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Abstract
Thermocapillary migration of a droplet under thermal radiation with a uniform flux is numerically investigated and
theoretically analyzed. By using the front-tracking method, it is observed that thermocapillary droplet migration at small
Reynolds numbers and moderate Marangoni numbers reaches a steady process. The steady migration velocity decreases as
Marangoni number increases. The time-evolution behavior of temperature fields in the steady migration process is found to
be a quadratic function, in which the linear rise of the steady state temperatures with the relative time is a main characteristics.
The quadratic function behavior of the temperature fields is further used to derive the steady energy equations. From the
steady momentum and energy equations, an analytical result at small Reynolds number and zero Marangoni number is
determined by using the method of matched asymptotic expansions. The steady migration velocity decreases as Reynolds
number increases, which is in qualitatively agreement with the numerical result.
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Introduction

In the microgravity environment, the migration of a droplet
in a bulk liquid is caused by the non-uniform surface
tension distribution along the interface between the two
immiscible fluids and known as thermocapillary droplet
migration. Such nonisothermal interfacial flow is very
important in both the fundamental hydrodynamics and the
industrial application such as production of pure materials
(Ratke and Korekt 2000) and mass transfer in chemical
engineering (Bassano and Castagnolo 2003). To generate
the non-uniform surface tension, on one hand, a verti-
cal temperature gradient field is added in the bulk liquid
through providing the non-uniform temperature distribution
along the interface. (Young et al. 1959) firstly studied ther-
mocapillary migration of a droplet in a vertical temperature
gradient field and obtained the droplet migration velocity in
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the limit case of zero Reynolds (Re) and Marangoni (Ma)
numbers. Subramanian (1981) introduced the quasi-steady
state assumption, extended the YGB’s result to the small
Ma numbers and obtained an asymptotic solution for the
steady migration velocity. Since then, due to the effect of
the vertical temperature gradient field in the bulk liquid,
the thermocapillary droplet migration and its mechanism
are understood very well in a series of theoretical analy-
ses, numerical simulations, and experimental investigations
(Subramanian et al. 2001; Yin et al. 2009; Zhang et al. 2018;
Alhendal et al. 2018).

On the other hand, the thermal radiation to the droplet
surface is another method to generate the non-uniform sur-
face tension through providing the non-uniform temperature
distribution along the interface. Oliver and Dewitt (1988)
firstly analyzed the thermocapillary droplet migration under
the thermal radiation with a uniform flux at the zero limits
of Re and Ma numbers and obtained the droplet migration
velocity. Rednikov and Ryzzantsev (1989) independently
derived the same results and determined the deformation
of the droplet. Rybalko et al. (2004) experimentally inves-
tigated the directed motion of an oil droplet floating in
an aqueous solution guided by a laser beam focused at
the oil-water interface, where exists the variation of sur-
face tension due to the thermal gradient at the interface.
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Baroud et al. (2007) experimentally and theoretically illus-
trated the effects of laser-driven localized thermocapillary
stresses on microactuation of water droplets in oil. Vincent
and Delville (2012) experimentally investigated the thermo-
capillary migration induced by local laser heating of the
advancing front of a growing droplet confined in a microflu-
idic channel. Lopez et al. (2013) and Rendondo et al. (2014)
experimentally observed thermocapillary migration of a
droplet caused by laser beam heating due to the absorption
of laser radiation by making a strongly nonhomogeneous
distribution of temperature inside the droplet as well as at
its surface. Ryazantsev et al. (2017) reported thermo- and
soluto-capillary migration of passive and active droplets
with a laser beam under various forms of illumination.
Zhang et al. (2018) numerically studied the spontaneous
droplet migration under thermal radiation in a large range of
Re numbers and investigated effects of the physical param-
eters of two-phase fluids on the steady migration velocity.
Wu (2018) theoretically analyzed steady thermocapillary
migration of a droplet at large Ma numbers under a com-
bination of a vertical temperature gradient and a uniform
radiation energy source. However, some interesting topics
on thermocapillary droplet migration under thermal radia-
tion, such as effects of Ma number on the terminal velocity,
time evolution of temperature distributions in the steady
state migration processes, remain to be studied with respect
to its physical mechanism.

In this paper, we firstly numerically investigate effects
of Ma number on thermocapillary droplet migration under
thermal radiation with a uniform flux at small Re numbers.
And then, we extend the OD’s analytical result to the case
of small Re numbers and determine the steady migration
velocity. Section “Governing equations” describes the model
and formulation of thermocapillary droplet migration under
the thermal radiation. The numerical results of the thermo-
capillary droplet migration in a large range of Ma numbers
are analyzed in “Numerical simulation of thermocapillary
droplet migration at small Re and moderate Ma numbers”.
The analytical result of the steady thermocapillary migra-
tion of a droplet in the limiting case of zero Ma number in
relation to small Re number is determined and compared
with the corresponding numerical one in “Theoretical anal-
ysis of thermocapillary droplet migration at small Re and
zero Ma numbers”. Finally, in “Conclusion and discussion”,
some conclusions and discussions are given.

Governing equations

Consider a single droplet with a radius R0 placed in a
continuous-phase fluid of unbounded extend under thermal
radiation with a uniform flux q. Gravity and deformation
of the droplet shape are ignored. The droplet surface and

the continuous-phase fluid are assumed as a gray body and
transparent to the radiation, respectively. The droplet moves
up due to the non-uniform surface tension σ = σ0+σT (T̄ −
T0), where σ0 and σT are the surface tension coefficient at
the undisturbed temperature T0 and the changing rate of the
interfacial tension between the droplet and the continuous-
phase fluid with temperature T̄ , respectively. The continuity,
momentum and energy equations for the continuous-phase
fluid and the droplet in a laboratory coordinate system (r̄, z̄)

are written as

∂ρi

∂t
+ ∇̄ · (ρi v̄i ) = 0,

∂ρi

v̄i

∂t + ∇̄ · (ρi v̄i v̄i )=−∇̄p̄i +∇̄ ·
[
μi(∇̄v̄i + ∇̄T v̄i )

