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A B S T R A C T   

In order to estimate Weibull parameters in the Weibull statistical fracture theory as truly material properties 
independent of specimen geometry and loading mode, first the Weibull statistical fracture theory is transformed 
into the ordinary Weibull distribution function under certain approximation. Then the standardized format of 
ordinary Weibull distribution is introduced to enable Weibull modulus as the single parameter for estimation via 
the maximum likelihood method. The method of using standardized Weibull distribution for strength data 
synchronization and Weibull modulus estimation is validated by analyzing extensive strength data sets measured 
from uniaxial flexure, biaxial flexure and their combination, and from smooth and notched specimens. The 
technical path to estimate the scale parameter and threshold strength as material properties in the Weibull 
statistical fracture theory and effect of sample size on the estimation accuracy are also discussed.   

1. Introduction 

Similar to other quasi-brittle materials such as rock, coal, wood, and 
concrete [1], the strength of ceramics is characterized by large random 
variation and strong specimen size effect. Both the empirical data fitting 
approach and the weakest link statistics have been adopted for statistical 
assessment of ceramic strength. The empirical data fitting approach 
adopts a variety of classical ordinary distribution functions to describe 
the statistical distribution of strength. For example, the ordinary Weibull 
distribution function [2], the normal distribution function, the 
log-normal distribution function and the Gamma distribution function 
are all used in Ref. [3] for characterization of ceramic strength. Overall, 
the ordinary Weibull distribution function is most commonly used for 
ceramics, with relevant industrial standards on calibration procedures 
being implemented, e.g., the ASTM standard C1239-00. As emphasized 
in Ref. [4,5], one downside is that the empirical data fitting approach 
cannot account for the specimen size effect on strength. It works well for 
strength data collected from a group of nominally same-sized specimens 
under a same loading condition. As specimen size or loading condition 
changes, empirical data fitting will be applied for each group of test. The 
size effect is reflected on the variation of the fitted distribution param
eters with specimen size. However, since it is not based on physical 

understanding of fracture processes, the obtained empirical fitting 
formulae do not have prediction power for other different-sized speci
mens. Microscopically, the random variation of strength is believed to be 
due to the randomly distributed microdefects commonly existing in 
quasi-brittle materials in terms of spatial location, orientation, size and 
shape. This justifies the development of the probabilistic approaches, 
particularly the weakest link postulate-based statistical models to enable 
the prediction of effects of specimen size and loading condition on 
strength. The Weibull statistical fracture theory [6] falls into this cate
gory. As reported in Ref. [7], when different probability distribution 
functions are adopted to describe the statistical distribution of micro
cracks in a solid with respect to their strength or size, the corresponding 
weakest link models of the cumulative failure probability can be ob
tained with different complexity. Specific to ceramic materials, the 
Weibull statistical fracture theory [6] is the most commonly used 
weakest link statistical model. In literature, the term Weibull statistics 
refers to either the ordinary Weibull distribution function [2] or the 
Weibull statistical fracture theory [6]. While the mathematical formu
lations of the ordinary Weibull distribution function and the Weibull 
statistical fracture theory are somewhat similar, Lei et al. [5] empha
sized their difference. The Weibull statistical fracture theory depends on 
the specific microscopic fracture criterion for arbitrary multiaxial 
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tensile/compressive stress states. Under the simplest maximum tensile 
principal stress criterion for fracture σ1 = σ ≥ S , the Weibull statistical 
fracture theory is expressed as 

P(σN)= 1 − exp

⎡

⎣ −

∫

V

(
σ1 − σL,u

σu

)mu dV
V0

⎤

⎦
(
σL,u ≤ σ1 <∞

)
(1)  

where σ1 is the maximum principal tensile stress component acting on a 
microcrack surface, S is the microscopic fracture strength; σL,u, σu, and 
mu are the threshold strength, the scale parameter and the modulus in 
sequence, which are all material properties independent of specimen 
geometry (configuration and size) and loading mode; V0 is a reference 
volume, dV is a differential volume element. 

The ordinary Weibull distribution is an empirical distribution func
tion on an equal footing with other classical ordinary distributions such 
as normal and Gamma distributions. It is used for a broad range of ap
plications in engineering, geophysics, environmental science and ecol
ogy, medical science, social science and economics, such as 
deterioration rate of goods for inventory control [8] and insect popu
lation extrinsic mortality [9]. When it is applied to material strength, in 
isolation from specific microscopic fracture criterion, specimen geom
etry and loading mode, the ordinary Weibull distribution function 
simply describes the cumulative failure probability P(σN) as a function of 
the nominal strength σN as below, 

P(σN)= 1 − exp
[

−

(
σN − σL,0

σ0

)m0
]
(
σL,0 ≤ σN <∞

)
(2)  

where σL,0, σ0, and m0 are all fitting parameters characterizing the 
threshold strength, the scale parameter and the modulus in sequence. 
Note that in Equations (1) and (2) we use two sets of parameters (σL,u, σu, 
mu) and (σL,0, σ0, m0) to address the differences between the two sta
tistical models. 

Here we are faced with two important aspects of the ordinary Wei
bull distribution function. On the one hand, the dependency on specific 
microscopic fracture criterion differentiates the Weibull statistical 
fracture theory from the ordinary Weibull distribution function. For 
example, the maximum tensile principal stress criterion-based Weibull 
statistical fracture theory Equation (1) is invalid to evaluate ceramic 
strength in uniaxial compression but the ordinary Weibull distribution 
function works. Unlike the material parameters (σL,u, σu, mu), the fitting 
parameters (σL,0, σ0, m0) vary with specimen geometry (configuration 
and size) and loading mode. So, the ordinary Weibull distribution 
function has no prediction power for the effects of specimen geometry 
and loading mode on the nominal strength σN. While on the other hand, 
thanks to its well established calibration procedures, the ordinary 
Weibull distribution function is more commonly adopted for ceramic 
strength evaluation than the Weibull statistical fracture theory. In view 
of the two aspects, this work explores a new approach to estimating the 
Weibull modulus mu based on the ordinary Weibull distribution func
tion, which will facilitate further estimation of the other two parameters 
(σL,u, σu) via other approaches. First, we demonstrate how to transform 
the formulation of Weibull statistical fracture theory into the format of 
the ordinary Weibull distribution function, which can be further 
approximately treated as the ordinary Weibull distribution function by 
assuming a constant value of a coefficient to the nominal stress σN. 
Second, the standardized expression of the ordinary Weibull distribution 
is presented, which has Weibull modulus as the single parameter. This 
standardized expression permits to synchronize multiple strength data 
sets measured on specimens of different geometry and size under 
different loading modes. Third, a plenty of ceramic strength data are 
adopted to prove the validity of using the standardized Weibull distri
bution function to estimate Weibull modulus. This is followed by a 
discussion on how to evaluate the remaining Weibull parameters in 
future studies. 

