
Available online at www.sciencedirect.com
www.elsevier.com/locate/gca

ScienceDirect

Geochimica et Cosmochimica Acta 295 (2021) 80–97
Nitrogen isotope fractionations among gaseous and
aqueous NH4

+, NH3, N2, and metal-ammine
complexes: Theoretical calculations and applications

Long Li a,⇑, Yuyang He b,1, Zhe Zhang a, Yun Liu c,d,e

aDepartment of Earth and Atmospheric Sciences, University of Alberta, Edmonton, Alberta T6G 2E3, Canada
b Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China

cState Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
dChinese Academy of Sciences Center for Excellence in Comparative Planetology, Hefei 230001, China

e International Center for Planetary Science, College of Earth Sciences, Chengdu University of Technology, Chengdu 610059, China

Received 29 June 2020; accepted in revised form 14 December 2020; available online 10 January 2021
Abstract

Ammonium (NH4
+), ammonia (NH3) and N2 are key nitrogen species in geological nitrogen recycling. NH3 has also been

proposed to play an important role in mobilizing base metals in the form of metal-ammine complexes in hydrothermal fluids.
The nitrogen isotope fractionation factors among these nitrogen species in aqueous and gaseous phases are essential param-
eters to trace source signatures and geochemical properties in geological processes. However, the nitrogen isotope fractiona-
tion factors for metal-ammine complexes are largely absent, and the few existing nitrogen isotope fractionation factors for the
aqueous NH4

+ – aqueous NH3 pair show large discrepancy between experimental results and theoretical calculations. In this
study, we employed the density functional theory to systematically calculate the nitrogen isotope fractionation factors among
the nitrogen species that may occur in a hydrothermal system, i.e., gaseous N2, gaseous and aqueous NH4

+ and NH3, and
ammine complexes of Co, Zn, Cu, Cd, Ag, Au, and Pt. Based on these new results, the large nitrogen isotope fractionations
for the aqueous NH4

+ – aqueous NH3 pair observed in previous experimental studies can be well explained by a combined
effect of an equilibrium isotope fractionation between aqueous NH4

+ and aqueous NH3 and a kinetic isotope fractionation
during NH3 degassing from the solution. This suggests that the nitrogen isotopic behavior during NH3 degassing in natural
hydrothermal system can be more complicated than previous thought. A numeric model is thus established here to quantify
the combined isotopic effect on partial NH3 degassing. Using the new results of metal-ammine complexes, we also tested the
hypothesis that nitrogen mobilization could be controlled by copper-ammine complex based on the copper concentration-
d15N relationship previously observed in meta-gabbros.
� 2020 Elsevier Ltd. All rights reserved.
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1. INTRODUCTION

Geological nitrogen cycle, which is commonly mediated
by hydrothermal fluids (e.g., Busigny and Bebout, 2013; Li
et al., 2007, 2014; Halama et al., 2010, 2017), involves trans-
formation of various nitrogen species within or between
Earth’s reservoirs, e.g., the atmosphere, crust, and mantle
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(e.g., Halama et al., 2014; Mikhail and Sverjensky, 2014;
Bebout et al., 2016). In particular, the nitrogen transfer
between the atmosphere, in which nitrogen occurs mainly
as N2, and the lithosphere, in which nitrogen mainly occurs
as NH4

+ substituting K+ in mineral lattices (Honma and
Itihara, 1981), may pass through an intermediate nitrogen
species of NH3 (e.g., Brandes et al., 1998; Li et al., 2007,
2009, 2014). NH3 may also play an important role in alka-
line fluids occurring in a variety of geological settings, such
as the deep aquifer in ophiolites (e.g., the Oman ophiolite,
the Coast Range ophiolite; see Holm et al., 2006 and refer-
ence therein), the deep subsurface fracture waters in Pre-
cambrian cratons (e.g., South Africa; Onstott et al.,
2006), ridge flank hydrothermal systems (e.g., Lost City,
Rainbow; see the discussion in Li et al., 2012 and reference
therein), subduction zones (e.g., Mariana forearc; Wheat
et al., 2008), hot spots (e.g., Yellowstone; Holloway et al.,
2011), and alkaline lakes (e.g., Lake Bosumtwi, Ghana;
Talbot and Johannessen, 1992). This is because NH4

+ in
alkaline fluids can be dissociated into NH3, which can be
further removed from the fluid by degassing. The relative
proportions of NH4

+, NH3, and N2 in hydrothermal fluid
are strongly dependent on the redox and pH conditions
(e.g., Duit et al., 1986; Li et al., 2012; Li and Keppler,
2014; Mikhail and Sverjensky, 2014).

Besides being a key species in geological nitrogen cycle,
NH3 may also play an important role in hydrothermal
enrichment and mobilization of base metals because it is
an effective ligand to form metal-ammine complexes with
transition metals, such as Cu (Hathaway and Tomlinson,
1970; Han et al., 1974; Chu et al., 1978), Ni (Gupta and
Sarpal, 1967), Co (Meek and Ibers, 1970), Zn (Eßmann,
1995), and Ag (Geddes and Bottger, 1969; Widmer-
Cooper et al., 2001; Fox et al., 2002). This property of
NH3 has been applied in industry to recover transition met-
als from ore deposits (e.g., Meng and Han, 1996; Katsiapi
et al., 2010). In natural hydrothermal system, a possible
coupling between NH3 and Cu has been proposed based
on geochemical signatures of hydrothermally altered gab-
bros (Busigny et al., 2011). If NH3 can promote the solubil-
ity and mobility of base metals in hydrothermal system, it
may potentially act as an important agent for ore genesis
(Irving and Williams, 1953; Martell and Hancock, 1996).

Nitrogen isotopes have been used as a robust tool to
trace nitrogen remobilization (e.g., Bebout et al., 1999;
Busigny et al., 2005; Li et al., 2007) and geological nitrogen
recycling (e.g., Bebout and Fogel, 1992; Busigny et al.,
2003; Svensen et al., 2008; Halama et al., 2010; Li et al.,
2009, 2014). In order to apply nitrogen isotope system to
constrain nitrogen sources and fluxes in geological nitrogen
recycling pathways, the nitrogen isotope fractionation fac-
tors between involved nitrogen species are crucial prerequi-
site parameters. However, the nitrogen isotope
fractionation factors between aqueous NH3 and metal-
ammine complexes have not been well constrained yet,
despite some early efforts (e.g., Gupta and Sarpal, 1967;
Ishimori, 1960a). Several previous studies (Urey, 1947;
Scalan, 1958; Hanschmann, 1981; Petts et al., 2015) have
investigated the equilibrium nitrogen isotope fractionations
among NH4

+, NH3 and N2 by theoretical calculations and
given very different results. These calculations were based
on vibrational frequencies of nitrogen species in gas phases.
However, in natural systems, particularly in hydrothermal
systems, NH4

+ and NH3 mostly exist in aqueous phases
(hereafter referred as NH4

+�nH2O or NH4
+
(aqueous), and NH3-

�nH2O or NH3(aqueous), respectively). One previous labora-
tory experimental study (Li et al., 2012) showed that,
under hydrothermal condition, partial dissociation of
NH4

+�nH2O coupled with complete degassing of the pro-
duced NH3 induced large 15N enrichments in the remaining
NH4

+�nH2O, which cannot be explained by the theoretically
predicted equilibrium fractionation factors between the
NH4

+
(gaseous) - NH3(gaseous) pair (Urey, 1947; Scalan, 1958;

Hanschmann, 1981). To solve the discrepancy between
the experimental and theoretical results, Li et al. (2012) pro-
posed that the NH4

+�nH2O dissociation – NH3 degassing
process involved an intermediate step that NH4