]
,

∂T̄i

∂t
+ ∇̄ · (v̄i T̄i ) = κi

ki

∇̄ · (ki∇̄T̄i ), (1)

where the symbols v̄i , p̄i , T̄i represent the velocity, pressure
and temperature, respectively. The direction of the incident
irradiation is antiparallel to the z̄-axis. ρi , μi , ki and κi

represent the density, the dynamical viscosity, the thermal
conductivity and the thermal diffusivity, respectively.
Symbols with subscript 1 and 2 denote physical variables
and coefficients of the continuous-phase fluid and the
droplet, respectively. The solutions of Eq. 1 have to satisfy
the boundary conditions at infinity

v̄1 → 0, p̄1 → p∞, T̄1 → T0 (2)

and at the interface r̄b of the two-phase fluids

v̄1(r̄b, t) = v̄2(r̄b, t),

n · �̄1 · n − n · �̄2 · n = 2σH,

n · �̄1 · s − n · �̄2 · s = −∇̄sσ · s,
T̄1(r̄b, t) = T̄2(r̄b, t),

k1
∂T̄1

∂n
(r̄b, t) − qiz̄ · n = k2

∂T̄2

∂n
(r̄b, t), (3)

where �̄1 and �̄2 is the stress tensors of the two-phase
fluids. n and s are the unit vectors normal and tangent to
the interface, respectively. iz̄ is a unit vector of the z̄-axis.
∇̄s(= ∇̄ − n ∂

∂n
) is the surface gradient operator. H is the

curvature of the interface.
In the modeling assumptions, both fluids are immiscible,

and the physical properties are constant. The droplet keeps
a spherical axisymmetric shape (H = 1/R0). The equations
of states for density, viscosity, heat conduction and heat
diffusivity are written as follows

dρi

dt
= dμi

dt
= dki

dt
= dκi

dt
= 0. (4)

By taking the radius of the droplet R0, the velocity v0 =
−σT qR0/k1μ1 and qR0/k1 as the reference quantities to
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make coordinates, velocity and temperature dimensionless,
Eq. 1 is rewritten as

∇̄ · v̄i = 0,

ρi

∂ v̄i

∂t
+ ρi v̄i · ∇̄v̄i =−∇̄p̄i + 1

Re
∇̄ ·

[
μi(∇̄v̄i +∇̄v̄T

i )
]
,

∂T̄i

∂t
+ v̄i · ∇̄T̄i = κi/ki

Ma
∇̄ · (ki∇̄T̄i ). (5)

The physical coefficients ρi , μi , ki and κi are nondimen-
sionlized by the quantities of continuous-phase fluid. Re,
Ma and Prandtl (Pr) numbers are respectively defined as

Re = ρ1v0R0

μ1
, Ma = v0R0

κ1
, and Pr = Ma

Re
= μ1

ρ1κ1
.

(6)

The solutions of Eq. 5 have to satisfy the boundary condi-
tions at infinity

v̄1 → 0, p̄1 → 0, T̄1 → 0 (7)

and at the interface r̄b of the two-phase fluids

v̄1(r̄b, t) = v̄2(r̄b, t),

n · �̄1 · n − n · �̄2 · n = 2σH,

n · �̄1 · s − n · �̄2 · s = −∂σ

∂s
,

T̄1(r̄b, t) = T̄2(r̄b, t),

∂T̄1

∂n
(r̄b, t) + iz̄ · n = k2

∂T̄2

∂n
(r̄b, t), (8)

where σ = 1
Ca

− T̄1. Ca(= v0μ
σ0

) is the Capillary number.

Numerical simulation of thermocapillary
droplet migration at small Re andmoderate
Ma numbers

Models and numerical methods

As shown schematically in Fig. 1a, the symmetric axis of the
container is taken as the z̄-axis. An axisymmetric droplet is

placed initially at the center of coordinates and then moved
along the z̄-axis under the thermal radiation with a uniform
flux. The continuous, momentum and energy equations with
the surface tension force δFσ and the radiative heat flux δQ

in a cylindrical coordinate system (r̄ , z̄) are written as

∇̄ · v̄i = 0,
∂(ρi v̄i )

∂t
+ ∇̄ · (ρi v̄i v̄i ) = −∇̄p̄i + 1

Re
∇̄

·
[
μi(∇̄v̄i + ∇̄v̄T

i )
]

+ 1

Re
δFσ ,

∂T̄i

∂t
+ v̄i · ∇̄T̄i = κi/ki

Ma
∇̄ · (ki∇̄T̄i ) + κi/ki

Ma
δQ, (9)

where

δFσ =
∫
�sAB

(−2σHn + ∂σ
∂s
s
)
2πrδ2(r̄ − r̄b)ds

2πrc�r�z

= [(σ rs)B − (σ rs)A] − σc�sAB ir̄
rc�r̄�z̄

(10)

and

δQ =
∫
�sAB

iz̄ · n2πrδ2(r̄ − r̄b)ds

2πrc�r�z
= sin2 θB

2 − sin2 θA

2

rc�r̄�z̄
.

(11)

δ2 is a two-dimensional function constructed by the repeated
multiplication of the one-dimensional Dirac delta function.
r̄ and r̄b are the points in the computational domain and on
the interface, respectively. �sAB is a short front element on
the interface. rc is the radius of the cross section at the center
c of �sAB . θ is the angle coordinate of the interface s. ir̄ is
a unit vector of the r̄-axis. The solutions of Eq. 9 satisfy the
initial conditions of the computational domain r̄ ∈ [0, r1]
and z̄ ∈ [z1, z2]
v̄i = 0,

T̄i = 0 (12)

and the boundary conditions at the top and bottom walls
(z̄ = z1 and z̄ = z2), on the symmetric central axis (r̄ = 0)
and at the right wall (r̄ = r1)

v̄r,1(r̄, z1) = v̄r,1(r̄, z2) = 0, ∂v̄z,1
∂z

(r̄, z1) = ∂v̄z,1
∂z

(r̄, z2) = 1, ∂T̄1
∂z

(r̄, z1) = ∂T̄1
∂z

(r̄, z2) = 1,

v̄r,i (0, z̄) = 0, ∂v̄z,i

∂r
(0, z̄) = 1, ∂T̄i

∂r
(0, z̄) = 1,

v̄r,1(r1, z̄) = 0, ∂v̄z,1
∂r

(r1, z̄) = 1, T̄1(r1, z̄) = 0.