2. Transformation of the Weibull statistical fracture theory to 
the ordinary Weibull distribution function 

In an elastic material (e.g. ceramics) under arbitrary loading condi
tions, the maximum principal tensile stress σ1 can be expressed as 

σ1 = σN ⋅f (x, y, z) (3)  

where f(x, y, z) is a function of the coordinates (x, y, z) and loading 
mode. Thus, Equation (1) reduces to 

P(σN)= 1 − exp

⎧
⎨

⎩
−

∫

V

[
σN ⋅f (x, y, z) − σL,u

σu

]mu dV
V0

⎫
⎬

⎭

(
σL,u ≤ σ1 <∞

)
(4) 

According to the mean value theorem for integrals that a continuous 
function on a closed, bounded interval has at least one point ξ(xξ, yξ, zξ)

where the function is equal to its average value on the interval, Equation 
(4) is rewritten as: 

1− P(σN)=exp
[

−

(
k⋅σN − σL,u

σu

)mu

⋅
V
V0

]

=exp

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−

⎡

⎢
⎢
⎢
⎣

σN −
(
σL,u

/
k
)⏞̅̅̅̅⏟⏟̅̅̅̅⏞

σL,0
⏞̅̅̅̅̅⏟⏟̅̅̅̅̅⏞

(
σu

/
k
)

⋅(V0/V)1/mu

⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏟
σ0

⎤

⎥
⎥
⎥
⎦

mu
⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

(5) 

Note that here the coefficient k=f(xξ,yξ,zξ) is not a constant but 
varies with the ratio σL,u/σN and loading mode, which can be explained 
by the example of uniaxial flexure. Fig. 1 schematically illustrates a 
prismatic beam of rectangular cross section in a four-point flexure setup, 
where 2 d is the specimen thickness, b is the specimen width, 2L is the 
support span, 2l is the loading span, respectively, z and x are the dis
tances from point O as the boundary line of peak stress σp in the thick
ness and length directions, respectively. The peak stress is taken as the 
nominal stress, σN = σp. The fracture process zone (FPZ) in which σL,u≤

σ(x,z)≤σN is satisfied is schematically shown by the area surrounded by 
the green line. As l= 0, the four-point flexure reduces to the three-point 
flexure. The tensile stress distribution in a three-point flexure follows, 

σ(x, z)= σN(1 − z / d)(1 − |x| / L)( − L≤ x≤ L, 0≤ z≤ d) (6) 

For the three-point flexure (l = 0), the fracture process zone (FPZ) 
reduces to a semi-elliptical shaped area defined by 

0≤ z≤ d ⋅
(

1 −
σL,u

σN

)

, 0≤ |x| ≤ L⋅
[

1 −
σL,u

σN(1 − z/d)

]

(7a, b) 

The volume of FPZ conforming to (7a,b) is 

VFPZ = 2b
∫d⋅(1− σL,u/σN)

0

dz
∫

L⋅

[

1−
σL,u

σN (1− z/d)

]

0

dx=V⋅
[

1 −
σL,u

σN
+

σL,u

σN
ln
(

σL,u

σN

)]

(8) 

Fig. 1. A prismatic beam of rectangular cross section in four-point flexure.  
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where V = 2bLd is half specimen volume in tension. The specific point 
ξ(xξ, yξ = b, zξ) that satisfies Equation (5) is confined within FPZ defined 
by (7a,b). As shown in Appendix A, k as a function of the ratio σL,u/ σN is 
given by 

k =
σL,u

σN
+

{
1

(mu + 1)
Ln

(
σL,u

σN

)[
1

(1 − ξ)
⋅
σL,u

σN
− 1

]mu+1} 1
mu

(9)  

where ξ is a constant and 0 ≤ ξ ≤ 1 − σL,u/σN ≤ 1. There is 0 ≤ k ≤ 1 for 
σL,u ≤ σN < ∞. 

In addition, the Weibull statistical fracture theory in Equation (1) 
assumes a uniform spatial distribution of flaws in a material, i.e., the 
number of flaws in a volume V is proportional to V. The spatial distri
bution of flaws in a material also can be non-uniform. In the case that the 
number of flaws in a volume V is a power function of V, Lei [1] obtained 
the generalized Weibull statistical fracture theory: 

P= 1 − exp

⎡

⎣ − β
(

V
V0

)β− 1∫

V

(
σ1 − σL,u

σu

)mu dV
V0

⎤

⎦ (10)  

where β is a material constant with β > 0 that describes the number (N) 
of flaws in a volume V by N = (V/V0)

β. When β = 1, Equation (10) 
reduces to Equation (1). Equation (10) has been validated by strength 
data of ceramics and other quasi-brittle materials including concrete and 
intermetallic compounds [1,4,10,11]. 

The mean value theorem for integrals permits to rewrite Equation 
(10) as: 

1 − P(σN)= exp
[

− β ⋅
(

k⋅σN − σL,u

σu

)mu

⋅
(

V
V0

)β]

= exp

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−

⎡

⎢
⎢
⎢
⎣

σN −
(
σL,u

/
k
)⏞̅̅̅̅⏟⏟̅̅̅̅⏞

σL,0
⏞̅̅̅̅̅⏟⏟̅̅̅̅̅⏞

(
σu

/
k
)

⋅(1/β)1/mu ⋅(V0/V)β/mu

⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏟
σ0

⎤

⎥
⎥
⎥
⎦

mu
⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

(11) 

It is complicate to calibrate the multiple model parameters in 
Equations (5) and (11). One way is to first estimate the most important 
parameter, Weibull modulus mu. This will significantly reduce the dif
ficulty to further estimate the other material parameters σL,u, σu, and β. 
Now the question is: For different specimen configurations and loading 
modes, can we approximately assume that the coefficient k is indepen
dent of σL,u/σN but still varies with specimen geometry and loading 
mode? If this assumption is acceptable, it is feasible to estimate Weibull 
modulus mu by Equation (2) for the ordinary Weibull distribution 
function with: 

m0 =mu, ​ σL,0 = σL,u

/
k, ​ σ0 = (σu / k)⋅(V0/V)

1/m0 (12)  

for Equation (5) and 

m0 =mu, ​ σL,0 = σL,u

/
k, ​ σ0 = (σu / k)⋅(V0/V)

β/m0 ⋅(1/β)1/m0 (13)  

for Equation (11). 
Equations (5) and (11)–(13) apply to arbitrary loading conditions 

and can be simplified under additional conditions. For example, with 
σL,u = 0, there are 

k =

⎡

⎣
∫

V

(
σ1

σN

)m0 dV
V

⎤

⎦

1/m0

(14)  

m0 =mu, ​ σL,0 = σL,u = 0, ​ σ0 = (σu / k)⋅(V0/V)
1/m0 (15) 

Note that a consensus is yet available on a zero-valued threshold 
fracture strength (σL,u = 0) for ceramics [5,12,13]. In fact, The adoption 
of two-parameter Weibull statistical fracture model is often at a cost of 
the dependence of Weibull parameters (mu , σu) on stress states and 
effective specimen volume governed by specimen geometry and loading 
mode [14–16]. This is against the basic assumption of Weibull statistical 
fracture theory on initial flaw distribution prior to loading, making the 
Weibull prediction problematic [16]. 

In plain uniaxial tension (σ1 = σN), there is 

k= 1, ​ m0 =mu, ​ σL,0 = σL,u, ​ σ0 = σu⋅(V0/V)
1/m0 (16)  

3. The standardized Weibull distribution function 

3.1. Standardization process 

The ordinary Weibull distribution has its cumulative distribution 
function (CDF) described by Equation (2), while its probability density 
function (PDF) is given as 

PDF: ​ f (x, m, xL, x0 )=
m0

σ0

(
σN − σL,0

σ0

)m0 − 1

exp
[

−

(
σN − σL,0

σ0

)m0
]

(17) 

The population mean (μσN
), standard deviation (δσN ), and excess 

kurtosis (γ2) are: 

μσN
= σL,0 + σ0Γ1 (18)  

δσN = σ0

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

Γ2 − Γ2
1

√

(19)  

γ2 =
− 6Γ4

1 + 12Γ2
1Γ2 − 3Γ2

2 − 4Γ1Γ3 + Γ4

(Γ2 − Γ2
1)

2 (20)  

where Γ(m0) =
∫∞

0
e− xxm0 − 1dx is the Gamma function, Γi = Γ(1 + i /m0),

i = 1, 2, 3,4.
Now we introduce the following new variable y as the standardized 

form of variable σN, 

y=
σN − μσN

δσN

​ or ​ σN = μσN
+ y⋅δσN (21) 

There is 

σN − σL,0

σ0
=Γ1 + y⋅

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

Γ2 − Γ2
1

√

(22) 

Therefore, Equations (2) and (17) reduce to their standardized forms 
with a single parameter m0 

CDF: ​ F
(

y=
σN − μσN

δσN

)

