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In 1949, Tolman found the relation between the surface tension and Tolman length, which determines the dimensional
effect of the surface tension. Tolman length is the difference between the equimolar surface and the surface of tension. In
recent years, the magnitude, expression, and sign of the Tolman length remain an open question. An incompressible and
homogeneous liquid droplet model is proposed and the approximate expression and sign for Tolman length are derived in
this paper. We obtain the relation between Tolman length and the radius of the surface of tension (Rs) and found that they
increase with the Rs decreasing. The Tolman length of plane surface tends to zero. Taking argon for example, molecular
dynamics simulation is carried out by using the Lennard–Jones (LJ) potential between atoms at a temperature of 90 K. Five
simulated systems are used, with numbers of argon atoms being 10140, 10935, 11760, 13500, and 15360, respectively. By
methods of theoretical study and molecular dynamics simulation, we find that the calculated value of Tolman length is more
than zero, and it decreases as the size is increased among the whole size range. The value of surface tension increases with
the radius of the surface of tension increasing, which is consistent with Tolman’s theory. These conclusions are significant
for studying the size dependence of the surface tension.

Keywords: Tolman length, surface tension radius of surface of tension, radius of equimolecular surface,
molecular dynamics simulation
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1. Introduction
A fundamental property of small liquid droplets is the de-

pendence of surface tension on droplet radius, this is size ef-
fect. And it is important in chemical physics, for instance, wet-
ting, nucleation, adhesives, condensation, gas absorption.[1,2]

Early in the 19th century, Gibbs concluded that surface ten-
sion would be subject to the curvature when the droplet size is
very small. In 1949, Tolman extended the idea of Gibbs and
showed that if the radius of the surface of tension of a droplet
does not coincide with the equimolecular radius, the surface
tension must vary with droplet size.[3] Tolman derived a re-
lation that has become known as the Gibbs–Tolman–Koenig–
Buff differential equation

dγs

γs
=

2
[
δ/Rs +(δ/Rs)

2 +(δ/Rs)
3
]

1+2
[
δ/Rs +(δ/Rs)

2 +(δ/Rs)
3
] dRs

Rs
, (1)

where γs is the surface tension, δ is the Tolman length, δ =

Re−Rs (see Fig. 1). Rs is the radius of the surface of tension

on which the Laplace’s equation (∆p = 2γs/Rs) is valid. The
position of the surface of tension is given in the next section.
Here, Re is the radius of the equimolecular dividing surface on
which Gibbs absorption is equal to zero (Γ = 0), or the number
of molecules on which is zero.

Rs

Re

δ

Fig. 1. Schematic diagram of Tolman length δ , equimolecular surface
(dashed) and surface of tension( dotted).

Neglecting the terms δ 2/R2
s and δ 3/3R3

s in comparison
with unity, and treating δ as a constant, the integral of Eq. (1)
can be readily evaluated to give the simple result

γ/γ∞ = 1/(1+2δ/Rs), (2)

where γ∞ is the surface tension of liquid for a flat surface.
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According the Tayler’s expression, the first approximation of
Eq. (2) is

γs = γ∞

(
1− 2δ

Rs

)
. (3)

From Eq. (3), we can see that δ is an important parameter to
obtain γs. Although the Tolman length has received increas-
ing attention, there still exists controversy on the sign and
magnitude of the Tolman length. Many researchers consid-
ered the magnitude of the Tolman length to be on the order
of molecular dimension. However, the experimental deter-
mination of the Tolman length is very difficult and the ex-
perimental values have not yet been determined. Until now,
the sign of the Tolman length is still controversial.[4–9] There
are some approaches to studying the Tolman length. One
can note thermodynamical method,[10] statistical method,[11]

molecular theory,[12] density functional method,[13,14] molec-
ular dynamics simulation,[5,15–17] etc. It is general to assume
that δ > 0[18] for spherical droplets and δ < 0 for bubbles
in liquid.[19] By molecular dynamics (MD) simulation Lei et
al.[5] showed that the Tolman length is positive, and much
smaller in magnitude than previously reported. In particu-
lar, they found that the cut-length of interparticle interaction
can significantly affect the magnitude of the Tolman length.
Blokhuis and Kuipers[10] obtained a relationship between the
Tolman length and the isothermal compressibility, and pointed
out that the discrepancy in sign or its dependence on the inter-
action potential is not yet understood. Yan and Zhu,[19] Zhu
and Wang,[20] and Wang and Zhu[21] discussed the expression
of Tolman length through theory and MD study. More detailed
descriptions about Tolman length are reported in Ref. [10].
Therefore, the computational, experimental, and theoretical
studies of the Tolman length need to be further conducted.
The results of these treatments are based on rather complex
numerical calculations and on their respective hypothesis, so
it would be helpful in determining the sign of Tolman length
based on simple model and expressing δ (Rs) analytically in
terms of physical properties of the system.