(13)

In the following computation, we apply a regular stag-
gered Marker-And-Cell grid in the computational domain,
a second-order central difference scheme for the spatial
variables and an explicit predictor-corrector second-order
scheme for time integration of the above momentum and
energy equations. Since both fluids are assumed immiscible,

all physical coefficients are discontinuous across the inter-
face. The interface is captured and updated by the front-
tracking method (Tryggvason et al. 2001), so all discontin-
uous physical coefficients across the interface are treated
as continuous. The conversion of the physical quantities
between the interface nodes (r̄p, z̄p) and the grid points
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Fig. 1 a A schematic of the droplet migration system under the
thermal radiation with a uniform flux in a laboratory coordinate
system; b A mesh (ξ, η) ∈ {[0, 8], [0, 8]}) fixed at the reference frame
moving with the droplet to recode the time evolution of the steady state
temperature fields

(i�r̄, j�z̄) is treated with the Peskin’s weighting function
(Peskin 1977)

wij (r̄p) = d(r̄p − i�r̄)d(z̄p − j�z̄), (14)

d(r) =
{

(1/4h)[1 + cos(πr/2h)], |r| < 2h,

0, |r| ≥ 2h,
(15)

where h is the grid spacing in r . To calculate the sur-
face tension force δFσ , the temperature on the interface is
determined by interpolating values on the grid points. The
tangent vector s is computed from a Lagrangian interpola-
tion polynomial fitting through four interface nodes. The
surface tension force δFσ and the radiative heat flux δQ on
the interface are distributed to the grid points by means of
the weighting function Eq. 14, respectively. More details of
the numerical methods can be found in (Tryggvason et al.
2001; Wu and Hu 2012).

Numerical results

To validate the methods described above, we carry out
several benchmark testing. The parameters ρ2 = μ2 = k2 =
κ2 = 0.8, Pr=1 and Ca=0.1 are fixed, except for some cases
declared. The time step is chosen as O(10−6) ∼ O(10−7).
First of all, to examine the impact of the computational
domain ({r̄ , z̄} ∈ {[0, r1], [−4, 8]}) on numerical results,
we choose r1 = 6, 8, 10, 12 and perform calculations
for the droplet migration based on the grid refinement
for 32 grid points per droplet radius at Re = Ma = 0.01.
The time evolution of the droplet migration velocity is
calculated and plotted in Fig. 2a. The terminal migration
velocity curve with a small fluctuation (about 1%) seems
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Fig. 2 Droplet migration velocity versus time at Pr=1, Ca=0.1 and
α = β = γ = λ = 0.8 for a four computational domains
{r̄ , z̄} ∈ {[0, r1], [−4, 8]} (r1 = 6, 8, 10, 12) with the fixed grid
resolution for 32 grid points per droplet radius at Re(Ma)=0.01; b
three grid resolutions 128 × 192, 256 × 384 and 512 × 576 in the
fixed computational domain {r̄ , z̄} ∈ {[0, 8], [−4, 8]} at Re(Ma)=0.01;
c three groups of Re(Ma) = (0.01, 0.1, 1) at the fixed computational
domain {r̄ , z̄} ∈ {[0, 8], [−4, 8]} and the fixed grid resolution 256 ×
384. The OD’s analytical result at zero limits of Re and Ma numbers
is also provided for comparison
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Fig. 3 Comparison of the steady droplet migration velocity V∞ versus
Re number at the fixed computational domain {r̄ , z̄} ∈ {[0, 8], [−4, 8]}
and the fixed grid resolution 256 × 384 with the ZLCXS’ numerical
result for Pr=1, Ca=0.1 and α = β = γ = λ = 1 (Zhang et al. 2018)

to converge when r1 ≥ 6. The derivation of the converged
terminal migration velocity from the OD’s analytical result
(V∞ = 0.027) is very small (about 3%). Secondly, to check
the sensitivity of numerical results to grid refinements,
we complete calculations for the droplet migration in the
computational domain {r̄ , z̄} ∈ {[0, 8], [−4, 8]} at Re = Ma
=0.01. Based on 128 × 192, 256 × 384 and 512 × 576 grid
points, i.e., 16, 32 and 48 grid points per droplet radius, the
time evolution of the droplet migration velocity is calculated
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Fig. 4 a Time evolution of droplet migration velocity for Ma=0.5, 5, 10, 50, 100 and 200 at Pr=50 and Ca=0.1; b Steady migration velocity V∞
versus Ma number

and plotted in Fig. 2b. The terminal migration velocity curve
seems to converge towards the OD’s analytical result when
the grid becomes finer. The difference in the migration
velocities computed with 32 and 48 grid points per droplet
radius is very small (about 2%). And then, we compare
the computational result with the OD’s analytical one at
the zero limits of Re and Ma numbers (Oliver and Dewitt
1988). As shown in Fig. 2c, the migration velocities of
the droplet with the grid resolution for 32 grid points per
droplet radius at small Re(Ma) numbers (0.01, 0.1 and 1)
exhibit a convergent approximation to the OD’s analytical
result with an error (about 3%) as the Re(Ma) number
decreases. Finally, to validate the code, we compare the
current numerical results with the ZLCXS’ ones at ρ2 =
μ2 = k2 = κ2 = 1 in a range of Re numbers (Zhang et al.
2018). In Fig. 3, it is observed that both the steady migration
velocities are very close together and have the same trends.
In the following calculations, we fix the computational
domain as {r̄ , z̄} ∈ {[0, 8], [−4, 8]}, the grid resolution
as 32 grid points per droplet radius and the time step as
O(10−4) ∼ O(10−6).