= 1 − exp
[

−

(
y − yL

y0

)m0
]

(y≥ yL) (23)  

PDF: ​ f
(

y=
σN − μσN

δσN

)

=
m0

y0

(
y − yL

y0

)m0 − 1

exp
[

−

(
y − yL

y0

)m0
]

(y≥ yL)

(24)  

with 

yL = yL(m0) = −
Γ1

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

Γ2 − Γ2
1

√ (25)  

and 
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y0 = y0(m0) =
1

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

Γ2 − Γ2
1

√ (26) 

The standardized Weibull distribution remains same shape as 
Equation (2) but has its population average μy = 0 and population 
standard deviation δy = 1 due to 

μy = yL + y0Γ1 = 0 (27)  

δy = y0

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

Γ2 − Γ2
1

√

= 1 (28) 

Fig. 2 shows the variations of parameters yL and y0 with m0 with the 
following linear approximations: 

y0 = 0.7907m0 + 0.7163, 0.5 ≤ m0 ≤ 35
(
R2 = 0.9996

)
(29)  

yL = − 0.7853m0 − 0.4066, 0.5 ≤ m0 ≤ 35
(
R2 = 0.9999

)
(30)  

3.2. Parameters estimation 

3.2.1. Estimation of m0 
The population mean (μσN

) and standard deviation (δσN ) are esti
mated by sample mean (σN) and standard deviation (sσN ) of the n 
sampled data 

μ̂σN
= σN =

∑n
i=1σN ,i

n
(31)  

and 

δ̂σN = sσN =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1

(

σN ,i − σN

)2

n − 1.5 − 0.25γ2

√
√
√
√
√

(32)  

where γ2 denotes the population excess kurtosis, σN,i is the i-th data 
point of nominal strength of n nominal strength measurements ranked 
in an ascending order (i = 1,2, …,n). For Weibull distribution with a 
modulus m0, γ2 is defined in Equation (20). Equations (31) is an un
biased estimator of μσN

. Equation (32) is an approximate formula for 
the unbiased estimator of δσN for non-normal distributions [17]. The 
common expression for sample standard deviation is a biased estimator 
of δσN : 

δ̂σN = sσN =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1

(

σN ,i − σN

)2

(n − 1)

√
√
√
√
√

(33) 

Equation (32) is inconvenient to use. The following approximation is 
adopted instead: 

δ̂σN = sσN =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1

(

σN ,i − σN

)2

(n − 1.5)

√
√
√
√
√

(34) 

For 1.5 ≤ m0 ≤ 20.5, there is − 0.29 ≤ γ2 ≤ 1.39. Within this range, 

Fig. 2. Variations of parameters yL and y0 with m0.  

Fig. 3. Three strength distributions all with m0 = 6 but different σ0 and σL,0 in 
ordinary format (a) and in standardized formats (b) with exact cumulative 
probability and population mean and standard deviation, and (c) with rank 
probability and sample mean and standard deviation. 
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the difference in the value of ̂δσN is 0.4–2.1% between Equation (32) and 
Equation (34) with sample number n = 10 and reduces to 0.19–0.95% 
with sample number n = 20. 

The sampled data σN,i (i= 1, 2,…, n) are converted into standardized 
values yi (i = 1,2,…,n)

yi =
σN ,i − μ̂σN

sσN

(i= 1, 2,…n) (35) 

The data set yi (i= 1,2,…, n) follows the standardized Weibull dis
tribution in (23) and (24). m0 is estimated by maximizing the logarith
mic likelihood function with respect to m0: 

l(yL, y0,m0)= nln
(

m0

y0

)

+(m0 − 1)
∑n

i=1
ln
(

yi − yL

y0

)

−
∑n

i=1

(
yi − yL

y0

)m0

(36) 

Note that both yL and y0 are functions of m0 as given in (27) and (28). 

3.2.2. Estimation of σL,0 and σ0 

With the estimated value of m0, m̂0, as input, the remaining two 
parameters σL,0 and σ0 are estimated by: 

σ̂0 =
sσN̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

Γ2 − Γ2
1

√ = y0⋅SσN (37)  

σ̂L,0 = σN −
Γ1

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

Γ2 − Γ2
1

√ ⋅sσN = σN + yL⋅sσN (38)  

3.2.3. The range of m0 
The threshold value σL,0 of the nominal strength falls in the range 

below: 

0≤ σL,0 ≤ σN,(1) (39)  

where σN,(1) = Min{σN,i, i= 1, 2, ..i, .., n} is the minimum value of the 
nominal strength measurements (σN,1,σN,2,…,σN,i,…,σN,n). Substituting 

Fig. 4. Ordinary Weibull distributions and 50 samples on each distribution with σL,0 = 20, σ0 = 100 but different m0 in scenario (1) (a) and σL,0 = 20, σ0 = 100 but 
different m0 in scenario (2) (b). 

Fig. 5. Variation of log-likelihood function l(m0, yL, y0) with m0 for scenarios (1) and (2).  
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Equation (38) in (39) yields: 

0≤ σN + yL⋅sσN ≤ σN,(1) (40)  

or 

−
σN

sσN

≤ yL ≤
σN,(1) − σN

sσN

(41) 

Due to the monotonous correlation between yL and m0 as in Fig. 2, 
the range of m0 is set by expression (41). When Equation (30) is adopted, 
(41) reduces to 

1.2734
(

σN − σN,(1)

sσN

)

− 0.5178≤m0 ≤ 1.2734
(

σN

sσN

)

− 0.5178, 0.5≤m0

≤ 35
(42) 

The estimated value of m0 must fall in this range to observe the 
inequality (41). 

The key takeaway of Equations (23) and (24) is that for the ordinary 
Weibull distributions with an equal shape parameter m0 but different 
values of σL,0 and σ0, regardless of σL,0 = 0 or σL,0 ∕= 0, they share the 
same standardized format with a single parameter m0. This permits us to 
estimate m0 with no need to know either σL,0 = 0 or σL,0 ∕= 0 in advance. 

As an example, Fig. 3 shows the following three Weibull distributions 
in their ordinary format (a) and standardized formats (b) and (c), with 

50 data points randomly generated on each distribution (σL,0 and σ0 are 
in unit of MPa):  

(1) . m0 = 6, σL,0 = 0, σ0 = 100;  
(2) . m0 = 6, σL,0 = 200, σ0 = 50 ;  
(3) . m0 = 6, σL,0 = 100, σ0 = 400. 

Note that in Fig. 3(b), the 50 standardized data points in each dis
tribution are based on their known exact values of cumulative proba
bility and population parameters (μσN

, δσN ) according to Equations (18) 
and (19). Therefore, all the three sets of data points fall exactly on the 
standardized distribution P(y,m0 = 6). While in Fig. 3(c), the 50 stan
dardized data points in each distribution are based on their rank prob
abilities and sample average (σN) and standard deviation (sσN ) according 
to Equations (31) and (34). As a result, all the three sets of data points 
approximately fall on the standardized distribution P(y,m0 = 6). 

To gain a preliminary understanding of the accuracy of the proposed 
estimation method, we now consider 6 sets of three-parameter ordinary 
Weibull distributions of variable σN in two scenarios:  

(1) All the distributions have σL,0 = 20, σ0 = 100 but m0 = 0.5, 1,
1.5, 2, 2.5, 3, respectively;  

(2) All the distributions have σL,0 = 0, σ0 = 100 but m0 = 0.5, 1, 1.5,
2, 2.5, 3, respectively. 

50 data points are randomly generated from each distribution in 
each scenario to serve as samples for maximum likelihood estimation of 
m0 using Equation (36). 

Fig. 4 (a) and (b) show the raw data for scenarios (1) and (2) in 
sequence. Fig. 5 (a)—(l) show the variation of log-likelihood function 
l(m0, yL,0, y0)with m0 for each distribution in Fig. 4. The dashed lines 
show the whole range of calculation, while the solid blue lines highlight 
the range of m0 that satisfies inequality (42). 