+�nH2O
was first equilibrated with NH3�nH2O, from which NH3

was further exsolved and degassed (Li et al., 2012). Such
a process can be described as Eq. (1):

NH4
þ�nH2O + OH� � NH3�nH2O þ H 2O

! NH 3ðgaseousÞ þ ðn þ 1ÞH 2O ð1Þ

Given that the produced NH3�nH2O was completely
removed by NH3 degassing in the experiments, and more
importantly, the 15N enrichments in the remaining NH4

+-
�nH2O apparently fitted well to a batch model assuming
equilibrium isotope fractionation between NH4

+�nH2O and
NH3�nH2O, Li et al. (2012) interpreted the strong 15N
enrichments observed in the remaining NH4

+�nH2O as a
result of large equilibrium isotope fractionations (e.g.,
+45.4‰ at 23 �C and + 33.5‰ at 70 �C) between NH4

+-
�nH2O and NH3�nH2O without considering kinetic isotopic
effect from NH3 degassing. However, a recent laboratory
experimental study (Deng et al., 2018) found significant
kinetic nitrogen isotopic effect (-8.2‰ at 21 �C, and
�5.2‰ at 70 �C) during degassing of NH3(gas) from NH3-
�nH2O. In addition, a recent theoretical calculation
(Walters et al., 2019) using relatively simple HF/6-31G(d)
and B3LYP/6-31G(d) levels of theory yielded significantly
different nitrogen isotope fractionation factors between
NH4

+�nH2O and NH3�nH2O. Thus, it is necessary to reas-
sess the isotopic behavior during NH3 degassing process
described by Eq. (1).

To fill these knowledge gaps, we employed theoretical
calculations to determine the equilibrium isotope fractiona-
tions among gaseous N2 and several other nitrogen species
related to NH3 in hydrothermal fluids, including NH4

+ and
NH3 in both gaseous and aqueous phases and metal-
ammine complexes of several important base metals, i.e.,
Co, Ni, Cu, Zn, Cd, Ag, Au, and Pt. Theoretical calculation
is a robust and efficient way to estimate the equilibrium iso-
tope fractionation factors among these species, given that
they are difficult to be characterized by laboratory
experiments.



82 L. Li et al. /Geochimica et Cosmochimica Acta 295 (2021) 80–97
2. METHOD

2.1. Equilibrium isotope fractionation theory

The equilibrium isotope fractionation factor between a
species and its atomic form can be described by the b factor
(Urey, 1947; Bigeleisen and Mayer, 1947). The details of the
Urey-Bigeleisen-Mayer model for theoretical calculation of
equilibrium isotope fractionation factor have been inten-
sively reviewed in the literature (e.g., Richet et al., 1977;
Schauble et al., 2004; Liu et al., 2010; Young et al., 2015;
Dauphas and Schauble, 2016; Blanchard et al., 2017). In
brief, for an isotope exchange reaction between species A
and B:

A + B* � A* + B ð2Þ
where the species with * contain the rare isotope (i.e., 15N in
this case) and the ones without * contain the most abun-
dant isotope (i.e., 14N in this case). The nitrogen equilib-
rium isotope fractionation factor between A and B (i.e.,
aA-B) can be expressed as the ratio of the 15b factors of A
and B:

aA�B ¼ ½ 15N= 14N=�A
½ 15N= 14N=�B

¼
15bA
15bB

ð3Þ

in which the 15b factors can be estimated in harmonic
approximation (Richet et al., 1977; Cao and Liu, 2012)
using the Urey-Bigeleisen-Mayer model (Urey, 1947;
Bigeleisen and Mayer, 1947):

15b ¼
YN
i

u�i
ui

� �
e�u�i =2

e�ui=2

� �
1� e�ui

1� e�u�i

� �
ð4Þ

ui ¼ hti
kBT

ð5Þ

in which mi denotes the ith harmonic vibration frequency; h
denotes the Planck constant; kB denotes the Boltzmann
constant; T denotes the temperature in Kelvin; and N

denotes the harmonic vibrational modes (for non-linear
molecules, N = 3n � 6; n is the total number of atoms).
2.2. Calculation methods

Density functional theory (DFT) calculation with the
Urey-Bigeleisen-Mayer equation offers a reliable approach
to theoretically estimate a b factor (Liu and Tossell,
2005). It is based on quantum chemical theories to predict
the optimized molecular structure of a given system and
calculate its vibrational frequencies. All optimization and
harmonic vibrational frequency calculations for the ground
states were performed by the software Gaussian 16 (Frisch
et al., 2016). All calculations have been carried out with the
B3LYP exchange-correlation functional (Lee et al., 1988;
Becke, 1993), which has been widely employed in vibra-
tional frequency-related calculations (e.g., Rustad et al.,
2010; Li and Liu, 2011; Eldridge et al., 2016; Zhang and
Liu, 2018a,b). The 6-311++G (d,p) basis set (Frisch
et al., 1984) was used for H, O, and N atoms. LANL2TZ
basis set (Hay and Wadt, 1985; Roy et al., 2008) was used
for Zn, Co, Cu, Ag, Au, Cd, and Pt atoms to lessen
computation time yet with negligible loss of accuracy. No
scaling factor was applied because the systematic errors
only influence the absolute b values but are largely can-
celled during the a calculations (Schauble et al., 2006;
Méheut et al., 2007).

2.3. Anharmonic effect on nitrogen species

The anharmonic correction on the Urey-Bigeleisen-
Mayer equation has been discussed in previous studies
(Richet et al., 1977; Liu et al., 2010; Petts et al., 2015;
Zhang and Liu, 2018a). One general consent is that anhar-
monic effect plays a greater role in vibrations involving light
elements (e.g., H, B), although the magnitude of isotope
fractionations caused by anharmonic effect is still under
debate (Liu et al., 2010; Petts et al., 2015). To assess the
magnitude of anharmonic effect on the nitrogen species in
this study, we also calculated the nitrogen isotope fraction-
ations with and without anharmonic correction for gaseous
NH4

+ and gaseous NH3.

2.4. Solvent effect on nitrogen species

When a substance is dissolved in a solution, its weak
interaction with solvent molecules can cause large uncer-
tainty of local structural configurations, and therefore influ-
ence the estimated 15b values. To assess this solvent effect,
we added water molecules surrounding a target species to
simulate in a realistic way the environment of an aqueous
solution (e.g., Rustad et al., 2008, 2010; Zhang and Liu,
2014; He and Liu, 2015; Gao et al., 2018; Zhang and Liu,
2018a,b), using the commonly used explicit solvation modes
(i.e., water-droplet method; Liu and Tossell, 2005; Li and
Liu, 2011; Gao et al., 2018).

For NH3 and NH4
+, we built four starting cluster mod-

els with 6 water molecules as the first step. The structures
were optimized to the local energy minimum with zero
imaginary frequency. Subsequently, additional 6 water
molecules were added to the second shell of the optimized
structures and were optimized to the local energy mini-
mum again. This process was repeated until the calculated
15b value reached convergence. For the NH3�nH2O mod-
els, the convergence cluster has 30 water molecules. For
the NH4

+�nH2O models, the convergence cluster has 36
water molecules.

For dissolved metal-ammine complexes, the solvent
effect was also assessed (using Zn(NH3)6

2+ and Ni(NH3)6
2+

as examples), following previous studies (e.g., Rudolph
et al., 2000; Hill and Schauble, 2008) by adding a hydration
sphere (12H2O) on the studied molecular cluster.

3. RESULTS

3.1. Anharmonic effect on isotope fractionation between

gaseous NH4
+ and NH3

The results of harmonic vibrational frequencies (wi) and
anharmonicity constants (xij) for NH3 and NH4

+ are listed
in Table 1. Comparison between the lnaNHþ

4 ðgaseousÞ�NH3ðgaseousÞ

results with and without anharmonic corrections indicates



Table 1
Harmonic vibrational frequencies (xi) and anharmonicity constants (xij) for NH3 and NH4

+.