Fig. 4a displays the time evolution of the droplet
migration velocity at Ma=0.5, 5, 10, 50, 100, 200 and
Pr=50. For each Ma case, the droplet migration velocity
firstly monotonically increases as time increases, and then
approaches to a steady value. The transient migration
process to reach the steady state is longer as Ma number
increases. This phenomenon accords with the principle that
Ma number as the dimensionless thermal diffusion time
scale is the controlling parameter of the thermocapillary
droplet migration to reach the terminal state (Wu 2017). As
given in Fig. 4b, the steady migration velocity decreases
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Fig. 5 Streamlines in the reference frame moving with the droplet and isotherms in a laboratory coordinate frame a at time 5, 10, 40, 60, 80 for
Ma=10, b at time 10, 20, 60, 80, 100 for Ma= 50 and c at time 15, 30, 60, 80, 100 for Ma=100

as Ma number increases. Figure 5a displays the time
evolution of the streamlines in a reference frame moving
with the droplet and isotherms in a laboratory coordinate
system at Ma=10. Since the radiative heat flux passing
through the interface is a cosine function, a temperature
gradient along the interface appears under the thermal
radiation. The interfacial temperature gradient leads to
the non-uniform surface tension distribution. As a result,
the net force generated by the surface tension drives the
droplet to move up. Meanwhile, the surface tension also
induces viscous stresses in both fluids near the interface
and generate flow patterns outside and inside the droplet.
The external flow around the droplet does not separate
from the droplet surface. Two vortices appeared in the
droplet are symmetric about the vertical diameter. The
vortex centers hardly move in the droplet and the velocity
fields are almost kept during the droplet migration process.
The velocity fields in the steady migration process are
similar to those in thermocapillary droplet migration with a
vertical temperature gradient. Moreover, the upper surface
of the droplet absorbs the radiative thermal energy and
transfers it into two-phase fluids. As the time increases,
the isotherms propagate far away from the interface. The
internal and external isotherms display horizontal and arc,
respectively. The isotherms connect at the surface of the
droplet and show a mushroom-cap shape. The temperature

fields in the steady migration process are different from
those in thermocapillary droplet migration with the vertical
temperature gradient. At Ma=10, the heat convection is
slightly stronger than the heat conduction in the energy
redistribution. To further analyze features of the temperature
fields when the droplet moves in the steady state process,
we take a 8 × 8 mesh fixed at the reference frame moving
with the droplet as shown in Fig. 1b and depict the time
evolution of steady state temperature at each point of the
mesh. In Fig. 6a and b. the temperature rise from the steady
state at each point (ξ, η) ∈ {[0, 7], [0, 8]}) is a quadratic
function of relative time to the starting time ts = 40
of the steady state, i.e., �T̄i(r) = T̄i (r̄, t) − Ti(r) =
G1(r)(t − ts) + G2(r)(t − ts)

2, where Ti(r) is the steady
state temperature when t = ts . The functions G1 and G2,
which are distribution functions of the position r in the
reference frame moving with the droplet, depict the linear
growth and the nonlinear supplement of the steady sate
temperature with the relative time, respectively. Based on
the data (�T̄i(r), �t = t − ts) at each point, G1 and G2 are
estimated by the least square polynomial fitting algorithm
and given in the figure legends. In general, the function
G2 is two orders of magnitude lower than G1. Within the
time range of steady state evolution [t − ts = O(10)], the
nonlinear term G2(t − ts)

2 is one order of magnitude lower
than the linear term G1(t − ts). So, the linear rise of the
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steady state temperature with the relative time is a main
characteristics in the steady droplet migration process. In
the 72 reference points except for the 9 right boundary ones,
the farther away from the droplet surface, the smaller the
function G1. Henceforth, the time evolution of steady state
temperature for the points (ξ, η) ∈ {[4, 7], [0, 8]}) far from
the droplet is omitted.

Figure 5b displays the time evolution of the streamlines
in a reference frame moving with the droplet and isotherms
in a laboratory coordinate system at Ma=50, respectively. At
the moderate Ma number, the effect of the heat convection
is stronger than that of the heat conduction. In the initial
migration process, the thermal energy near the top surface of
the droplet is hardly re-distributed into a large area through
the heat conduction, but mainly gathers near the top surface
of the droplet. In the droplet, the isotherms are bend due to
the heat convection. When the droplet enters the steady state
migration process, the isotherms propagate far away from

the interface with the same shape. The time evolution of
steady state temperature at each point of the mesh (ξ, η) ∈
{[0, 3], [0, 8]}) near the droplet starting from ts = 60 is
shown in Fig. 6c. For the 36 reference points, within the
time range of steady state evolution [t − ts = O(10)], the
nonlinear supplement G2(t − ts)

2 is one or more orders of
magnitude lower than the linear termG1(t−ts). Thus, the linear
rise of the steady state temperature with the relative time is a
main characteristics in the steady droplet migration process.

Figure 5c displays the time evolution of the streamlines in
a reference frame moving with the droplet and isotherms in
a laboratory coordinate system at Ma=100, respectively. At
the moderate Ma number, the heat convection makes a main
role in the energy redistribution. In the initial migration
process, the thermal energy near the top surface of the
droplet mainly gathers near the top surface of the droplet.
In the droplet, the isotherms become more curved due to
the stronger heat convection. The isotherms connected at

Fig. 6 Local temperature rise
�T̄i with the relative time �t in
the steady migration process
(t ≥ ts ) at each point of the
mesh (a) (ξ, η) ∈ {[0, 3], [0, 8]})
for Ma=10 and ts = 40; (b)
(ξ, η) ∈ {[4, 7], [0, 8]}) for
Ma=10 and ts = 40; (c)
(ξ, η) ∈ {[0, 3], [0, 8]}) for
Ma=50 and ts = 60 (d)
(ξ, η) ∈ {[0, 3], [0, 8]}) for
Ma=100 and ts = 60. Solid lines
described by a quadratic
function with G1 and G2 are the
least square polynomial fits of
the points (�T̄i, �t)
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Fig. 6 (continued)
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the surface of the droplet show an umbrella shape. When
the droplet enters the steady state migration process, the
isotherms keep the similar shape to propagate far away from
the interface. In a similar way, the nonlinear supplement
G2(t − ts)

2 is one or more orders of magnitude lower than
the linear term G1(t − ts). Therefore, we can conclude that
within the time range of steady state evolution, the linear
rise of the steady state temperature with the relative time is a
main characteristics in the steady droplet migration process.