All these examples obtain close estimations of Weibull modulus m0. 
More comprehensive investigation on the performance of the proposed 
approach will be investigated by Monte Carlo simulation as a separate 
study. 

4. Applications to statistics of ceramic strength 

As shown in Section 2, the statistical Weibull fracture theory reduces 
to Equation (5). While Equation (5) looks similar in format to the or
dinary Weibull distribution function in Equation (2), it contains a co
efficient k = f(xξ, yξ, zξ) that varies with the ratio σL,u/σN and loading 
mode rather than being a constant. In order to apply the standardized 
Weibull distribution to estimate Weibull modulus, we boldly assume 
that the coefficient k can be approximately treated as a constant inde
pendent of the ratio σL,u/σN but still varies with loading mode. In this 
session, several case studies that cover uniaxial, biaxial, and triaxial 
stress states will be presented to evaluate this assumption and to 
demonstrate the potential applications of the standardized Weibull 
distribution for statistical evaluation of ceramic strength. Note that our 
focus here is to estimate m0 ≈ mu. As shown in Equations (12) and (13), 
it takes additional efforts to transform the location and scale parameters 
(σL,0, σ0) into material parameters (σL,u, σu). Specifically, the following 
aspects will be evaluated: 

Table 1 
Summary of Weibull parameter estimation using different approaches.  

Method of estimation m̂0  σ̂L,0, MPa  σ̂0, MPa  m̂u  σ̂L,u, MPa  σ̂u, MPa  

2-Parameter weibull distribution [3] Maximum likelihood 9.05 0 305.54    
Master curve Equation (38) [5] Least square    7.17 55 164.73 
Standardized Weibull distribution Equation (mm)[This study] Maximum likelihood 7.03 65.57 239.39     

Fig. 6. Maximum likelihood estimation of m0 (a) and comparison of predicted 
cumulative failure probability with experimental result (b). 
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Table 2 
Summary of flexural experiments of Al2O3 ceramics.  

Data 
set # 

Loading 
Mode 

Specimen Cross- 
Section Size (mm) 

Fixture, Support Span 2L, Loading 
Span 2l (mm) 

Loading Rate, 
mm/min 

Number of 
Specimens 

Average, 
MPa 

Standard 
Deviation, MPa 

Laboratory & 
Operator 

1 4PB 3 × 4 MIL STD B Fixture 
2L = 40 mm; 2l = 20 mm  

0.5 30 359 37 NPL (Morrell) 
2 35 353 50 MRL (Johnston) 
3 30 347 44 ORF (Sullivan) 
4 32 364 45 ARE (Quinn) 
5 2.0 30 323 52 ARE (Godfrey) 
6 Unreported 33 381 32 IITRI (for 

AFWAL) 
7 IITRI Modified Fixture 

2L = 40 mm; 2l = 20 mm  
Unreported 35 365 56 IITRI (for 

AFWAL) 
8 NPL Fixture 

2L = 40 mm; 2l = 20 mm  
0.5 31 363 39 NPL (Morrell) 

9 ARE Fixture 
2L = 40 mm; 2l = 19.05 mm  

2.0 30 378 39 ARE (Godfrey) 

10 3 × 6 MIL STD B Fixture 
2L = 40 mm; 2l = 20 mm  

0.5 30 345 34 NPL (Morrell) 
11 31 341 48 MTL (Quinn) 
12 Unreported 35 362 33 IITRI (for 

AFWAL) 
13 3.175 × 6.35 (1/8 

× ¼ in.) 
IITRI Fixture2L = 44.45 mm 
(1.750 in.); 
2l = 22.225 mm(0.875 in.)

Unreported 35 343 49 IITRI (for 
AFWAL) 

14 6 × 8 MIL STD C Fixture 
2L = 80 mm ;2l = 40 mm  

1.0 32 330 35 MTL (Quinn) 

15 1.5 × 2 MIL STD A Fixture 
2L = 20 mm ;2l = 10 mm  

0.5 32 372 56 MTL (Quinn) 

16 3PB 3 × 4 MIL STD B Fixture 
2L = 40 mm  

0.5 34 434 51 ORF (Sullivan) 
17 30 444 51 MTL (Quinn) 
18 2.0 10 400 25 ARE (Godfrey) 
19 ARE Fixture 

2L = 40 mm  
2.0 30 452 63 ARE (Godfrey)  

Fig. 7. Experimental strength data [18] of alumina measured by (a). four-point flexure of prismatic beams with cross section size of 3 mm × 4 mm; (b). four-point 
flexure of prismatic beams with other sized cross sections; (c). three-point flexure of prismatic beams with cross section size of 3 mm × 4 mm. 
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(1). Feasibility to estimate Weibull modulus m0 as an approximation 
to mu;  

(2). Estimation of m0 from multiple data sets of same specimens under 
same loading modes but with different setups and loading rates; 

(3). Estimation of m0 from multiple data sets of different sized spec
imens under same loading modes but with different setups and 
loading rates;  

(4). Estimation of m0 from multiple data sets of same or different sized 
specimens under different loading modes. 

4.1. Weibull modulus estimation from a single data set of alumina 

This example is intended to examine whether the estimated m0 is a 
close approximation to mu. In other words, it is to examine whether it is 
acceptable to ignore the effect of the ratio σL,u/σN on the coefficient k. 
Gorjan and Ambrožič [3] reported a statistical evaluation of 5100 
experimental values of flexural strength of alumina ceramics in a series 
of four point bending tests. Refer to Fig. 1, the specimen sizes are: 2L =

40 mm, b = 4 mm, 2d = 3 mm, the inner loading span is 2l = 20 mm. In 
total, 5100 experimental values of flexural strength were measured, 
with the minimum of 137 MPa, maximum of 400 MPa, average of 290 
MPa, and standard deviation of 37.5 MPa. A semi-analytical solution to 
the cumulative failure probability for a four-point flexural strength test 
was proposed in Ref. [5] as below, 

P= 1 − exp
[

−
V

4(mu + 1)V0

(

1 −
σL,u

σN

)(
σN − σL,u

σu

)mu]

(43)  

or 

1
[
V
/

4
(
1 − σL,u

/
σN

)] Ln
(

1
1 − P

)

=
1

(mu + 1)V0

(
σN − σL,u

σu

)mu

(44) 

The master curve Equation (44) was used to estimate Weibull 

parameters (σL,u, σu, mu) by least square method, as summarized in 
Table 1. Now Equation (36) is called in to estimate the Weibull pa
rameters (σL,0, σ0, m0). The result is shown in Fig. 6 (a) and summarized 
in Table 1. The estimation leads to m̂0 = 7.03, which is very close to 
m̂u = 7.17 estimated by Equation (44) in Ref. [5]. It suggests that the 
standardized ordinary Weibull distribution can be used to closely esti
mate Weibull modulus m̂u. In addition, the estimation also obtains σ̂0 =

239.39 MPa and σ̂L,0 = 66.57 MPa, versus σ̂u = 164.73 MPa and σ̂L,u =

55 MPa by Equation (44) in [5]. Fig. 6 also compares the predicted 
cumulative failure probability by both methods against the experi
mental result in logarithmic scale (b). 

