30 ◦C to 60 ◦C have been con-
ducted to explore the rate and temperature dependence of polyurea at 
large strain. The experimental results are further used to identify the 
parameters in the model. A fairly satisfactory agreement between model 
prediction and experimental data validates the fidelity of the proposed 
model, which means the parameterized constitutive model is able to 
predict the stress-strain response of polyurea over a wide range of 
temperatures and strain rates. Pressure sensitivity of polyurea is not 
discussed much in this work since only uniaxial compression case is 
considered, where the volumetric deformation is negligible. It is worth 
noting that, for application of polyurea in high pressure condition, the 
pressure effect on mechanical behavior shall be pronounced, and the 
dilatation term in the model will play a vital role, which deserves a 
further study in our later work. 
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