Theoretical analysis of thermocapillary
droplet migration at small Re and zeroMa
numbers

The droplet reaches a stable state with a constant migra-
tion velocity after an unsteady thermocapillary migration
process, which inspires to introduce the quasi-steady state

assumption and analyze features of the steady temperature
fields. By using the coordinate and variable transformations
from the laboratory coordinate system (r̄ , z̄) to a coordinate
system (r, z) moving with the droplet, the steady continuity,
momentum and energy equations are respectively derived
from Eq. 5 in the Appendix and written as follows

∇ · vi = 0,
ρivi · ∇vi = −∇pi + μi

Re
�vi ,

G1 + vi · ∇Ti = κi

Ma
�Ti .

(16)

At small Re and zero Ma numbers, Eq. 16 is rewritten in
a spherical coordinate system (r, θ )

ρi

r2

∂(ψi, E
2ψi)

∂(r, cos θ)
+ 2ρi

r2
E2ψiLψi = μi

Re
E4ψi,

�Ti = 0, (17)
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Fig. 6 (continued)
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where

E2 = ∂2

∂r2
+ sin2 θ

r2

∂2

∂(cos θ)2
, (18)

L = cos θ

sin2 θ

∂

∂r
+ 1

r

∂

∂ cos θ
(19)

and ψi is the stream functions of the continuous fluid and
the droplet. At the place far from the droplet, the velocity
and temperature of the continuous fluid should satisfy

v1(r → ∞, θ) → (−V∞ cos θ, V∞ sin θ),

T1(r → ∞, θ) → 0.
(20)

At the droplet surface, the velocities inside and outside
the droplet must meet the continuous and impermeable
conditions described below

vr,1(1, θ) = vr,2(1, θ) = 0,
vθ,1(1, θ) = vθ,2(1, θ).

(21)

Meanwhile, the temperatures and the heat fluxes inside and
outside the droplet must be continuous and in balance with

the thermal radiation as given below, respectively

T1(1, θ) = T2(1, θ) (22)

and

∂T1
∂r

(1, θ) + cos θ = k2
∂T2
∂r

(1, θ), θ ∈ [0, π/2],
∂T1
∂r

(1, θ) = k2
∂T2
∂r

(1, θ), θ ∈ [π/2, π ]. (23)

The difference of the tangential stresses is balanced by the
surface gradient of the interfacial tension

�rθ,1(1, θ) − μ2�rθ,2(1, θ) = ∂T1

∂θ
(1, θ), (24)

where �rθ,i = r ∂
∂r

(
vθ,i

r
) + 1

r

∂vr,i

∂θ
.

In order to solve the equations Eq. 17 with the boundary
conditions Eqs. 20–24, we make asymptotic expansions
for the velocity (the streamfunction) and temperature fields
outside and inside the droplet with the small perturbation
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Fig. 6 (continued)
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parameter Re as follows

ψi(r, θ) = ψ0
i (r, θ) + Reψ1

i (r, θ) + o(Re),

Ti(r, θ) = T 0
i (r, θ) + ReT 1

i (r, θ) + o(Re),

V∞ = V 0∞ + ReV 1∞ + o(Re). (25)

Using the series expansions Eq. 25, we can obtain governing
equations of the leading-order streamfunctions (ψ0

i ) and
temperatures (T 0

i ) derived from the momentum and the
energy equations Eq. 17 as

E4ψ0
i = 0,

�T 0
i = 0.

(26)

Following the derivations (Oliver and Dewitt 1988), the
solutions of the governing Eq. 26 satisfying the boundary
conditions Eqs. 20–24 described by the leading-order ψ0

i

and T 0
i are written as

ψ0
1 = V 0∞

2
(r2 − r−1) sin2 θ

+
∑∞

n=3,odd
Dn(r

3−n − r1−n)C
−1/2
n (cos θ),

ψ0
2 = 3V 0∞

4
(r4 − r2) sin2 θ

+
∑∞

n=3,odd
Dn(r

2+n − rn)C
−1/2
n (cos θ) (27)

and

T 0
1 = 1

4r
+ 1

2(2 + k2)
r−2 cos θ

+
∑∞

n=2,even
anr

−(n+1)Pn(cos θ),

T 0
2 = 1

4
+ 1

2(2 + k2)
r cos θ

+
∑∞

n=2,even
anr

nPn(cos θ), (28)
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where an = (−1)(n−2)/2 2n+1
2[(1+k2)n+1](n+2)(n−1)�

n/2
j=1

2j−1
2j ,

(n ≥ 2, even), Dn = n(n−1)
2(2n−1)(1+μ2)

an−1. Pn(s) and C
−1/2
n

(s) = ∫ 1
s
Pn−1(x)dx are the Legendre and Gegenbauer

polynomials of order n, respectively. The steady migration
velocity is obtained through the leading-order net force
balance condition and written as

V 0∞ = 1

3(2 + 3μ2)(2 + k2)
. (29)

Substituting the expansions Eq. 25 into the momentum
and the energy equations Eq. 17, we obtain the governing
equations of the first-order streamfunctions (ψ1

i ) and
temperatures (T 1

i ) of the two-phase fluids

μi

ρi

E4ψ1
i = 1

r2

∂(ψ0
i , E2ψ0

i )

∂(r, cos θ)
+ 2

r2
E2ψ0

i Lψ0
i ,

�T 1
i = 0. (30)