14NH3
15NH3

14NH4
+ 15NH4

+

w1 1005.6647 1000.2964 w1 1489.3992 1482.4191
w2 1668.9006 1665.5001 w2 1489.5274 1482.5471
w3 1668.9599 1665.5593 w3 1489.5677 1482.5874
w4 3480.3335 3478.3005 w4 1727.4986 1727.4986
w5 3607.0377 3597.1959 w5 1727.5563 1727.5563
w6 3607.3700 3597.5267 w6 3371.2896 3371.2895
x11 �44.5655 �44.0991 w7 3474.2659 3464.5960
x12 �7.4656 �7.3437 w8 3474.6356 3464.9637
x13 �60.6278 �60.1753 w9 3474.9376 3465.2644
x14 �99.6980 �99.5133 x11 �35.9750 �35.6432
x15 �15.1020 �14.9203 x12 4.9813 4.8697
x16 25.8310 25.4004 x13 �63.5821 �63.4649
x22 �6.8370 �12.9044 x14 �16.5959 �16.4789
x23 �14.9178 �14.7277 x15 �11.3300 �11.2686
x24 �22.0048 2.4055 x16 �11.1957 �11.0121
x25 �12.3932 �12.4064 x17 �68.8225 �68.4742
x26 �14.9338 �15.0119 x18 �13.5188 �13.3919
x33 �44.2150 �43.7427 x19 �11.9319 �11.9304
x34 �99.6208 �99.4716 x22 �35.9787 �35.6468
x35 �7.3950 �7.2582 x23 �64.3850 �64.3460
x36 26.1471 25.7100 x24 �16.6125 �16.4950
x44 �26.5479 �26.5878 x25 �11.1808 �10.9972
x45 �21.9967 2.2832 x26 �11.3447 �11.2835
x46 18.0323 18.1441 x27 �68.0429 �67.6153
x55 �6.8509 �12.8954 x28 �13.5173 �13.3903
x56 �14.7680 �14.8366 x29 �11.9177 �11.9169
x66 �61.1998 �60.5714 x33 �15.9055 �15.9056

x34 �23.4745 �23.4746
x35 �4.8519 �5.3443
x36 �4.9011 �5.3913
x37 �63.9414 �63.8669
x38 �23.4652 �23.4654
x39 �4.8868 �5.3762
x44 �1.6234 �1.6235
x45 �3.5137 �3.5376
x46 �3.5439 �3.5675
x47 �12.0062 �11.8748
x48 �3.4073 �3.4073
x49 �18.4950 �18.4922
x55 �6.7531 �6.5817
x56 4.4641 4.5306
x57 �11.9000 �11.9027
x58 �13.4279 �13.4342
x59 �6.1422 �5.8856
x66 �6.7632 �6.5921
x67 �11.8785 �11.8801
x68 �13.4427 �13.4488
x69 �6.1608 �5.9043
x77 �17.5888 �17.3853
x78 �18.0933 �17.9816
x79 �10.6254 �10.3797
x88 �1.6219 �1.6220
x89 1.3786 1.3461
x99 �4.1523 �4.0280

ZPEharm 7519.1332 7502.1895 ZPEharm 10859.3390 10834.3611

ZPEanh 7394.8057 7378.5208 ZPEanh 10683.4961 10659.4508
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that anharmonic effect on lnaNHþ
4 ðgaseousÞ�NH3 ðgaseousÞ is small, i.e.,

�1.4‰ at 0 �C, �0.6‰ at 400 �C, and �0.3‰ at 1000 �C
(Table 2). Therefore, we did not apply the anharmonic
corrections for the other nitrogen species in this study.
For consistency, we used all the harmonic results to
calculate the 1000lna values.



Table 2
lnaNH4+(gaseous) – NH3(gaseous) for harmonic and anharmonic calcu-
lations at 0–1000 �C.

T (�C) Harmonic Anharmonic

0 35.2 33.8
20 32.4 31.0
40 29.8 28.5
60 27.5 26.4
80 25.5 24.4
100 23.8 22.7
200 17.3 16.5
400 10.2 9.6
600 6.7 6.2
800 4.7 4.4
1000 3.6 3.3
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3.2. Isotope fractionations between NH4
+ and NH3 in gaseous

and aqueous phases

Fig. 1 illustrates the optimized geometries for gaseous
NH3 and NH4

+, and their aqueous phases represented by
NH3�30H2O and NH4

+�36H2O, respectively. The coordi-
nates of these optimized geometries are listed in the Supple-
mentary Data. Our calculations yielded the N-H bond
length and H-N-H bond angle as 1.01(4) Å and 107.9�,
respectively, for gaseous NH3, and 1.02(6) Å and 109.5�,
respectively, for gaseous NH4

+. These values are consistent
with previous theoretical calculation and experimental
results, e.g., 1.01(2) Å for the N-H bond length and
Fig. 1. Optimized geometries for gaseous NH3 (A), NH4
+ (B), N2 (C)

NH4
+�36H2O (E).
106.67� for the H-N-H bond angle in gaseous NH3

(Haynes, 2014), and 1.02(7) Å for the N-H bond length
and 109.5� for the H-N-H bond angle in gaseous NH4

+

(Chen and Davidson 2001). The NH3 molecule is hydrated
in all explicit solvent models, in which N forms a 1.65–
1.69 Å hydrogen bond with H of a water molecule.

Table 3 lists the calculated 15b results of NH3 and NH4
+

in gaseous phases as well as aqueous phases hydrated by
6–30 H2O molecules in 4 different configurations at 25 �C.
The results show that the 15b values increase significantly
from gaseous NH3 (

15b = 1.0687) to hydrated NH3, whose
15b values vary strongly with an increase in the surrounding
H2O molecule numbers until converge at 1.0776 when the
H2O molecule number reaches 30. This solvent effect
results in large equilibrium isotope fractionations between
NH3(aqueous) and NH3(gaseous) (e.g., lnaNH3ðaqeousÞ�NH3 ðgaseousÞ =

+8.3‰ at 25 �C). In contrast, the 15b value of NH4
+ is not

significantly shifted after hydration (Table 3), resulting in
negligible isotope fractionation between gaseous and
aqueous NH4

+, e.g., the lnaNHþ
4 ðaqeousÞ�NHþ

4 ðgaseousÞ
value is

+0.3‰ at 25 �C, and mostly within the calculation uncer-
tainty of ±0.5% at other temperatures (Tables 4–5). There-
fore, we will not specifically distinguish between aqueous
and gaseous NH4

+ in the discussions below.
The 1000lnb values at selected temperatures are given in

Table 4, and the general equations describing the
temperature-dependent 15b values for individual species
are given in Table 5 and plotted in Fig. 3. The
temperature-dependent equilibrium isotope fractionations
, and representative local configuration of NH3�30H2O (D) and



Table 3
Calculated 15b factors (15N/14N) of ammonia and ammonium in gaseous and aqueous phases at B3LYP/6-311G++(d,p) level at 25 �C.