Our work is devoted to studying the Tolman length by the-
oretical analysis and molecular dynamics simulation. An in-
compressible droplet model is proposed and the approximate
expression and sign for Tolman length is derived in this pa-
per. We find the analytical relation between Tolman length
and the radius of the surface of tension. Taking argon for ex-
ample, molecular dynamics simulation is carried out by using
the Lennard–Jones (LJ) potential between atoms at tempera-
ture 90 K. Five simulated systems are used, with a total of
atoms 10140, 10935, 11760, 13500, and 15360 included re-
spectively. By the theoretical study and molecular dynamics
simulation, we find that the calculated values of Tolman length
are greater than zero, and it decreases when the size increases
in the whole size range.

The rest of the present paper is organized as follows. In
Section 2, we give theoretical analysis of the Tolman length.
In Section 3 we describe the molecular dynamics simulation,
results, and discussion. In Section 4, we present some conclu-
sions drawn from this study.

2. Theoretical analysis of Tolman length
2.1. On derivation of relation formula γs/Rs = γ∞/Re

Some authors have used the relation formula γs/Rs =

γ∞/Re as an assumption in thermodynamic treatment[11,22] for
Tolman length, and they provided explanation for agreement
between derivation and experiment. In this section, the for-
mula is derived by using an incompressible droplet model.

The following main physical parameters are included in
Eqs. (4)–(15):

γs the surface tension of liquid,
γ∞ the surface tension of liquid for a flat surface,
Rs the radius of the surface of tension,
Re the radius of the equimolecular dividing surface,
pin the internal pressure,
po the pressure outside,
pinr the repulsive pressure in the interior of the droplet,
pina the attractive pressure in the interior of the droplet,
φI the potential of particles in the interior,
φS the potential of particles on the surface.
In the interior of the model, pin = pinr+ pina is the internal

pressure, where pinr is the repulsive pressure in the interior of
the droplet formed by the intermolecular rigid repulsive force
in two sides of area element. It is positive; pina is the attrac-
tive pressure in the interior of the droplet formed by the in-
termolecular attractive force in two sides of area element. It
is negative. We choose an arbitrary area element, u(r) is the
potential of intermolecular force and l0 is its range. So we
have

pina =
1
2

ρ
2
∫

u(r)d𝑟, (4)

where ρ is the molecular number density, d𝑟 is a volume el-
ement which may be written here as d𝑟 = 4πr2 dr. Since is
negative or zero everywhere, then pina is negative.

At a point in the droplet, φ is the potential, we have a po-
tential energy density of attractive force, (1/2)ρφ . One finds
that

1
2

ρφ =
ρ3

2

∫
u(r)d𝑟, (5)

φ = ρ

∫
u(r)d𝑟, (6)

According to the method of dividing surface of Gibbs,
the droplet radius is the radius of equimolecular surface. From
Eq. (6), the potential of particles in the interior is φI

φI = 4πρ

∫ d

0
r2u(r)dr. (7)
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The potential of particles on the surface of the liquid is φS, if is
the angle between the vector 𝑟 and the radius of equimolecular
surface R𝑟, we have

φS = 2πρ

∫ d

0
drr2u(r)

∫ cos−1(r/2R)

0
dθ sinθ

= 2πρ

∫ d

0
r2
(

1− r
2Re

)
u(r)dr. (8)

Combining Eqs. (4) and (7), one has

ρφS−ρφI =−pina +
2γ∞

Re
, (9)

where

γ∞ =−1
2

ρ
2
∫ d

0
r3u(r)dr (10)

with γ∞ being the surface tension of liquid for a flat surface.
According to Bernoulli‘s equation

ρφS = ρφI + pinr, (11)

from Eqs. (9) and (11), we obtain

pinr + pina =
2γ∞

Re
= pin. (12)

According to the proposed model, we can see that the pressure
outside po is zero. The difference pressure between pin and po

gives

∆p = pin− po = pin. (13)

The Laplace’s equation is

∆p =
2γs

Rs
. (14)

Combining Eqs. (13) and (14), and using Eq. (12), ∆p =

pin− po = pin = 2γ∞/Re = 2γs/Rs, we have

γs

Rs
=

γ∞

Re
. (15)