The streamfunctions ψ1
i and the temperatures T 1

i should
satisfy the boundary conditions at infinity

v11(r → ∞, θ) → (−V 1∞ cos θ, V 1∞ sin θ),

T 1
1 (r → ∞, θ) → 0 (31)

and at interface

v1r,1(1, θ) = v1r,2(1, θ) = 0,

v1θ,1(1, θ) = v1θ,2(1, θ),

T 1
1 (1, θ) = T 1

2 (1, θ),

∂T 1
1

∂r
(1, θ) = k2

∂T 1
2

∂r
(1, θ),

�1
rθ,1(1, θ) − μ2�

1
rθ,2(1, θ) = ∂T 1

1

∂θ
(1, θ). (32)

In order to obtain simplified analytical solutions (ψ1
i ,

T 1
i ) of the above equations, we truncate the leading-order

streamfunctions ψ0
i and the leading-order temperature T 0

i at
n = 3 in Eqs. 27, 28 and write, respectively, as

ψ0
1 = V 0∞

2
(r2 − r−1) sin2 θ

+ 3a2
5(1 + μ2)

(1 − r−2)C
−1/2
3 (cos θ),

ψ0
2 = 3V 0∞

4
(r4 − r2) sin2 θ

+ 3a2
5(1 + μ2)

(r5 − r3)C
−1/2
3 (cos θ), (33)

and

T 0
1 = 1

4r
+ 1

2(2 + k2)
r−2 cos θ + a2r

−3P2(cos θ),

T 0
2 = 1

4
+ 1

2(2 + k2)
r cos θ + a2r

2P2(cos θ), (34)

where a2 = 5
8(3+2k2)

. As shown in Fig. 7, the velocity and

the temperature fields based on (ψ0
i , T

0
i ) truncated at n = 3

and 5 in Eqs. 27, 28 are similar each other. The truncated
streamfunctions ψ0

i at n = 3 can be thought as a reasonable
approximation of the leading-order streamfunctions. By
using the truncated streamfunctions ψ0

i , the solutions of
Eq. 30 satisfying the boundary conditions Eqs. 31 - 32 are
determined as

ψ1
1 = − a2

1 + μ2
V 0∞

[
3

25
r + 3

20
r−2]C−1/2

4 (cos θ)

− a22

(1 + μ2)2
r−3

[
27

350
C

−1/2
5 (cos θ)

+ 1

350
C

−1/2
3 (cos θ) + 27

14000
C

−1/2
1 (cos θ)

]

+V 1∞r2C
−1/2
2 (cos θ)+(b1+d1r)C

−1/2
1 (cos θ)+b0r

+
∑5

n=2
(bnr

1−n − dnr
3−n)C

−1/2
n (cos θ),

ψ1
2 = − ρ2

μ2

{
5

28
(V 0∞)2r7C

−1/2
3 (cos θ)

+ a22

(1 + μ2)2

[
9

715
r9C

−1/2
5 (cos θ)

+
(

1

220
r9 − 1

100
r7

)
C

−1/2
3 (cos θ)

]

+ a2

1 + μ2
V 0∞

[
1

10
r8C

−1/2
4 (cos θ)

+
(

13

360
r8 − 107

2100
r6

)
C

−1/2
2 (cos θ)

− 1

80
r8 + 107

600
r6

]}
− d̂0r

3

+
∑5

n=1
(b̂nr

n − d̂nr
n+2)C

−1/2
n (cos θ) (35)

and

T 1
1 = 0,

T 1
2 = 0,

(36)
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Fig. 7 Velocity and temperature fields truncated at a n = 3 and b n = 5 in Eqs. 27 and 28 for zero limits of Re and Ma numbers and
ρ2 = μ2 = k2 = κ2 = 0.8

where

b0 = 271
200

ρ2a2
1+μ2

V 0∞,

b1 =
[

μ2
16(2+μ2)

− 1
1+2μ2

]
27a22

875(1+μ2)
2 ,

b2 = 6493
11550

ρ2a2
(1+μ2)

2 V∞,0 + μ2
2(1+μ2)

V 1∞,

b3=
(

9
1735− 4ρ2

1375+ 3μ2
100

)
a22

(1+μ2)
3 − 6183

20020
ρ2

1+μ2
(V 0∞)2,

b4=
(

27
5500 − 9μ2

20

)
a2

(1+μ2)
2 V

0∞,

b5=
(

27
1330 + 54ρ2

13585 + 27μ2
700

)
a22

(1+μ2)
3 ,

d1=b1 − 27
14000

a22
(1+μ2)

2 ,

d2=b2 + V 1∞,

d3=b3 − 1
350

a22
(1+μ2)

2 ,

d4=b4 − 27
100

a2
1+μ2

V 0∞,

d5=b5 − 27
350

a22
(1+μ2)

2

(37)

and

b̂1 = 1
2b1 − 27

14000
a22

(1+μ2)
2 ,

b̂2 = b2 − 67
3150

ρ2
μ2

a2

1+μ2
V 0∞ − 1

2V
1∞,

b̂3 = b3 −
(

3
700 − 1

1100
ρ2
μ2

)
a22

(1+μ2)
2 − 9

715
ρ2
μ2

(V 0∞)2,

b̂4 = b4 +
(

9
20 − 1

10
ρ2
μ2

)
a2

1+μ2
V 0∞,

b̂5 = b5 −
(

27
700 + 9

715
ρ2
μ2

)
a22

(1+μ2)
2 ,

d̂0 = − 1
3b0 − 97

300
ρ2a2

μ2(1+μ2)
V 0∞,

d̂1 = b̂1,

d̂2 = b̂2 + 187
12600

ρ2a2
μ2(1+μ2)

V 0∞,

d̂3 = b̂3 + 3
550

ρ2a
2
2

μ2(1+μ2)
2 − 5

28
ρ2
μ2

(V 0∞)2,

d̂4 = b̂4 − 1
10

ρ2a2
μ2(1+μ2)

V 0∞,

d̂5 = b̂5 − 9
715

ρ2a
2
2

μ2(1+μ2)
2 .