Species 15b 1000ln15b 15b 1000ln15b

Gaseous phase

NH3 1.0687 66.4 NH4
+ 1.1031 98.1

Aqueous phase

NH3(H2O)6_A 1.0766 73.8 NH4(H2O)6
+_A 1.1032 98.2

NH3(H2O)6_B 1.0767 73.9 NH4(H2O)6
+_B 1.1038 98.8

NH3(H2O)6_C 1.0757 73.0 NH4(H2O)6
+_C 1.1038 98.8

NH3(H2O)6_D 1.0786 75.7 NH4(H2O)6
+_D 1.1039 98.8

Average* 1.0769 ± 0.0011 74.1 ± 1.0 Average 1.1037 ± 0.0003 98.6 ± 0.3
NH3(H2O)12_A 1.0799 76.9 NH4(H2O)12

+ _A 1.1032 98.2
NH3(H2O)12_B 1.0766 73.8 NH4(H2O)12

+ _B 1.1034 98.4
NH3(H2O)12_C 1.0781 75.2 NH4(H2O)12

+ _C 1.1032 98.2
NH3(H2O)12_D 1.0781 75.2 NH4(H2O)12

+ _D 1.1035 98.5
Average 1.0782 ± 0.0012 75.3 ± 1.1 Average 1.1033 ± 0.0001 98.3 ± 0.1
NH3(H2O)18_A 1.0787 75.8 NH4(H2O)18

+ _A 1.1039 98.8
NH3(H2O)18_B 1.0781 75.2 NH4(H2O)18

+ _B 1.1031 98.1
NH3(H2O)18_C 1.0778 74.9 NH4(H2O)18

+ _C 1.1039 98.8
NH3(H2O)18_D 1.0762 73.4 NH4(H2O)18

+ _D 1.1026 97.7
Average 1.0777 ± 0.0009 74.8 ± 0.9 Average 1.1034 ± 0.0006 98.4 ± 0.5
NH3(H2O)24_A 1.0776 74.7 NH4(H2O)24

+ _A 1.1039 98.8
NH3(H2O)24_B 1.0778 74.9 NH4(H2O)24

+ _B 1.1041 99.0
NH3(H2O)24_C 1.0776 74.7 NH4(H2O)24

+ _C 1.1042 99.1
NH3(H2O)24_D 1.0773 74.5 NH4(H2O)24

+ _D 1.1035 98.5
Average 1.0776 ± 0.0002 74.7 ± 0.2 Average 1.1039 ± 0.0003 98.9 ± 0.2
NH3(H2O)30_A 1.0771 74.3 NH4(H2O)30

+ _A 1.1032 98.2
NH3(H2O)30_B 1.0777 74.8 NH4(H2O)30

+ _B 1.1044 99.3
NH3(H2O)30_C 1.0780 75.1 NH4(H2O)30

+ _C 1.1037 98.7
NH3(H2O)30_D 1.0776 74.7 NH4(H2O)30

+ _D 1.1028 97.9
Average 1.0776 ± 0.0003 74.7 ± 0.3 Average 1.1035 ± 0.0006 98.5 ± 0.5

NH4(H2O)36
+ _A 1.1028 97.9

NH4(H2O)36
+ _B 1.1030 98.0

NH4(H2O)36
+ _C 1.1034 98.4

NH4(H2O)36
+ _D 1.1031 98.1

Average 1.1031 ± 0.0002 98.1 ± 0.2
Preferred value** 1.0776 74.7 Preferred value** 1.1035 98.5

* The ‘‘Average” data in bold are the mean values of 4 configurations (i.e., configurations A,B, C, and D).
** The preferred 15b value of aqueous NH3(H2O)n are the average results of 8 configurations (4 � NH3(H2O)24 and 4 � NH3(H2O)30), and
the preferred 15b value of NH4(H2O)n

+ are the average results of 12 configurations (4 � NH4(H2O)24
+ , 4 � NH4(H2O)30

+ , and 4 � NH4(H2O)36
+ ).
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between species are given in Table 6 and plotted in Fig. 4. It
is noted that the different solvent effects on NH4

+ and NH3

result in much larger isotope fractionation in the
NH4

+
(aqueous) � NH3(gaseous) pair (e.g., +32.1‰ at 25 �C) than

the NH4
+
(aqueous) � NH3(aqueous) pair (e.g., +23.8‰ at 25 �C).

3.3. Isotope fractionations between NH4
+ and N2

The optimized geometry of gaseous N2 is also shown in
Fig. 1. Our calculations yielded the N-N bond length as
1.09(5) Å, which is consistent with previous published data
(e.g., 1.0975 Å; Sutton and Bowen, 1958).

The calculated 1000lnb results at selected temperatures
are listed in Table 4 with a general description equation
given in Table 5. The results show that N2 is more enriched
in 15N than both gaseous and aqueous NH3, but more
depleted in 15N than gaseous and aqueous NH4

+ (Table 4).
Given that experimental studies have demonstrated that the
isotope fractionation between gaseous N2 and dissolved N2

is very small (<1‰ at 0 �C; Klots and Benson, 1963), our
results of gaseous N2 can also be approximately used for
aqueous N2. Accordingly, our calculation results self-
consistently put aqueous N2 in the right 15N enrichment
order between aqueous NH3 and aqueous NH4

+.

3.4. Metal – ammine complexes

The geometries of metal-ammine complexes are still not
well constrained. In this study, we select the complex struc-
ture of the minimum-energy level from previous studies as
the dominant metal-ammine complex species (see below).
The optimized geometries are shown in Fig. 2, and their
coordinates are listed in the Supplementary Data. The cal-
culated 15b values at selected temperatures are listed in
Table 4 with general description equations being listed in
Table 5. A brief summary for each metal is given below.

Zinc-ammine complexes Zn(NH3)n
2+ (n = coordination

number) with n values varying from 4 to 6 have been
reported (Kim et al., 1993; Fatmi et al., 2006; Fatmi
et al., 2010). However, our calculations only obtained
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meaningful results for the 6-coordinated complex Zn
(NH3)6

2+ with a multiplicity of 1. The Zn-N bond length
in the yielded geometry is 2.31 Å, which is close to the pre-
viously suggested value of 2.291 Å (Kim et al., 1993). The
yielded 15b is 1.0783 for Zn(NH3)6

2+ at 25 �C. The 15b value
shows an insignificant increase with hydration, to 1.0788
for Zn(NH3)6

2+�6H2O, and 1.0792 for Zn(NH3)6
2+�12H2O

at 25 �C.
Nickel-ammine complex can display various geometries

with coordination numbers varying from 4 to 6. In this
study, we focus on the 6-coordinated complex Ni(NH3)6

2+

with a multiplicity of 3, which is considered to be more
stable (e.g., Paul et al., 2004; Varadwaj et al., 2008;
Casanova and Head-Gordon, 2009; Varadwaj et al.,
2009). The yielded Ni-N bond length of Ni(NH3)6

2+ is
2.20 Å, which is consistent with the previously suggested
value of 2.205 Å and close to the crystallographically
observed mean value of 2.135 Å (Varadwaj et al., 2008).
The calculated 15b value is 1.0807 for Ni(NH3)6

2+ at
25 �C, which slightly increases to 1.0817 when an additional
hydration sphere of 12 H2O is added (i.e., Ni
(NH3)6

2+�12H2O).
Cobalt can complex with NH3 at valence states of II

and III. The optimized structures of the complexes are
6-coordinated Co(NH3)6

2+ and Co(NH3)6
3+ (Barnet et al.,

1966; Meek and Ibers, 1970; Müller and Kraus, 2015). Co
(NH3)6

2+ is believed to be more stable at high-spin state
(Schmiedekamp et al., 2002) and thus has a multiplicity
of 4. While Co(NH3)6

3+ has been considered as a low-spin
complex (e.g., Williams, 1979) and thus has a multiplicity
of 1, our single-atom test yielded the lowest energy of
Co3+ at high-spin state with a multiplicity of 5. Therefore,
we reported the results of both low- and high-spin states for
Co3+ here. Our calculation gave an average Co-N bond
length of 2.26 Å for Co(NH3)6

2+, which is close to previ-
ously published data of 2.257–2.264 Å (Schmiedekamp
et al., 2002; Varadwaj and Marques, 2010). The yielded
15b value of Co(NH3)6

2+ is 1.0794 at 25 �C. The Co-N bond
length for Co(NH3)6

3+ is 2.03 Å at low-spin state, which is
consistent with previously calculation results (2.033 Å;
Rotzinger, 2009), but increases to 2.20 Å at high-spin state.
This results in a large difference in the 15b values, e.g.,
1.0814 at low-spin state and 1.0904 at high-spin state at
25 �C.