2.2. Magnitudes of Re and Rs

The thermodynamic description of droplet is macroscopic
in nature. In order to establish a link with molecular proper-
ties, it would seem more natural to use a mechanical picture.
This approach would allow one to relate the surface tension
and surface of tension of a droplet to microscopic quantities,
such as the pressure tensor. By considering the force and mo-
ment acting on a hypothetical strip cutting the surface of the
droplet, Rowlinson and Widom,[1] and Buff[23] showed that
it is possible to obtain a mechanical definition of the surface
tension . The position of the surface of tension is given by

RS =

∫
∞

0 r2 dr
[
pα,β (r;Rs)− pT (r)

]∫
∞

0 rdr
[
pα,β (r;Rs)− pT (r)

] , (16)

where pT is the tangential pressure and pα,β is a step func-
tion. In our droplet model, we have pα (r;Rs) = pin (R < Rs),
pβ (r;Rs) = pO = 0 (R > Rs)

RS =

∫ RS
0 r2 pin dr−

∫ Re
0 r2 pT(r)dr∫ Rs

0 rpin dr−
∫ Re

0 rpT(r)dr
. (17)

Equation (17) can also be written as

pinR2
s/6−Rs

∫ Re

0
rpT(r)dr+

∫ Re

0
r2 pT(r)dr = 0. (18)

In order to discuss the solution of Rs, pT(r) can be approxi-
mately written as

pT(r) = pN(r)− γδ (r−R′e), (19)

where δ is the function delta, r =R′e is the center point of pres-
sure distribution, which is impossible out of the sphere droplet,
so R′e < Re. In order to satisfy the condition of ∇ · p = 0 and
pα (r;Rs) = pin, pβ (r;Rs) = po = 0, pN(r) is

pN(r) =
{

0, r > R′e,
pin, r < R′e.

(20)

By substituting Eqs. (19) and (20) into the mechanical equilib-
rium condition of pressure tensor ∇ · ¯̄P = 0, it gives

γ =
pinR′e

2
. (21)

Using Eqs. (18) and (19), equation (21) gives

R3
s −R

′3
e = 0. (22)

The solution to Eq. (22) can be written as

Rs = R′e < Re. (23)

So

δ = Re−Rs > 0. (24)

The Tolman length is more than zero.

2.3. Analytical relation between δ (Rs) and Rs

In this subsection, we show the analytical relation be-
tween δ (Rs) and Rs. Using Eq. (15), we obtain

δ =

(
γ∞

γs
−1
)

Rs. (25)

We can obtain the following differential equation:

dδ

dRs
=

d [(γ∞/γs−1)Rs]

dRs
= Rs

d (γ∞/γs)

dRS
+

γ∞

γs
−1. (26)

Combining Eqs. (1) and (26), we have

dδ

dRs
=

δ

Rs
−
(

δ

Rs
+1
)

×
2
[
δ/Rs +(δ/Rs)

2 +(1/3)(δ/Rs)
3
]

1+2
[
δ/Rs +(δ/Rs)

2 +(1/3)(δ/Rs)
3
] dRs

Rs
. (27)
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Let the term on the right-hand size of Eq. (27) be f (δ/Rs),
specifically,

f
(

δ

Rs

)
=

δ

Rs
−
(

δ

Rs
+1
)

×
2
[
δ/Rs +(δ/Rs)

2 +(1/3)(δ/Rs)
3
]

1+2
[
δ/Rs +(δ/Rs)

2 +(1/3)(δ/Rs)
3
] . (28)

Equation (27) can be written as

dδ

dRs
= f

(
δ

Rs

)
. (29)

From d (δ/Rs) = (1/Rs)dδ − (δ/R2
s )dRs, it can be given as

dδ

dRs
=

δ

Rs
+Rs

d (δ/Rs)

dRs
. (30)

Combining Eq. (29) and Eq. (30), we have

Rs =C1 exp
[∫ d (δ/Rs)

f (δ/Rs)− (δ/Rs)

]
, (31)

where C1 is integral constant obtained by integrating Eq. (30),
and ∫ d (δ/Rs)

f (δ/Rs)− (δ/Rs)

= −1
2

ln

 |δ/Rs|
(
(δ/Rs)

2 +3(δ/Rs)+3
)

|1+(δ/Rs)|

−C2, (32)

where C2 is integral constant. By substituting Eq. (32) into
Eq. (31), we obtain

Rs =C

√
|1+δ/Rs|

|δ/Rs| [(δ/Rs)
2 +3(δ/Rs)+3]

, (33)

where C=C1 e−C2 . From Eqs. (24) and (33), we also have an-
alytical relation between δ (Rs) and Rs below:

R2
s =C2 (1+δ/Rs)

(δ/Rs)[(δ/Rs)
2 +3(δ/Rs)+3]

,

R2
s [(δ/Rs)

2 +3(δ/Rs)
2 +3(δ/Rs)] =C2(1+δ/Rs),

δ =
3

√√√√R3
s

2
+

√(
R3

s

2

)2

−
(

C2

3

)3

+
3

√√√√R3
s

2
−

√(
R3

s

2

)2

−
(

C2

3

)3

−Rs, (34)

where C is a coefficient depending on physical properties of
the system under consideration. It may depend, in general, on
thermodynamic conditions like temperature or pressure but is
independent of droplet size. The behavior of the solution re-
sembles those of DFT solutions (for example δ = 0.2Re

[22]).
The task of relation of constant C to physical properties of the
system remains to be done. We can determine the relationship
between δ (Rs) and through a series of values of coefficient as
shown in Fig. 2.

0 10 20 30 40
0

0.05

0.10

0.15

0.20

0.25

0.30

0.35

 C/.

 C/.

 C/.

Rs (nm)

δ
 (

n
m

)

Fig. 2. Variations of δ (Rs) with Rs.

It is observed from Fig. 2 that the calculated values of Tol-
man length are more than zero. It is consistent with the gen-
eral assumption,[4] that is, δ > 0 for spherical droplets. The
Tolman length decreases when the size increases in the whole
size range, which is consistent with the results of statistical
thermodynamics,[22,24] computer simulations results,[25,26] the
results from other methods for LJ fluids and the literature[27]

δ = 0.275 nm (Aurum particle), δ = 0.5 nm (cadmium sulfide
particle). When Rs > 10 nm, the effect of droplet size on the
Tolman length can be omitted, and the abrupt increase occurs
at Rs < 5 nm. The asymptotic Tolman length (δ∞) tends to
zero in the limit of Rs→ ∞.

3. Molecular dynamics simulation, results, and
discussion
In molecular dynamics simulations, the intermolecular in-

teractions between argon atoms are described by the Lennard–
Jones potential

Ull(r) = 4ε

[(
σ

r

)12
−
(

σ

r

)6
]
, (35)

where r, ε , and σ are the interparticle distance, energy scale,
and length scale, respectively. All quantities used in the sim-
ulation are dimensionless and are expressed by adding super-
script *. According to the basic parameters of an argon atom,
m = 6.3382×10−26 kg, ε = kB120 K, kB = 1.38×10−23 J/K,
σ = 0.3405 nm, and the dimensionless quantities are as fol-
lows: r∗ = r/σ for length, T ∗ = kBT/ε for temperature, t∗ =
t
√
(ε/mσ2) for time, ρ∗ = ρσ3/m for density, f ∗ = f σ/ε for

force, and E∗ = E/ε for energy.[28]

The initial configuration is constructed on a finite cubic
lattice located in the central part of the box, and the argon
atomic separation is 1.2σ . The box size of simulation sys-
tem is x× y× z = 6.13 nm×26.56 nm×26.56 nm. The pe-
riodic boundary condition is used in the x direction and mir-
ror boundary condition is used in the y and z directions. The
simulated temperature is T ∗ = 0.75. The cut-off distance is
rC = 3.0.
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Five simulated systems are used, with numbers of argon
atoms being 10140, 10935, 11760, 13500, and 15360 respec-
tively. Some details of molecular dynamics simulation can be
referred to our article.[28] For the simulated systems, at the ini-
tial time all the particles are given velocities according to the
Maxwell–Boltzmann distribution. The velocity–Verlet algo-
rithm is used in molecular dynamics. The time step δ t = 5 fs
is used before equilibrium. When the equilibrium is reached,
then we perform on the statistical treatment of the physical
quantities of the system. When calculating the mean value of
a physical quantity, we change the time step into δ t = 2 fs. In
order to find whether the step number N that is needed for a
physical quantity, say, g(t) reaches its steady value, we use an
accumulative average method for the statistics

g(i ·δ t)
N
=

1
N

N

∑
i=1

g(i ·δ t), (36)

where the number g(i ·δ t)
N

is the accumulative mean value.
This step number is needed for the accumulative mean value
to reach the steady value with acceptable small variation. In
fact 106 runs with a time step of δ t = 2 fs are used to obtain
the acceptable statistics in our simulations.

The density profile of N = 11760 system is shown in
Fig. 3. The statistical time steps are 106 runs. A configura-
tion of system is recorded by every 100 runs. The average
result is obtained by 104 samples. The example of the density
profile is obtained with this method.