4.2. Weibull modulus estimation from multiple data sets of alumina in 
uniaxial flexure 

The example shown in Section 4.1 involves a single large data set. 
This section will deal with multiple data sets measured from same or 
different sized specimens under various conditions including loading 
mode, loading span, and support span. The strength data are taken from 
the publicly released final report [18] from the U.S. Army Materials 
Technology Laboratory for a mechanical testing round robin exercise 
performed under the auspices of The Technical Cooperation Program 
(TTCP), a collaboration between the defense establishments of 
Australia, Canada, New Zealand, the United Kingdom, and the Unites 
States. Flexural strength at room temperature was measured for a sin
tered alumina (Al2O3) and a reaction-bonded silicon nitride (RBSN). The 
report reported over 1000 strength data in tables, making it a very 
valuable database for this study. The project aimed to determine if ac
curate and consistent results could be obtained in different laboratories 
using various test procedures in accordance with the U.S. Army MIL- 
STD-1942 standard for flexure testing of advanced ceramics. Both 3- 
and 4-point flexures were performed in this round robin, with a variety 
of specimen sizes on standard or customary fixtures at various loading 

Fig. 8. Standardized representation of strength data in four-point flexure of prismatic beams with cross section size of 3 mm × 4 mm (a), and other cross section sizes 
(b), and in three-point flexure (c). 
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Fig. 9. Variation of log-likelihood function l(m0, yL,0, y0) with m0 for four-point flexure of prismatic beams with cross section size of 3 mm × 4 mm (a), and other 
cross section sizes (b), and for three-point flexure (c). 

Fig. 10. Analysis of all 4-point flexural strength data from #1 to #15: Variation of log-likelihood function l(m0, yL,0, y0) with m0 (a) and standardized representa
tion (b). 

Fig. 11. Analysis of all flexural strength data from #1 to #19: Variation of log-likelihood function l(m0, yL,0, y0) with m0 (a) and standardized representation (b).  
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rates and ambient room temperature conditions. The two-parameter 
ordinary Weibull distribution was adopted for statistical analysis. 
Table 2 summarizes the experimental design and the mean and the 
standard deviation of strength data of Al2O3 in each group. Fig. 7 shows 
the strength data measured by four-point flexure of prismatic beams 

with cross section size of 3 mm × 4 mm (a), and other cross section sizes 
(b), and by three-point flexure of prismatic beams with cross section size 
of 3 mm × 4 mm (c), respectively. 

Fig. 8 shows the corresponding standardized representations of 
strength data in sequence. In each case, all the standardized strength 

Table 3 
Summary of flexural experiments of reaction-bonded silicon nitride (RBSN) ceramics.  

Data 
set # 

Loading 
Mode 

Specimen Cross- 
Section Size (mm) 

Fixture, Support Span 2L, 
Loading Span 2l (mm) 

Loading Rate, 
mm/min 

Number of 
Specimens 

Average 
Strength, MPa 

Standard 
Deviation, MPa 

Laboratory & 
Operator 

1 4PB 3 × 4 MIL STD B Fixture 
2L = 40 mm;2l = 20 mm  

0.5 30 237 13 MTL (Quinn) 
2 30 234 12 ORF (Sullivan) 
3 30 246 13 NPL (Morrell) 
4 2.0 30 274 29 ARE (Godfrey) 
5 Unreported 30 230 13 IITRI (for 

AFWAL) 
6 IITRI Modified Fixture 

2L = 40 mm; 2l = 20 mm  
Unreported 30 229 30.3 IITRI (for 

AFWAL) 
7 NPL Fixture 

2L = 40 mm; 2l = 20 mm  
0.5 30 237 17 NPL (Morrell) 

8 ARE Fixture 
2L = 40 mm; 2l =

19.05 mm  

2.0 30 263 28 ARE (Godfrey) 

9 MIL STD B Fixture 
2L = 40 mm;2l = 20 mm 
Specimen surface machined  

0.5 30 231 22 NPL (Morrell) 
10 29 248 17 MTL (Quinn) 

11 3PB 3 × 4 MIL STD B Fixture 
2L = 40 mm   

30 267 13 MTL (Quinn) 
12 2.0 10 271 13 ARE (Godfrey) 
13 ARE Fixture 

2L = 40 mm  
2.0 30 265 24 ARE (Godfrey) 

14 4.5 × 4.5 ARE Fixture 
2L = 40 mm  

2.0 33 292 26 ARE (Godfrey) 
15 2.0 33 278 23 ARE (Godfrey)  

Fig. 12. Experimental strength data [18] of reaction bonded silicon nitride (RBSN) measured by four-point flexure of prismatic beams with cross section size of 3 
mm × 4 mm without surface machined (a) and with surface machined (b), and by three-point flexure of prismatic beams with cross section size of 3 mm × 4 mm (c). 
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Fig. 13. Standardized representation of strength data in four-point flexure without surface machined (a) and with surface machined (b), in three-point flexure (c), 
and with all data sets combined (d). 

Fig. 14. Maximum likelihood estimation of Weibull modulus with different data sets.  
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distribution fall onto a master curve. For each case, the maximum 
likelihood method is applied to estimate Weibull modulus m0 as shown 
in Fig. 9. 

The data sets from #1 to #15 for all 4-point flexure tests can be also 
combined for standardization and maximum likelihood estimation, as 
shown in Fig. 10. Finally, we can also combine all data sets from #1 to 
#19 for standardization and maximum likelihood estimation, as show in 
Fig. 11. All data sets fall onto a single master curve. The small difference 
in the estimated values of Weibull modulus (4.2–7.2) based on different 
number of data sets reflects the sample size effect. 

4.3. Weibull modulus estimation from multiple data sets of RBSN in 
uniaxial flexure 

The strength data of reaction-bonded silicon nitride (RBSN) used are 
also taken from Refs. [18]. Table 3 and Fig. 12 summarize the experi
mental results. Fig. 13 shows the standardized representation of the data 
sets. It confirms the validity of using the standardized Weibull distri
bution to synchronize all experimental results. Particularly, on Fig. 13, 
data sets #9 and #10 from the surface-machined specimens agree well 
to other data sets from specimens not surface-machined. This supports 
the conclusion from fractographical analysis that strength-limiting flaws 
are volume distributed for both alumina and RBSN. Fig. 14 presents the 
results of maximum likelihood estimation with different combinations 
of data sets. The estimated Weibull modulus falls in a narrow range of 

Fig. 15. Experimental strength data of alumina [19] in the ball-on-ring (BOR) test (a) and the hydraulic-burst (HB) test (b).  

Fig. 16. Standardized data sets for BOR strength only (a), HB strength data only (b), and BOR + HB combined strength data (c).  
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6.2 to 7.5. 

4.4. Weibull modulus estimation from multiple data sets of alumina in 
biaxial flexure 

Simpatico et al. [19] measured the biaxial flexural strength of 
polycrystalline Al2O3 tape-cast specimens using the hydraulic-burst 
(HB) test and the ball-on-ring (BOR) test. In the HB test, hydraulic 
pressure is applied via a neoprene diaphragm to one side of a specimen 
that is resting against a support ring. Therefore, the HB test eliminates 
the very-steep stress gradient which occurs in the BOR test and results in 
a more uniform stress distribution over the disk. Both square and cir
cular shaped discs, in two different sizes, were tested. The nominal 
specimen thickness is 0.635 mm. The square discs have edge lengths of 
20 and 25 mm and are designated as SD20 and SD25. The circular discs 
have diameters of 20 and 25 mm and are designated as CD20 and CD25. 
The stressing rates for the BOR and HB tests were approximately equal. 
In the BOR setup, load was applied using a 10 mm diameter tungsten 
carbide ball. The support rings were 16 and 20 mm in diameter for the 
20 mm and 25 mm diameter specimens, respectively. The load was 
applied with a crosshead speed of 0.254 mm/min. The loading rate was 
~15 and 10 MPa/s (maximum stress) for the 20 mm and 25 mm spec
imens, respectively. In the HB setup, the loading rate was 14 and 20 
MPa/s (maximum stress) for the 20 mm and 25 mm specimens, 
respectively. Fig. 15 show the experimental strength data of alumina 
[19]. Fig. 16 presents the standardized format of the data sets for BOR 
strength only (a), HB strength data only (b), and BOR + HB combined 
strength data (c). The results suggest that strength data obtained from 
two different shaped, different sized specimens on both types of biaxial 
flexure tests follow a same standardized Weibull distribution. Fig. 17 
shows the maximum likelihood estimation of Weibull modulus with 

different data sets. The estimated Weibull modulus falls in a very narrow 
range of 7.2–7.5. 