Cadmium-ammine complex is considered to be the
stable in both 4-coordinated (i.e., Cd(NH3)4

2+; multiplic-
ity = 1) and 6-coordinated (i.e., Cd(NH3)6

2+; multiplic-
ity = 2) forms (Nilsson et al., 2007; Zeng et al., 2015).
The yielded Cd-N bond lengths are 2.35 Å for Cd
(NH3)4

2+, which is higher than the value of 2.02 Å reported
by Zeng et al. (2015), and 2.48 Å for Cd(NH3)6

2+, which is
higher than the value of 2.35 Å reported by Nilsson et al.
(2007). The calculated 15b values at 25 �C are 1.0802 for
Cd(NH3)4

2+ and 1.0769 for Cd(NH3)6
2+.

Copper can complex with NH3 at valence states of I and
II. The 4-coordinated Cu(II)-ammine complex is suggested
to be more stable than the 5- and 6-coordinated complexes
(Pavelka and Burda, 2005). For the 4-coordinated Cu
(NH3)4

2+ (multiplicity = 2), the calculated structure has a
Cu-N bond length of 2.07 Å, which is consistent with exper-



Table 5
Polynomial fit parameters of calculated 15b factors in the form of 1000�ln(15b) = C0 + C1*10

-1x � C2*10
-2x2 + C310

-3x3 � C4*10
-4x4 + C5*10

-

5x5 � C610
-6x6, in which x = 106/T2 and T is temperature in Kelvin (valid from 273 to 1273 K).

Compound C0 C1 C2 C3 C4 C5 C6

N2(gaseous) 0.27 160.78 230.62 319.21 285.31 140.65 28.766
NH3(gaseous) 0.65 137.43 238.30 383.41 373.46 191.98 39.882
NH3(aqueous) 0.75 142.11 214.55 315.96 286.52 139.19 27.668
NH4

+
(gaseous) 1.13 189.79 280.17 400.11 360.31 176.23 35.521

NH4
+
(aqueous) 0.51 190.47 299.05 465.60 448.62 230.51 48.098

Zn(NH3)6
2+ 0.74 142.77 216.00 323.78 300.98 150.18 30.635

Ni(NH3)6
2+ 0.84 143.69 208.87 305.13 277.40 135.51 27.075

Co(NH3)6
2+ 0.77 143.52 215.04 321.63 298.11 148.06 30.022

Co(NH3)6
3+ (H)* 0.79 144.13 209.51 308.78 282.83 138.96 27.903

Co(NH3)6
3+ (L)* 0.70 154.72 216.85 318.04 291.16 143.41 28.932

Cd(NH3)6
2+ 0.66 142.64 219.61 326.76 298.19 145.28 28.875

Cd(NH3)4
2+ 0.83 142.65 203.83 289.48 254.75 120.34 23.266

Cu[(NH3)4]
2+ 0.73 148.83 212.48 301.05 260.08 119.14 22.149

Cu[(NH3)2]
+ 0.70 153.55 229.98 355.89 339.85 172.99 35.831

Ag(NH3)2
2+ 0.85 147.16 212.91 313.78 290.42 145.54 29.982

Au(NH3)2
2+ 0.97 152.43 197.47 263.92 217.27 95.08 16.882

Pt(NH3)2
2+ 0.85 154.95 211.42 302.56 268.89 127.71 24.704

* H and L in Co(NH3)6
3+ denote high spin state (multiplicity = 5) and low spin states (multiplicity = 1), respectively.

Table 6
Parameters in the general equations for temperature-dependent equilibrium nitrogen isotope fractionations (1000 lna = A � 106/
T2 + B � 103/T + C; T is in Kelvin, valid in the range of 273–1273 K) of various NH3-related species relative to NH3(gaseous), NH3(aqueous),
and NH4

+
(aqueous), respectively.

– NH3(gaseous) – NH3(aqueous) – NH4
+
(aqueous)

A B C A B C A B C

N2(gaseous) �0.054 5.906 �3.78 �0.628 5.229 �3.30 �0.941 �1.850 0.16
NH3(gaseous) 0 0 0 �0.574 �0.678 0.48 �0.887 �7.756 3.94
NH3(aqueous) 0.574 0.678 �0.48 0 0 0 �0.314 �7.078 3.46
NH4

+
(gaseous) 0.409 9.361 �4.34 �0.165 8.684 �3.87 �0.478 1.605 �0.40

NH4
+
(aqueous) 0.887 7.756 �3.94 0.314 7.078 �3.46 0 0 0

Zn(NH3)6
2+ 0.611 0.771 �0.56 0.038 0.094 �0.08 �0.276 �6.985 3.38

Ni(NH3)6
2+ 0.748 0.997 �0.67 0.174 0.320 �0.19 �0.140 �6.759 3.27

Co(NH3)6
2+ 0.683 0.858 �0.60 0.109 0.180 �0.12 �0.205 �6.898 3.34

Co(NH3)6
3+ (H)* 0.824 0.956 �0.71 0.250 0.279 �0.24 �0.064 �6.800 3.22

Co(NH3)6
3+ (L)* 1.293 2.044 �1.36 0.719 1.367 �0.89 0.406 �5.711 2.57

Cd(NH3)6
2+ 0.510 0.707 �0.52 �0.064 0.030 �0.04 �0.378 �7.049 3.42

Cd(NH3)4
2+ 0.720 0.968 �0.68 0.146 0.291 �0.21 �0.168 �6.788 3.26

Cu(NH3)4
2+ 0.954 1.437 �0.95 0.381 0.760 �0.47 0.067 �6.319 2.99

Cu(NH3)2
+ 1.138 1.660 �1.05 0.564 0.982 �0.57 0.250 �6.096 2.89

Ag(NH3)2
+ 0.856 1.406 �0.86 0.282 0.729 �0.39 �0.032 �6.350 3.08

Au(NH3)2
+ 1.321 2.212 �1.35 0.747 1.534 �0.88 0.434 �5.544 2.59

Pt(NH3)2
+ 1.359 2.192 �1.36 0.785 1.515 �0.88 0.471 �5.563 2.58

* H and L in Co(NH3)6
3+ denote high spin state (multiplicity = 5) and low spin states (multiplicity = 1), respectively.
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imentally determined value of 2.00 Å (Valli et al., 1996).
The calculated 15b value for Cu(NH3)4

2+ is 1.0845 under
25 �C. For Cu(I)-ammine complex, the setup structure
was adopted from Pavelka and Burda (2005) as a
2-coordinated complex Cu(NH3)2

+ (multiplicity = 1).
The yielded Cu-N bond length is 1.94 Å, which is
consistent with the result (1.91 Å) of Pavelka and Burda
(2005). The yielded 15b value for Cu(NH3)2

+ is 1.0874 at
25 �C.
For the silver-ammine complex, previous studies have
suggested a linearly 2-coordinated complex Ag(NH3)2

+

(multiplicity = 1) to be the most stable form (Geddes
and Bottger, 1969; Shoeib et al., 2000; Widmer-Cooper
et al., 2001; Fox et al., 2002). Our calculation gave
the Ag-N bond length of Ag(NH3)2

+ as 2.17 Å, which
is close to previously reported data (2.18 Å; Shoeib
et al., 2001). The calculated 15b value for Ag(NH3)2