-40 -20 0 20 40
0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

ρ
*

r*

density profile in radial orientation

location of surface of tension

Rs=14.35*

Fig. 3. Density profile of N = 11760 system.

The details of the calculation of γs and Rs are given in
Ref. [29]. Here we only give the brief calculation. The nu-
merical functions γs and Rs are calculated from the following
equations:

γs = pβ (Rβ −Rs)− pα(Rα −Rs)−P1, (37)

Rs =
pα Rα − pβ Rβ +P1 +

√
(pα Rα − pβ Rβ +P1)2− [pα(Rα)2− pβ (Rβ )2 +2P2](pα − pβ )

pα − pβ
, (38)

where pα is the pressure of liquid, pβ the pressure of vapor, P1 =
∫ Rβ

Rα pT(r)dr, and P2 =
∫ Rβ

Rα rpT(r)dr.
The values of pα , pβ , P2, γs, and Rs of molecular dynamics simulation are listed in Table 1.

Table 1. Values of pα , pβ , P2, γs, and Rs of molecular dynamics simulation.

N pα (MPa) pβ (MPa) P1 (N/m) P2/σ (N/m) Rs (nm) γs (N/m)

10140 1.8851 0.2475 0.002191 0.0008552 4.42 0.00814
10935 2.3566 0.2546 0.003855 0.0032095 4.57 0.00924
11760 2.2580 0.2605 0.003499 –0.0000617 4.88 0.00956
13500 1.9342 0.2441 0.003018 –0.0249073 5.75 0.00991
15360 1.9186 0.2407 0.002988 –0.0281812 5.88 0.01000

The values of ρl, ρv, Rs, Re, and δ of molecular dynamics
simulation are listed in Table 2.

Table 2. Values of ρl, ρv, Rs, Re, and δ of molecular dynamics simulation.

N ρl (kg/m3) ρv (kg/m3) Rs (nm) Re (nm) δ (nm)

10140 1239 12.04 4.42 4.99 0.57
10935 1278 11.72 4.57 5.13 0.56
11760 1287 10.11 4.88 5.34 0.46
13500 1292 4.97 5.75 5.81 0.06
15360 1419 4.01 5.88 5.92 0.04

The dimensional dependence of the surface tension is as-
sociated with the Tolman length. The values of Rs and Re are
very close to each other, and they increase with N increas-

ing. We can see that our result of molecular dynamics sim-
ulations for a Lennard–Jones system show that the Tolman
length is more than zero.[25,26] Our result of Tolman length
being positive for an argon droplet is also consistent with that
of Thompson’s.[30]

In addition, we also make a qualitative comparison of
the above theoretical study. The values of the Tolman length
calculated from the theoretical study and molecular dynamics
simulations are shown in Fig. 4.

Comparing with the above theoretical curve, we can see
that the value of the Tolman length from molecular dynamics
simulation is in agreement with those from theoretical study
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at large Rs. The Tolman length from simulation deviates from
the theoretical curve at small Rs. But in both cases it seems
clear that the Tolman length decreases with Rs increasing, and
δ > 0. Small systems exhibit a significant oscillation in sur-
face tension which is due to size effect. The finite-size effect
can be the origin of this discrepancy. A precise quantitative es-
timate of this effect by numerical simulation would need very
long computation time in order to obtain acceptable statistical
errors and has not been realized in the present paper. Besides,
the values of γs in Table 2 increase with the radius of surface
of tension (Rs) increasing, which is consistent with Tolman’s
theory.

δ
 (

n
m

)

Rs (nm)

0 2 4 6 8 10 12 14
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simulation data

Fig. 4. Values of the Tolman length calculated using theoretical study and
molecular dynamics simulation.

4. Conclusions
For decades the behavior of Tolman length has remained

one of the most controversial issues in nanoscopic mechan-
ics. For the Tolman length of incompressible and homoge-
neous liquid sphere, we obtain the relation between δ (Rs) and
Rs, and found that they increase with Rs increasing. The Tol-
man length of plane surface (δ∞) tends to zero in the limit of
Rs → ∞. Five simulated systems are used in molecular dy-
namics simulation, with numbers of argon atoms being 10140,
10935, 11760, 13500, and 15360 respectively. By the theo-
retical study and molecular dynamics simulation, we find that
the calculated values of the Tolman length are more than zero,
and they decrease as the size increases in the whole size range.

The values of surface tension increase with the radius of the
surface tension increasing, which is consistent with the result
from the Tolman’s theory. These conclusions are significant
for studying the size dependence of the surface tension.
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