4.5. Weibull modulus estimation from multiple data sets of glass-ceramic 
in uniaxial and biaxial flexures 

The standardized distribution of ceramic strength in either uniaxial 
or biaxial flexure tests supports the assumption that the coefficient k in 
Equation (5) is insensitive to σL,u/σN but still varies with specimen ge
ometry and loading mode, which is the premise for applying the stan
dardized ordinary Weibull distribution for Weibull modulus estimation. 
This section considers a more complicated scenario by combining 

Fig. 17. Maximum likelihood estimation of Weibull modulus with different data sets.  

Fig. 18. Experimental strength data of glass-ceramic [20] in the four-point 
bending (4PB) and the ring-on-ring (RoR) test. 
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strength data sets from uniaxial flexure and biaxial flexure. Collini and 
Carfagni [20] reported strength data of a commercial glass-ceramic 
measured in four-point bending (4PB) and ring-on-ring (RoR) biaxial 
flexure. The nominal specimen thickness is 0.635 mm. The 1100 × 360 
(mm) rectangular panels were used for the four-point flexure test. The 
100 × 100 (mm) tiles were used for the RoR test. For each type of test, 
two different specimen thicknesses namely, 6 mm and 8 mm, were used. 
Fig. 18 show the experimental strength data [20]. Fig. 19 presents the 
standardized distribution of the data sets for 4PB strength only (a), RoR 
strength data only (b), and 4PB + RoR combined strength data (c). The 
results suggest that strength data obtained from two different shaped, 
different sized specimens on uniaxial and biaxial flexure tests follow a 
same standardized Weibull distribution. Fig. 20 (a), (b), and (c) show the 
maximum likelihood estimation of Weibull modulus with 2 data sets of 
4PB or RoR specimens and all 4 data sets for 4PB and RoR specimens. All 
the estimations reached m̂0 = 2.9. To get a preliminary sense of sample 
size effect on parameter estimation, Fig. 20 (d) shows the maximum 
likelihood estimation of Weibull modulus with each set of 20 data for 
4PB specimens, respectively. The estimation yielded m̂0 = 3.2 for 6mm 
thick 4PB specimens and m̂0 = 2.7 for 8mm thick 4PB specimens. Both 
are fairly close to m̂0 = 2.95 from all 4 data sets. 

4.6. Weibull modulus estimation from multiple data sets of alumina in 
flexure of plane and sharply notched specimens 

When a notched or pre-cracked specimen is loaded, complex triaxial 

stress states occur at the notch or crack tip. Previous studies [14,16] 
concluded the dependence of Weibull modulus on stress concentration 
factor Kt. It is interesting to compare the standardized distributions of 
strength measured on smooth and notched specimens. In Refs. [15,16], 
the effect of stress concentration factor Kt on flexural strength of three 
ceramic materials was investigated. The materials are fine-grained 
alumina with mean grain size of 2.3–3 μm, coarse-grained alumina 
with mean grain size of 20 μm, and zirconia. Three types of specimens 
were tested, namely the smooth bars (Kt = 1), the notched bars with 
notch depth of 1 mm and notch radius of 0.8 mm (Kt = 1.78), and the 
notched bars with notch depth of 1 mm and notch radius of 0.05 mm (Kt 
= 5.88). All the specimens had an equal gross cross-section of 3 × 4 
(mm) and length of 45 mm and were loaded in 4-point flexure with outer 
support span of 40 mm and inner loading span of 20 mm. The maximum 
outer fiber stress in the smooth bars and at the notch root in the notched 
bars was adopted as nominal stress. Fig. 21 show the experimental 
strength data [15,16]. Fig. 22 presents the standardized strength dis
tributions of each material. The results suggest that regardless of 
different stress concentration factors involved, the strength data for each 
material fall onto one standardized Weibull distribution. Fig. 23 shows 
the maximum likelihood estimation of Weibull modulus for each ma
terial. m̂0 = 3.8, 1.62, 18.1 were obtained for fine-grained alumina, 
coarse-grained alumina, and zirconia in sequence. Note that for zirconia, 
as shown in Fig. 23(c), the logarithmic likelihood function l(yL, y0,m0)

monotonously increases with m0. According to the inequality (42) for 
the range of m0, m0 is determined to be within (1.65, 18.13) for Kt = 1, 

Fig. 19. Standardized representation of the data sets for (a). 4PB strength only, (b). RoR strength data only, and (c). 4PB + RoR combined strength data.  
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(0.98, 26.71) for Kt = 1.78, and (1.94, 33.97) for Kt = 5.88. Accordingly, 
m̂0 = 18.1 is determined for zirconia. 

5. Discussions 

5.1. The coefficient k in equation (5) or (11) 

As shown in Section 2, due to the dependence of the coefficient k in 
Equation (5) or (11) on the ratio σL,u/σu, the Weibull statistical fracture 
theory does not strictly transform into an ordinary Weibull distribution 
function of the nominal strength. Since we are trying to utilize the or
dinary Weibull distribution to estimate Weibull parameters as material 
property, some approximate treatment must be taken. Specifically, 
when the coefficient k in Equation (5) or (11) is assumed to be a constant 
insensitive to the ratio σL,u/σu, transformation of the Weibull statistical 

fracture theory into an ordinary Weibull distribution of the nominal 
strength is feasible. Therefore, it is vital to validate the assumption of k 
as a constant varying with loading mode but insensitive to the ratio 
σL,u/σu. In principle, the variation of the coefficient k with the ratio σL,u/

σu can be obtained by combining Equation [5] with the cumulative 
probability as a function of nominal strength for a specific specimen in a 
specific loading mode. For example, the analytic solutions to the cu
mulative probability as a function of nominal strength in uniaxial 
flexure of a prismatic beam with rectangular cross section were devel
oped by Weil and Daniel [21], which demands numerical calculation. 
The semi-analytical solutions to the same uniaxial flexure problem was 
provided in [5], such as Equation (43) in Section 4.1 for four-point 
flexure. Now take the four-point flexure as an example. The combina
tion of Equations (5) and (43) leads to 

Fig. 20. Maximum likelihood estimation of Weibull modulus with different data sets.  

Fig. 21. Experimental strength data of fine-grained alumina [15, 16] (a), coarse-grained alumina [15,16] (b), and zirconia [16] (c) in four-point flexure.  
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or 
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Clearly, k monotonously decreases with the increase of σN/ σL,u and 
there is 

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1/[4(mu + 1)]mu

√
≤ k ≤ 1 for 1 ≤ σN/σL,u < ∞, as shown in 

Fig. 24. The range of k is narrow over a large range of σN/ σL,u for a given 
mu and will be even narrower for engineering ceramics materials since 
σN is far less than ∞, leading to a much narrower range of σN/ σL,u. For 
example, for the 5100 flexural strength data of alumina measured by 
Gorjan and Ambrožič [3] in four-point flexure cited in Section 4.1, the 
minimum strength is 137 MPa, the maximum strength is 400 MPa, the 
estimated threshold σ̂L,u = 55 MPa and m̂u = 7.17 in Refs. [5]. Corre
spondingly, the ratio σN/σL,u is in the narrow range from 2.49 (=
137/55) to 7.27 (=400/55). Referring to the curve for mu = 7 in Fig. 24, 
there is 0.66 ≤ k ≤ 0.74, which indeed supports to approximately treat k 
as a constant (= 0.70 ± 0.04) independent of the ratio σN/ σL,u. The 
Weibull statistical fracture theory-based expressions of cumulative 
probability as a function of nominal strength are more complex in 
biaxial and multi-axial loading conditions. Therefore, numerical calcu
lations are needed to investigate the variation of k with the ratio σN/ σL,u. 