+ is
1.0833 at 25 �C.
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For the gold-ammine complex, previous studies have
also suggested the linearly 2-coordinated complex Au
(NH3)2

+ (multiplicity = 1) to be most stable (Kryachko
and Remacle, 2007). Our calculation gave the Au-N bond
length as 2.08 Å, which is the same with the data reported
by Kryachko and Remacle (2007). The calculated 15b value
for Au(NH3)2

+ is 1.0914 at 25 �C.
For the platinum-ammine complex, we also calculated

the linearly 2-coordinated complex Pt(NH3)2
+ (multiplic-
ity = 2), which is considered to be the most stable form
(Juhász et al., 2012). The results gave the Pt-N bond length
as 2.09 Å, which is close to the value of 2.07 Å reported by
Juhász et al. (2012). The calculated 15b value for Pt(NH3)2

+

is 1.0917 at 25 �C.
The equilibrium nitrogen isotope fractionations of

these metal-ammine complexes relative to NH3(gaseous),
NH3(aqueous), NH4

+
(aqueous) are given in Table 6 and plotted

in Fig. 3.
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4. DISCUSSION

4.1. Factors controlling the N isotope fractionations in the

NH4
+ – NH3 – metal-ammine complex system

Fig. 3 shows that 15N is most enriched in NH4
+ and most

depleted in NH3(gaseous). This is consistent with a more
stable tetrahedral structure of NH4

+ relative to the pyrami-
dal structure of NH3. The hydration of NH3 induces
significant 15N enrichment in NH3(aqueous) relative to
NH3(gaseous), because of the additional N-H bond formed
in NH3(aqueous) (Fig. 1). However, the hydration of
NH4

+
(gaseous) does not cause much more 15N enrichment in

NH4
+
(aqueous) (+0.4‰; Table 3), because the bonding envi-

ronment does not change significantly for the N in NH4
+

(Fig. 1). Similarly, hydration of ammine complexes of
Zn2+ (from Zn(NH3)6

2+ to Zn(NH3)6
2+�12H2O) and Ni2+

(from Ni(NH3)6
2+ to Ni(NH3)6

2+�12H2O) only results in an
increase in 1000ln15b value for less than +1‰ at 25 �C,
suggesting that the solvent effect is insignificant on metal-
ammine complexes either.

Relative to NH3(aqueous), most metal-ammine complexes
are more enriched in 15N (Fig. 3B), which is in general
consistent with that the metal-N bond in the complexes
is stronger than the N-H bond in NH3(aqueous). However,
the varying magnitudes of 15N enrichment in the metal-
ammine complexes relative to NH3(aqueous) suggest that
more factors can affect the nitrogen isotope fractionations
in the metal-ammine complexes. For example, compared
with NH3(aqueous), Zn(NH3)6

2+ has slightly higher 15b val-
ues and Cd(NH3)6

2+ has even slightly lower 15b values
(Table 5; Fig. 3B). Even taking into account a small
increase from the solvent effect (<+1‰), nitrogen isotope
fractionations between Zn(NH3)6

2+ or Cd(NH3)6
2+ and

NH3(aqueous) are very small (<+2‰ at 0 �C). In contrast,
the ammine complexes of Cu+, Au+, and Pt+ have much
higher 15b values than NH3(aqueous). One speculation is
that coordination of NH3 in the metal-ammine complex
may play an important role in determining the nitrogen
isotope fractionations. As a fact, the 15b values of metal-
ammine complexes show an increasing trend following
the decrease of coordination number from 6 (for Cd2+,
Zn2+, Co2+, Ni2+, Co3+), 4 (for Cd2+ and Cu2+), to 2
(for Ag+, Cu+, Au+, Pt+) (see Fig. 3). The effect of
NH3 coordination can even overrule the valence effect,
which is indicated by the inversed order in isotopic enrich-
ment between Cu(NH3)2

+ and Cu(NH3)4
2+.

4.2. Comparison with literature data

Our calculated 15b values for NH3(gaseous) are very close
to those previous calculation results. For example, the cal-
culations by Liu et al. (2010) using a similar method but a
larger basis set gave a 15bNH3(gaseous) value of 1.0685 (vs.
1.0687 in this study) at 25 �C. In a recent study, Walters
et al. (2019) also calculated the 15b values for both gaseous
and aqueous NH3 and NH4

+ in a temperature range of 250–
350 K by the HF/6-31G(d) and B3LYP/6-31G(d) levels of
theory and recommended to use the HF/6-31G(d) results.
Therefore, in the discussions below, all data of Walters
et al. (2019) refer to the HF/6-31G(d) results. Our
calculation results agree relatively well with their results
for NH3(gaseous) (

15b value at 25 �C: 1.0687 in this study vs
1.0700 in Walters et al., 2019) and NH4

+
(gaseous) (

15b value
at 25 �C: 1.1031 in this study vs 1.1049 in Walters et al.,
2019) (Fig. 4B). However, our calculation results show a
larger discrepancy to their results for NH3(aqueous) (

15b value
at 25 �C: 1.0776 in this study vs 1.0743 in Walters et al.,
2019) and NH4

+
(aqueous) (

15b value at 25 �C: 1.1035 in this
study vs 1.1073 in Walters et al., 2019). This discrepancy
could be caused by two factors. First, it is noticed that, in
the optimized geometry of Walters et al. (2019) for
NH3(aqueous), the NH3 molecule located at the edge of a
water cluster, implying that this aqueous NH3 model does
not simulate a fully hydrated environment. Second, the cal-
culations in Walters et al. (2019) only sampled one config-
uration for each explicit solvent model. However,
previous studies have observed local configuration uncer-
tainties caused by explicit solvent molecules and urged to
sample multiple configurations (e.g., Table 3) to produce
more accurate results (e.g., Zhang and Liu, 2014; He and
Liu, 2015; Gao et al., 2018).

Nitrogen isotope fractionations between N2 and NH4
+ or

NH3 have been mostly investigated by theoretical calcula-
tions because it is difficult to reach isotope equilibrium
between N2 and NH4

+ or NH3 at experimental conditions
(Li et al., 2009). Compared with previous theoretical calcu-
lations based on measured vibration frequencies (Urey,
1947; Scalan, 1958; Hanschmann, 1981; Petts et al., 2015),
our results are closer to those of Scalan (1958) (see Fig. 4A).

Nitrogen isotope fractionations between NH4
+ and

NH3(gaseous) have been intensively studied by both theoret-
ical calculations and experimental studies. The data are
compiled in Fig. 4B. Our new results are broadly consistent
with the results for a temperature range of 250–350 K by
Walters et al. (2019). Compared with the diverse results in
previous calculations based on measured vibration frequen-
cies (Urey, 1947; Scalan, 1958; Hanschmann, 1981; Petts
et al., 2015), our results fall between the results of Urey
(1947) and Scalan (1958) at low temperature range
(0–200 �C) but converge to those of Scalan (1958) and
Hanschmann (1981) at temperatures higher than 200 �C
(Fig. 4B). Among all these theoretical calculations, the
results from Petts et al. (2015) are significantly lower than
the others. This difference is mainly attributed to the large
anharmonic effect from the calculations by Petts et al.
(2015), which is however not observed in our calculations.
Experimental determinations of nitrogen isotope fractiona-
tion between NH4

+ and NH3(gaseous) were mostly carried out
at low temperatures. The data of Thode et al. (1945),
Kirshenbaum et al. (1947) and Heaton et al. (1997) are close
to our calculation results (Fig. 4B), whereas the data of
Urey and Aten (1936), Savard et al. (2017), Kawashima
and Ono (2019) diverge from the theoretical predictions.
This deviation may be attributed to two factors: (1) the
equilibrium isotope fractionation could have not been
achieved in those experiments; (2) some of the experiments
were measured on solid ammonium salt, in which an
additional isotope fractionation between solid NH4