(38)

Setting the first-order net force on the droplet in the vertical
direction to zero, we have

F 1
z =

∫ π

0
(�1

rr,1 cos θ − �1
rθ,1 sin θ)|1 sin θdθ = 0, (39)

where

�1
rr,1 = −p1

1 + 2
∂v1r,1

∂r
. (40)
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Integrating the momentum equation of continuous phase
fluid in Eq. 16, we obtain the first-order pressure field
outside the droplet as

p1
1(r, θ) = (V 0∞)2r−3

[(
1 − 5

12 r
−3

)
P2(cos θ) − 1

12 r
−3

]

+V 0∞a2
1+μ2

r−2
[(

144
75 + 3

25 r
−2 + 153

250 r
−3 − 12

25 r
−5

]

P3(cos θ)

−
(
3
5 − 21

125 r
−3 + 3

25 r
−5

)
P1(cos θ)]

− a22
(1+μ)2

r−3
[(

81
875 − 236

875 r
−3 + 9

175 r
−5

)

P4(cos θ)

−
(

9
175 + 3

70 r
−3 − 3

35 r
−5

)
P2(cos θ)

+
(

27
1750 − 417

3500 r
−3 + 39

350 r
−5

)]

−∑5
n=2

6−4n
n

dnr
−nPn−1(cos θ).

(41)

Substituting the solutions Eqs. 35 and 41 into 39, we can
determine

V 1∞ = −
(

3
125 + 6493

5775
ρ2

2+3μ2

)
a2

1+μ2
V 0∞

= − 1
8

(
3
25 + 5 718

1155
ρ2

2+3μ2

)
1

(1+μ2)(3+2k2)
V 0∞.

(42)

The steady migration velocity of the droplet is thus
expressed as

V∞ =V 0∞ + ReV 1∞ + o(Re)

=V 0∞
[
1 − Re 1

8

(
3
25 + 5 718

1155
ρ2

2+3μ2

)
1

(1+μ2)(3+2k2)

]
+ o(Re).

(43)

It is noted that the steady thermocapillary migration
speed of the droplet decreases as Re number increases. In

Re

V

0 0.5 1 1.50.025

0.026

0.027

0.028

Numerical result
Analytical result

Fig. 8 Comparison of the analytical result Eq. 43 on the steady droplet
migration velocity V∞ versus small Re number at the zero limit of Ma
number with the corresponding numerical result at Ma=0.01 in a range
of small Re numbers, where ρ2 = μ2 = k2 = κ2 = 0.8

comparison with the leading-order migration velocity V 0∞,
the first-order migration velocity V 1∞ depends on the density
ratio of two-phase fluids, except on the viscosity and the
thermal conductivity ratios of the two-phase fluids. Figure 8
displays the comparison between the above analytical result
Eq. 43 on the steady droplet migration velocity versus
small Re number at the zero limit of Ma number with the
corresponding numerical result at Ma=0.01 in a range of
small Re numbers, where ρ2 = μ2 = k2 = κ2 = 0.8.
The numerical result is in qualitatively agreement with the
analytical profile, although the former absolute slope is
slight smaller than the later one.

Conclusion and discussion

In this paper, under thermal radiation with a uniform flux,
thermocapillary migration of a droplet is numerically inves-
tigated and theoretically analyzed. By using the front-
tracking method, it is observed that thermocapillary droplet
migration at small Re numbers and moderate Ma num-
bers can reach a steady process. The steady migration
velocity decreases as Ma number increases. In the steady
migration process, the non-separated external flow around
the droplet and the internal vortex flow appear inside the
droplet. In the temperature fields, the internal and exter-
nal isotherms intersect with the surface of the droplet and
form a mushroom-cape or an umbrella shape. The former
characteristics is similar to that in thermocapillary droplet
migration with a vertical temperature gradient, while the
later is different. It is found that the temperature fields in
the steady migration process undergo a quadratic function
increasing process with relative time. In the steady droplet
migration process, where the nonlinear term in the quadratic
function is one or more orders of magnitude lower than the
linear term, the linear rise of the steady state temperatures
with the relative time is a main characteristics.

The steady energy equations are derived based on the
assumption of the quadratic function time-evolution of the
temperature fields. From the steady momentum and energy
equations, an analytical result at small Re number and zero
Ma number is determined by using the method of matched
asymptotic expansions. The steady migration velocity of
the droplet, which depends on the density, the viscosity
and the thermal conductivity ratios of the two-phase fluids,
decreases as Re number increases. The analytical result is in
qualitatively agreement with the numerical one.

We emphasize that all of the above results pertain to the
highly idealized axisymmetric model with the gray droplet
and the transparent continuous-phase fluid to the radiation,
and show the effects of Ma number on the terminal velocity
and the time evolution of temperature fields in the steady
state migration processes. The motivation of the current
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work is very different from the ZLCXS’ one for the effects
of Re number on the terminal velocity (Zhang et al. 2018).
Whether the properties of the steady state temperature fields
in the simple model can refer to or be extended to the more
realistic models remains to be determined.
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Appendix: Steady continuity, momentum
and energy equations derived from the
laboratory coordinate system

Using the coordinate and variable transformations from the
laboratory coordinate system (r̄ , z̄) to a coordinate system
(r, z) moving with the droplet velocity V∞ described below

r̄ = r + V∞(t − ts)iz (A.1)

and

v̄i (r̄, t) = vi (r) + V∞iz,

p̄i(r̄, t) = pi(r),

T̄i(r̄, t) = Ti(r) + G1(r)(t − ts) + G2(r)(t − ts)
2, (A.2)

we have

∇̄∣∣
t
= ∂

∂r̄

∣∣∣∣
t

ir + ∂

∂z̄

∣∣∣∣
t

iz = ∂

∂r

∣∣∣∣
t

ir + ∂

∂z

∣∣∣∣∣
t

iz = ∇|t ,

�̄|t = ∂2

∂r̄2

∣∣∣∣
t

+ ∂2

∂z̄2

∣∣∣∣
t

= ∂2

∂r2

∣∣∣∣
t

+ ∂2

∂z2

∣∣∣∣∣
t

= �|t . (A.3)

where vi (r), pi(r) and Ti(r) are the velocity, pressure,
temperature fields in the coordinate system (r, z) moving
with the droplet velocity V∞ when the steady migration
process holds at the time t ≥ ts . For the continuous
equations of the two-phase fluids in Eq. 5, we can directly
obtain the steady continuous equations