5.2. The challenges in calibrating Weibull parameters as material 
properties 

This work introduces the standardized Weibull distribution for 
Weibull modulus estimation. Once m̂u ≈ m̂0 is known, Equations (37) 
and (38) are called in to obtain σ̂0 and σ̂L,0. As shown in Fig. 25, in order 
to finally obtain σ̂u and σ̂L,u as material properties, the values of β and k 
also need to be determined. An approach to estimating β was given in 
Ref. [1], which demands proportional size scaling of strength with 
additional experiments to measure strength on different sized specimens 
of same configuration in a same loading mode. The determination of k 
would involve numerical calculation. All these will be investigated in 
future studies. 

Here, it is worth mentioning that in an earlier work by Lei [10], the 
specimen size effect on the strength of alumina in the round robin 
project [18] is described by Equation (10) with β = 0.33 being deter
mined in Refs. [10]. As shown in Fig. 11, mu = 7.2 was estimated for 
alumina in Section 4.2. Equation (11) is equivalent to: 
{

1
β(V/V0)

β⋅ln
[

1
(1 − P)

]} 1
mu

=
k
σu

⋅ σN −
σL,u

σu
(47) 

Therefore, a linear correlation between the compound parameter 
{

1
β(V/V0)

β⋅ln
[

1
(1− P)

]} 1
mu 

and nominal strength σN is expected. Refer to 

Table 2, in order to study the size effect on strength of alumina in four- 
point flexure, the following four data sets measured by the same 
researcher (Quinn) on different sized specimens are analyzed according 

Fig. 22. Standardized representation of strength data of fine-grained alumina (a), coarse-grained alumina (b), and zirconia (c).  
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to Equation (47), as shown in Fig. 26. The coefficient of determination 

for the linear correlation between 
{

1
β(V/V0)

β⋅ln
[

1
(1− P)

]} 1
mu 

and σN is 0.93. 

Equation (47) is thus validated. 

5.3. Effect of sample size on calibration of Weibull parameters 

The effect of sample size on the accuracy of distribution parameters 
is a common concern in calibration of any statistical model. This work is 
focused on interpreting the basic idea of the proposed approach to cal
ibrating Weibull parameters, with a long-term goal to provide a highly 
accurate estimation of Weibull modulus and the other two Weibull 

parameters that enables statistical failure prediction of engineering 
ceramic components with complex geometries under multiaxial stress 
states. Accordingly, the adopted data sets of relatively large size (50 or 
more) are intentionally selected to lower the impact of sample size on 
calibration. The proposed method has two merits: First, it leaves the 
argument aside on whether a two- or three-parameter Weibull model 
should be adopted [5,12,13], and starts with the generic 
three-parameter Weibull distribution function. If the true threshold 
strength is zero, the calibrated threshold strength will be either zero or 
very close to zero. Second, the proposed method allows to calibrate 
parameters by including multiple sets of data on a same lot of material 
collected from different experiments in terms of specimen geometry and 
size as well as loading conditions, so long as the nominally similar types 
of stress states (predominately either tensile or compressive stresses) are 
ensured. This is different from the conventional calibration procedures, 
which only allow to utilize a single data set. Since the proposed 
approach adopts the sample average and standard deviation as the es
timators of population mean and standard deviation to standardize the 
strength values, the sample size effect on the proposed calibration 
method should be mainly manifested by the differences between the 
sample and population values of the mean and the standard deviation. In 
other words, as a rule of thumb, with the proposed approach, a sample 
size that ensures a close approximation of the sample average and 
standard deviation to the population average and standard deviation 
should also yield a reasonable estimation of Weibull modulus. The 
sample size is measured by both the number of data sets and the number 
of data in each data set. As shown in the examples, a single data set is 
applicable for the proposed approach. In this case, the effect of sample 
number in one data set on the variation of estimated parameters for a 
prescribed confidence interval can be investigated in a similar way as 
adopted for assessing the empirical data fitting approach. In the case of 
multiple data sets are included, a thorough investigation on the sample 
size of each data set with a given number of data sets is needed. As 

Fig. 23. Maximum likelihood estimation of Weibull modulus of fine-grained alumina (a), coarse-grained alumina (b) and zirconia (c).  

Fig. 24. Variation of k with σN/σL,u at given mu in four-point flexure.  
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shown in Fig. 20 (d), with each group of 20 data points for 6mm and 
8mm thick 4PB specimens, respectively, the estimated Weibull modulus 
is within 10% variation (m̂0 = 3.2 and 2.7 from the estimate 
(m̂0 = 2.95) based on all 139 data points from both 4PB and RoR 
specimens. 

The inequality (42) plays an important role in narrowing down the 
range of Weibull modulus estimation. It indicates that when the sample 
size of a data set is relatively small, the proposed approach might be able 
to yield a pretty close estimation using either a single data set or multiple 
such data sets. Moreover, Multiple datasets have a clear advantage to 
improve the accuracy of estimation than a single data set, even when 
each data set has a small sample size. For the convenience of interpre
tation, a simple Monte Carlo simulation is conducted as follows: Refer to 
Equation (2), from a prescribed Weibull distribution with σL,0 = 15, 
σ0 = 80, and m0 = 10, 3 data sets are randomly generated, each with 15 
data points. Fig. 27 (a) shows the three data sets against the prescribed 

(true) distribution curve. According to inequality (42), the valid range of 
m0 for each data set is obtained as below: 

Set #1: A1 = {m0 : 3.00≤ m0 ≤ 10.00}
Set #2: A2 = {m0 : 2.78≤ m0 ≤ 13.08}
Set #3: A3 = {m0 : 1.77≤ m0 ≤ 10.65}
When only one data set is adopted to estimate Weibull modulus using 

the proposed approach, the valid range of m0 is applied to determine the 
value of m0 corresponding to the maximum value of log-likelihood 
function l(m0, yL,0, y0) as the estimate. This is shown in Fig. 27 (b). 
The single data set based estimation yields m0 = 10.00, 13.08, 10.65 for 
set#1, #2, and #3 in sequence. 

When any two data sets are combined for Weibull modulus estima
tion, according to the set theory, the valid range of m0 is the intersection 
of the two individual sets as below: 

Set #1+#2: A1 ∩ A2 = {m0 : 3.00≤ m0 ≤ 10.00}
Set #1+#3: A1 ∩ A3 = {m0 : 3.00≤ m0 ≤ 10.00}

Fig. 25. Flow chart to estimate Weibull parameters (mu, σL,u, σu) as material properties.  

Fig. 26. Experimental strength data of four different sized specimens in four point bending [18] (a) and correlation between 
{

1
β(V/V0)

β⋅ln
[

1
(1− P)

]} 1
mu 

and σN (b).  
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Set #2+#3: A2 ∩ A3 = {m0 : 2.78≤ m0 ≤ 10.65}
where the symbol ∩ denotes the operation of intersection of two sets. 
Accordingly, the results of estimation are reported in Fig. 27 (c). The 

two data sets based estimation yields m0 = 10.00, 10.00, 10.65 for 
set#1+#2, set#1+#3, and set#2+#3 in sequence. 

When all the three data sets are combined for Weibull modulus 
estimation, according to the set theory, the valid range of m0 is the 
intersection of all the three individual sets as below: 

Set #1+#2+#3: A1 ∩ A2 ∩ A3 = {m0 : 3.00≤ m0 ≤ 10.00}
As shown in Fig. 27 (d), The combination of three data sets yields 

estimation as m0 = 10.00. 
While this example may indicate some potential advantage of the 

proposed approach in terms of using one or multiple data sets of sample 
size in each set as small as 15, it is not sufficient to make a conclusion for 
now. In order to quantitatively assess the bias of each estimated 
parameter as a function of sample size, the Monte Carlo simulation 
method is expected to be a useful tool to comprehensively understand 
the effects of sample size in a data set and the number of data sets. With 
each given sample size, over ten thousand times of numerical simula
tions are to be run to gain statistically meaningful conclusions. This will 
be studied as a separate topic. 