+ and
gaseous NH4

+ may exist (Ishimori, 1960b).
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Nitrogen isotope fractionations between NH4
+ and

NH3(aqueous) are relatively less studied. The solvent effect,
which is strong for NH3 hydration but negligible for
NH4

+ hydration, results in diminished isotope fractionation
between the NH4

+ – NH3(aqueous) pair relative to the
NH4

+ – NH3(gaseous) pair. This has been demonstrated by
our calculation as well as those by Walters et al. (2019).
However, our calculations yielded much smaller
magnitudes of nitrogen isotope fractionations between
NH4

+ and NH3(aqueous) (Fig. 4C) than those of
Walters et al. (2019), likely because the calculations in
Walters et al. (2019) only incorporated a partial solvent
effect, which can be inferred by the configuration of
their hydrated NH3. Our results fit well with the
experimental results of Urey and Aten (1936),
Thode et al. (1945), and Ishimori (1960a), but are slightly
lower than the result of Kirshenbaum et al. (1947) and
slightly higher than the result of Hermes et al. (1985).
One striking phenomenon on Fig. 4C is that the experimen-
tal results by Li et al. (2012) are much higher than the the-
oretical predictions, which will be explored in detail in
Section 5.1.

For the NH3(aqueous) – NH3(gaseous) pair (Fig. 4D), our
calculations considering a full hydration effect yielded lar-
ger nitrogen isotope fractionations than those of Walters
et al. (2019). The relatively few experimental estimates
(e.g., Wahl et al., 1935; Urey and Aten, 1936; Thode
et al., 1945; Kirshenbaum et al., 1947; Deng et al., 2018)
mostly fall between the line from this study and the one
from Walters et al. (2019). The difference between our
results and the experimental results may be attributed to
the kinetic isotope effect associated with the movement of
NH3 gas (e.g., Deng et al., 2018), which could have inter-
fered the quantification of the equilibrium isotope fraction-
ations in laboratory experiments.

The study of nitrogen isotope fractionation involving
metal-ammine complexes is very few in our knowledge.
By ion-exchange experiments using cation exchange resins,
Ishimori (1960a) investigated the equilibrium isotope frac-
tionation factors during the single-stage separation of
NH3 from ammine complexes of Ni2+, Cu2+, Zn2+, Cd2+,
and Ag2+ in 30 �C aqueous solutions, which yielded
+7.6‰ between Ni(NH3)n

2+ and NH3, +11.6‰ between
Cu(NH3)4

2+ and NH3, +11.5‰ between Zn(NH3)4
2+ and

NH3, +10.2‰ between Cd(NH3)4
2+ and NH3, and +9.2‰

between Ag(NH3)2
2+ and NH3. Using similar experiments

at 30 �C, Gupta and Sarpal (1967) obtained the equilibrium
isotope fractionation factors of +6.2‰, +7.9‰, and
+10.0‰ between Ni2+-ammine complexes and NH3 in
aqueous solutions during the single-stage separation of
NH3 from Ni(NH3)4

2+, Ni(NH3)5
2+, and Ni(NH3)6

2+, respec-
tively. These experimental and theoretical data are signifi-
cantly higher than our calculated data between these
metal-ammine complexes and NH3(aqueous) (e.g., +2.8‰
for Ni(NH3)6

2+, +2.3‰ for Cd(NH3)4
2+, +6.2‰ for Cu

(NH3)4
2+, +0.6‰ for Zn(NH3)6

2+, +5.1‰ for Ag(NH3)2
+,

at 30 �C), but mostly lower than those between metal-
ammine complexes and NH3(gaseous) (e.g., +10.8‰ for Ni
(NH3)6

2+ , +10.3‰ for Cd(NH3)4
2+, +14.2‰ for Cu

(NH3)4
2+, +8.6‰ for Zn(NH3)6

2+, +13.1‰ for Ag(NH3)2
+,

at 30 �C). Because these experimental studies (Ishimori,
1960a; Gupta and Sarpal, 1967) did not describe the
detailed controlling conditions in their experiments, in par-
ticular, whether other nitrogen species (e.g., NH4

+)
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coexisted in the solution or whether any NH3 degassing was
involved, it is difficult to assess the exact cause of the dis-
crepancy between our calculation results and these experi-
mental results. In a theoretical calculation based on
vibrational frequency data, Jeevanandam and Gupta
(1968) obtained the isotope fractionation factors (relative
to NH3) at 25 �C to be � +27‰ for Co(NH3)6
3+, �

+15‰ for Ni(NH3)6
2+, and � +11‰ for Co(NH3)6

2+, which
are slightly higher than our calculated results between these
complexes and gaseous NH3, i.e., +11.8‰ and + 20.0‰ for
Co(NH3)6

3+ at high-spin state and low-spin state, repsec-
tively, +11.1‰ for Ni(NH3)6

2+, and � +10.0‰ for Co
(NH3)6

2+.

5. APPLICATIONS

5.1. Complicated isotopic effect during NH3 degassing

NH3 degassing may occur in alkaline fluids in a variety
of geological settings (see discussion in Li et al., 2012; Deng
et al., 2018). Li et al. (2012) carried out laboratory experi-
ments to simulate NH3 degassing in the field at a tempera-
ture range from 2 �C to 70 �C. The experiments were
started by adding inadequate hydroxyl to partially dissoci-
ate NH4

+ in a solution to drive NH3 degassing, i.e., the pro-
cesses described by Eq. (1). The nitrogen isotopic
compositions of the remaining NH4

+ after complete degas-
sing of NH3 produced by partial dissociation of NH4

+ at
various extents displayed a pattern close to batch equilib-
rium model rather than a Rayleigh model, which made
the observed large isotopic effect (from +33.5‰ at 70 �C
to +45.5‰ at 23 �C) be interpreted as a result mainly from
equilibrium isotope fractionations between NH4

+ and NH3(-

aqueous), whereas the possible effect from NH3 degassing was
not fully assessed due to the lack of data (Li et al., 2012).
Our calculations yielded significantly smaller nitrogen iso-
tope fractionations between NH4

+ and NH3(aqueous)

(Fig. 4C) than the experimental results by Li et al. (2012).
Recently, experimental investigations on the NH3(aqueous)

– NH3 system by Deng et al. (2018) revealed that NH3

degassing could have a significant kinetic nitrogen isotope
effect. To assess the possible influence of this kinetic isotope
effect on the experimental results in Li et al. (2012), we car-
ried out numeric modeling of those isotopic results using
the equilibrium isotope fractionation factors between
NH4

+ and NH3(aqueous) in this study and the kinetic isotope
effect between NH3(aqueous) and NH3(gaseous) determined by
Deng et al. (2018).

Following the methods from previous studies (e.g., Rees,
1973; Dauphas and Rouxel, 2006), a two-step reaction
model was applied to characterize the nitrogen isotope frac-
tionation involving an intermediate species. The nitrogen
isotope transfer in the reaction network can be described
by the equations below.