∇̄ · v̄i = ∇̄ · (vi + V∞iz) = ∇ · vi = 0. (A.4)

For the momentum equations of the two-phase fluid
in Eq. 5, we derive their unsteady, convection, pressure

gradient and viscous terms as follows

∂ v̄i

∂t

∣∣∣∣
r̄

= ∂(vi + V∞iz)
∂t

∣∣∣∣
r̄
= ∂vi

∂t

∣∣∣∣
r̄
= ∂vi

∂r

∣∣∣∣
t

∂r

∂t

∣∣∣∣
r̄

+∂vi

∂z

∣∣∣∣
t

∂z

∂t

∣∣∣∣r̄ + ∂vi

∂t

∣∣∣∣
r

∂t

∂t

∣∣∣∣
r̄

= .
∂vi

∂z

∣∣∣∣
t

(−V∞) + ∂vi

∂t

∣∣∣∣
r
= −V∞

∂vi

∂z
,

v̄i · ∇̄v̄i |t = (vi + V∞iz) · ∇̄(vi + V∞iz)|t
= (vi + V∞iz) · ∇̄vi |t
= vi · ∇vi + V∞

∂vi

∂z
,

∇̄p̄i |t = ∇̄pi |t = ∇pi,

�̄v̄i |t = �̄(vi + V∞iz)|t = �̄vi |t = �vi , (A.5)

where ∂r
∂t

|r̄ = ∂r
∂t

|r̄ = 0, ∂z
∂t

|r̄ = ∂z
∂t

|z̄ = −V∞ and ∂vi

∂t
|r = 0.

Substituting Eq. A.5 into the second equation in Eq. 5, we
can obtain the steady momentum equations

ρivi · ∇vi = −∇pi + μi

Re
�vi . (A.6)

And for energy equations of the two-phase fluids in Eq. 5,
we can write their unsteady, convection and conductivity
terms as follows

∂T̄i

∂t

∣∣∣∣
r̄

= ∂Ti

∂t

∣∣∣∣
r̄
+ ∂G1

∂t

∣∣∣∣
r̄
(t − ts) + G1

+∂G2

∂t

∣∣∣∣
r̄
(t − ts)

2 + 2G2(t − ts)

= ∂Ti

∂r

∣∣∣∣
t

∂r

∂t

∣∣∣∣
r̄
+ ∂Ti

∂z

∣∣∣∣
t

∂z

∂t

∣∣∣∣∣
r̄

+ ∂Ti

∂t

∣∣∣∣∣
r

∂t

∂t

∣∣∣∣∣
r̄

+∂G1

∂r

∣∣∣∣
t

∂r

∂t

∣∣∣∣
r̄
(t − ts) + ∂G1

∂z

∣∣∣∣
t

∂z

∂t

∣∣∣∣∣
r̄

(t−ts)

+∂G1

∂t

∣∣∣∣
r

∂t

∂t

∣∣∣∣
r̄
(t − ts) + G1

+∂G2

∂r

∣∣∣∣
t

∂r

∂t

∣∣∣∣
r̄
(t−ts)

2+ ∂G2

∂z

∣∣∣∣
t

∂z

∂t

∣∣∣∣∣
r̄

(t−ts)
2

+∂G2

∂t

∣∣∣∣
r

∂t

∂t

∣∣∣∣
r̄
(t − ts)

2 + 2G2(t − ts)

= ∂Ti

∂z

∣∣∣∣
t

(−V∞) + ∂Ti

∂t

∣∣∣∣
r

+∂G1

∂z

∣∣∣∣
t

(−V∞)(t−ts) + ∂G1

∂t

∣∣∣∣
r
(t−ts)+G1

+∂G2

∂z

∣∣∣∣
t

(−V∞)(t − ts)
2 + ∂G2

∂t

∣∣∣∣
r
(t − ts)

2

+2G2(t − ts)

Pa ge 14 of 15 Microgravity Sci. Technol. (2021) 33: 55



= −V∞
∂Ti

∂z
− V∞

∂G1

∂z
(t − ts) + G1

−V∞
∂G2

∂z
(t − ts)

2 + 2G2(t − ts),

v̄i · ∇̄T̄i

∣∣
t

= (vi + V∞iz) · ∇̄(Ti + G1(t − ts)

+G2(t − ts)
2)

∣∣∣
t

= (vi + V∞iz) · (∇̄Ti |t + ∇̄G1|t (t − ts)

+∇̄G2|t (t − ts)
2)

= vi · ∇Ti + V∞
∂Ti

∂z
+ vi · ∇G1(t − ts)

+V∞
∂G1

∂z
(t − ts)

+vi · ∇G2(t − ts)
2 + V∞

∂G2

∂z
(t − ts)

2,

�̄T̄i |t = �̄(Ti + G1(t − ts) + G2(t − ts)
2)|t

= �̄Ti |t + �̄G1|t (t − ts) + �̄G2|t (t − ts)
2

= �Ti + �G1(t − ts) + �G2(t − ts)
2, (A.7)

where ∂Ti

∂t
|r = ∂G1

∂t
|r = ∂G2

∂t
|r = 0. Substituting Eq. A.7

into the third equation in Eq. 5, we can derive the energy
equations as follows

G1 + vi · ∇Ti − κi

Ma
�Ti

= −[(vi · ∇G1) − κi

Ma
�G1 + 2G2](t − ts)

−[(vi · ∇G2) − κi

Ma
�G2](t − ts)

2. (A.8)

Since the left-hand terms are independent of time and
the right-hand terms are a quadratic function of the relative
time, the steady energy equations can be derived as

G1 + vi · ∇Ti − κi

Ma
�Ti = 0,

vi · ∇G1 − κi

Ma
�G1 + 2G2 = 0,

vi · ∇G2 − κi

Ma
�G2 = 0. (A.9)
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