6. Summary and conclusions 

The two-parameter Weibull statistical fracture theory is widely 
adopted for ceramic strength prediction due to its simplicity. But it 
suffers from the specimen geometry (configuration and size) and loading 
mode dependence of estimated Weibull modulus. It also lacks consensus 

on zero-valued threshold of strength. The ordinary Weibull distribution 
works well for fitting a single data set. But the estimated Weibull pa
rameters are not material properties. In recognition of the great chal
lenges to estimate in one effort all Weibull parameters as material 
properties in the Weibull statistical fracture theory, the work introduces 
the standardized Weibull distribution to first estimate Weibull modulus. 
Specifically.  

(1) According to the mean value theorem for integrals, the Weibull 
statistical fracture theory is transformed into the ordinary Wei
bull distribution under certain assumptions.  

(2) The ordinary Weibull distribution is standardized for Weibull 
modulus estimation.  

(3) The maximum likelihood method for the standardized Weibull 
distribution is introduced. This method allows to combine mul
tiple strength data sets for Weibull modulus estimation. It is a 
feasible way to estimate Weibull modulus as truly a material 
property independent of specimen geometry and loading mode. 

(4) Extensive case studies of ceramic strength data sets from litera
ture are conducted. They show that for either uniaxial flexure 
only, biaxial flexure only, the combination of uniaxial and biaxial 
flexures, or the combination of smooth and notched specimens, 
all the standardized strength data fall on a master curve uniquely 
defined by Weibull modulus. This validates the idea of utilizing 
the standardized Weibull distribution for Weibull modulus 
estimation.  

(5) The inequality (42) defines the valid range of Weibull modulus. It 
plays an important role in narrowing down the estimation effort. 

Fig. 27. Weibull modulus estimation based on three randomly generated data sets from a prescribed Weibull distribution: (a). 3 sets of 15 randomly generated data 
and the prescribed distribution; (b). Estimation using single data set; (c). Estimation using two data sets; (d). Estimation using all three data sets. 
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In order to determine both the scale parameter and the threshold 
strength as material properties in the Weibull statistical fracture theory, 
it also needs to determine whether the spatial distribution of flaws in the 
material of interest is uniformly or non-uniformly distributed, i.e. the 
value of β in Equations (11) and (47). The effect of sample size and 
number of data sets on estimation accuracy is also yet well understood. 
These will be the topics for future study. 
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Appendix A. On the variation of the coefficient k in Equation (5) with σN via σL,u/σN 

Refer to Fig. 1 for three-point flexure, the tensile stress distribution follows Equation (6) within the domain defined by (7a, b). Inserting Equation 
(6) and the domain in Equation (5) leads to 

P(σN)= 1 − exp

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−
V

V0σmu
u

∫(1− σL,u/σN)

0

d
(z

d

) ∫

[

1−
σL,u

σN (1− z/d)

]

0

[
σN ⋅

(
1 −

z
d

)(
1 −

x
L

)
− σL,u

]mu
d
(x

L

)

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(A1)  

or 

P(σN)= 1 − exp

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

V
V0σmu

u

∫

(

1−
σL,u
σN

)

0

d
(z

d

) ∫

[

1−
σL,u

σN (1− z/d)

]

0

[
σN ⋅

(
1 −

z
d

)(
1 −

x
L

)
− σL,u

]mu
d
(

1 −
x
L

)

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(A2)  

where V = 2bLd is the half specimen volume in tension. 
Due to 

∫

(ax + b)ndx=
(ax + b)n+1

(n + 1)a
+ C (A3)  

where C is a constant, Equation (A2) reduces to 

P(σN)= 1 − exp

⎧
⎪⎨

⎪⎩

v
v0σmu

u

∫

(

1−
σL,u
σN

)

0

1

(mu + 1)σN ⋅
(

1 − z
d

)⋅
[
σN ⋅

(
1 −

z
d

)(
1 −

x
L

)
− σL,u

]mu+1

⃒
⃒
⃒
⃒
⃒
⃒
⃒

⎡

⎢
⎣1−

σL,u

σN

(
1− z

d

)

⎤

⎥
⎦

0

d
(z

d

)

⎫
⎪⎬

⎪⎭
(A4) 

There is 

[
σN ⋅

(
1 −

z
d

)(
1 −

x
L

)
− σL,u

]mu+1
⃒
⃒
⃒
⃒

⎡

⎢
⎣1−

σL,u

σN

(
1− z

d

)

⎤

⎥
⎦

0
= −

[
σN ⋅

(
1 −

z
d

)
− σL,u

]mu+1
(A5) 

Hence, Equation (A4) reduces to 

P(σN)= 1 − exp

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

V
V0σmu

u (mu + 1)σN

∫

(

1−
σL,u
σN

)

0

1
(

1 − z
d

) ⋅
[
σN ⋅

(
1 −

z
d

)
− σL,u

]mu+1
d
(

1 −
z
d

)

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

(A6)  

or 
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P(σN)= 1 − exp

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

V
V0σmu

u (mu + 1)σN

∫

(

1−
σL,u
σN

)

0

[
σN ⋅

(
1 −

z
d

)
− σL,u

]mu+1
d
[
Ln

(
1 −

z
d

)]

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

(A7) 

Using the method of integration by parts, we get 

∫

(

1−
σL,u
σN

)

0

[
σN ⋅

(
1 −

z
d

)
− σL,u

]mu+1
d
[
Ln

(
1 −

z
d

)]
= − (mu + 1)σN

∫

(

1−
σL,u
σN

)

0

[
Ln

(
1 −

z
d

)][
σN ⋅

(
1 −

z
d

)
− σL,u

]mu
d
(

1 −
z
d

)
(A8) 

Therefore, Equation (A7) is rewritten as 

P(σN)= 1 − exp

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−
V

V0σmu
u

∫

(

1−
σL,u
σN

)

0

[
Ln

(
1 −

z
d

)][
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(
1 −

z
d

)
− σL,u

]mu
d
(

1 −
z
d

)

⎫
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(A9) 

According to the second mean value theorem for definite integrals, since Ln
(

1 − z
d

)
is a monotonic function within the domain [0, (1 − σL,u/ σN)], 

we get 

∫
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z
d

)
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0
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z
d
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z
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(A10)  

or 

∫
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(A11)  

where ξ is a constant and 0 ≤ ξ ≤ 1 −
σL,u
σN

. 
In aid of Equation (3A), we get 

∫

(

1−
σL,u
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)
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(A12)  

or 

∫
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)

ξ
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Equation (A11) thus reduces to 

∫
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(
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(
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Substituting Equation (A14) into (A9) gives 

P(σN)= 1 − exp
{

V
V0σmu

u
Ln

(
σL,u

σN

) [
σN ⋅(1 − ξ) − σL,u

]mu+1

(mu + 1)σN ⋅(1 − ξ)

}

(A15) 

Comparing Equation (5) in Section 2 with Equation (A15), we get 
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−
(
k⋅σN − σL,u

)mu
=Ln

(
σL,u

σN

) [
σN ⋅(1 − ξ) − σL,u

]mu+1

(mu + 1)σN ⋅(1 − ξ)

(A16) 

or 

k =
σL,u

σN
+

⎧
⎨

⎩
Ln

(
σN

σL,u

)

[

(1 − ξ) − σL,u
σN

]mu+1

(mu + 1)⋅(1 − ξ)

⎫
⎬

⎭

1
mu

(A17) 

This proves the dependence of k on v σN ia. σL,u/σN Equation (A17) can be rewritten as Equation (9) in Section 2. {\displaystyle \int _{a}^{b}G(t) 
\varphi (t)\,dt = G (a^{+})\int _{a}^{x}\varphi (t)\,dt + G (b^{-})\int _{x}^{b}\varphi (t)\,dt.} 
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