14NHþ
4 þ OH� þ n� 1ð ÞH 2O �

14k1

14k2

14NH 3 � nH 2O

� !
14k3 14NH 3ðgasÞ þ nH 2O

15NHþ
4 þ OH� þ n� 1ð ÞH 2O �

15k1

15k2

15NH 3 � nH 2O

� !
15k3 15NH 3ðgasÞ þ nH 2O ð6Þ

in which 14k1,
15k1,

14k2,
15k2,

14k3,
15k3 represent reaction

rates of 14N and 15N in the reversible reaction between
NH4

+ and NH3(aqueous) (denoted by subscripts 1 and 2)
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and the unidirectional reaction from NH3(aqueous) to NH3(-

gaseous) (denoted by subscript 3), respectively. Accordingly,
the concentration of reactants and products at time t can
be obtained by:

dn½ 14NHþ
4
�

dt
¼ � 14k1 14NHþ

4

� � � HO�½ �
þ 14k2 14NH 3 � nH 2O

� � ð7Þ
dn½ 15NHþ

4
�

dt
¼ � 15k1 15NHþ

4

� � � HO�½ �
þ 15k2 15NH 3 � nH 2O

� � ð8Þ
dn½ 14NH3 �nH2O�

dt
¼ 14k1 14NHþ

4

� � � HO�½ �
� 14k2 14NH 3 � nH 2O

� �
� 14k3 14NH 3 � nH 2O

� � ð9Þ
dn½ 15NH3 �nH2O�

dt
¼ 15k1 15NHþ

4

� � � HO�½ �
� 15k2 15NH 3 � nH 2O

� �
� 15k3 15NH 3 � nH 2O

� � ð10Þ
dn½ 14NH3 �nH2O�

dt
¼ 14k3 14NH 3 � nH 2O

� � ð11Þ
dn½ 15NH3 �nH2O�

dt
¼ 15k3 15NH 3 � nH 2O

� � ð12Þ

Finally, the ratio of the remaining NH4
+ and

NH3(aqueous) (Rremaining) at time t can be derived from:

Rremaining ¼
15NHþ

4

� �þ 15NH 3 � nH 2O½ �
14NHþ

4

� �þ ½ 14NH 3 � nH 2O�
ð13Þ

The nitrogen isotope fractionations in these reactions
can be described as:

a1 ¼
15k1 � 14k2
15k2 � 14k1

ð14Þ

a2 ¼
15k3
14k3

ð15Þ

where a1 is the equilibrium nitrogen isotope fractionation
factor, which has been calculated above; a2 is the kinetic
nitrogen isotope fractionation factor, which has been deter-
mined by Deng et al. (2018). In our numeric modeling, val-
ues were arbitrarily assigned to the unknowns 14K1,

15K1,
and 14K2 to best fit the experimental data.

When hydroxyl is added into an ammonium solution,
the extent of the overall reaction is dependent on the initial
[OH�]/[NH4

+] ratio. As a combined effect of equilibrium
isotope fractionation between the remaining NH4

+ and
NH3(aqueous) and kinetic isotope fractionation of NH3

degassing from NH3(aqueous), the remaining NH4
+ in the

solution is progressively enriched in 15N with the proceed-
ing of the reaction until the produced NH3(aqueous) is con-
sumed by NH3 degassing. The magnitude of 15N
enrichment in the remaining NH4

+ is a function of (1) tem-
perature, which determines the magnitudes of the two
involved isotope fractionations, and (2) the initial [OH�]/
[NH4

+] ratio, which determines the extents of the total reac-
tion. The progressive 15N enrichment patterns for reactions
at room temperature, 50 �C and 70 �C, are illustrated in
Fig. 5 for a variety of initial [OH�]/[NH4

+] ratios. The
results show that, when the initial [OH�]/[NH4

+] ratio is
large enough (e.g., � 2) to drive complete conversion of
NH4

+ to NH3(aqueous), the
15N enrichment in the remaining

NH3(aqueous) along progressive NH3 degassing is only con-
trolled by the kinetic isotope fractionation from NH3

degassing and follows the red curves in Fig. 5A-C. These
scenarios resemble the laboratory experiments by Deng
et al. (2018), and consistently, the data from Deng et al.
(2018) fall closely to these curves. In contrast, when the ini-
tial [OH�]/[NH4

+] ratio is small enough (e.g., 	 1) to only
induce partial conversion of NH4

+ to NH3(aqueous), the iso-
tope evolution pattern of the remaining nitrogen in the
solution (a mixture of NH4

+ and NH3(aqueous) in this case)
along progressive NH3 degassing is controlled by both equi-
librium and kinetic isotopic fractionations as well as the ini-
tial [OH�]/[NH4

+] ratio. The progressive 15N enrichments
for a number of initial [OH�]/[NH4

+] ratios are illustrated
by the grey curves in Fig. 5. Interestingly, after complete
degassing of NH3 from the solution, the d15N of the
remaining NH4

+ from varying initial [OH�]/[NH4
+] ratios,

i.e., the data points at the ends of the grey curves on
Fig. 5, form the blue curves which show very small curva-
tures that mimic batch equilibration lines as initially
thought in Li et al. (2012). When plotted on Fig. 5, the
experimental data of Li et al. (2012) align closely along
the blue lines. Therefore, the large isotope fractionations
observed in the experiments by Li et al. (2012) more likely
reflect the overall isotope effect combining the equilibrium
isotope fractionation during the conversion of NH4

+ to
NH3(aqueous) (this study) and the kinetic isotope effect of
NH3 degassing (Deng et al., 2018). Nevertheless, the
experiments in Li et al. (2012) represent an open-system sce-
nario that is more likely to occur in the field, and thus can
contribute to interpret the field data in a first order. More
accurate data modeling and interpretation should follow
the quantitative modeling described here (Eqs. (7)–(15);
Fig. 5).
5.2. Metal-ammine remobilization in hydrothermal system?

Busigny et al. (2011) observed a linear relationship
between Cu concentration and d15N values in meta-
gabbros from the western Alps. To explain this correlation,
the authors proposed that Cu in the protoliths of the meta-
gabbros was hydrothermal leached and remobilized by fluid
in which ammonia is complexed with Cu. However, because
the nitrogen isotope fractionation factors between Cu-
ammine complex (the species in the fluid) and ammonium
(the species in the (meta-)mafic rocks; Busigny et al.,
2005, 2011; Li et al., 2007, 2014) were not available at that
time, Busigny et al. (2011) modeled their data using the
nitrogen isotope fractionation factors between NH4

+ and
NH3 from Scalan (1958), which are now demonstrated to
be very different from those between NH4

+ and copper-
ammine complex (see Fig. 3). Our new data provide an
unprecedently available opportunity to revisit this
hypothesis.
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In our modeling (see Fig. 6), the valence of copper
cation is considered to be either I or II. The coordina-
tion number for copper cation is strongly dependent on
solution environments. Cu(II) can have coordination
numbers of 4, 5 and 6, among which Cu(NH3)4

2+ is
the most thermodynamically stable species; whereas Cu
(I) can have coordination numbers of 2, 3 and 4, among
which the most thermodynamically stable species has
been suggested to be Cu(NH3)2

+ (Pavelka and Burda,
2005). Using the calculated nitrogen isotope fractiona-
tions of these two species relative to ammonium (Table 6;
Fig. 3C), we modeled the meta-gabbro data from
Busigny et al. (2011) by a batch model. Rayleigh distil-
lation model is not employed here because it is appar-
ently inconsistent with the observed linear relationship
between Cu concentration and d15N of the low-strain
meta-gabbros samples.

Fig. 6 illustrates our modeling results. It shows that the
relationship between nitrogen concentrations and d15N val-
ues can be easily explained by a leaching model (as well as a
mixing model or a batch devolatilization model), but
requires a large temperature range, e.g., 250–650 �C if in
form of Cu(NH3)2

+ or 300–700 �C if in form of Cu
(NH3)4

2+ (Fig. 6A). Applying the same temperature ranges,
the Cu concentration and d15N data should fall in the trian-
gular area labeled by Cu(NH3)2

+ or Cu(NH3)4
2+ in Fig. 6B,

which however cannot explain the observed Cu data
because of the low efficiency of NH3 in mobilizing Cu in
these two forms, i.e., 2:1 and 4:1, respectively (Fig. 6B). If
copper mobilization was indeed coupled with NH3 in those
samples, it had to be in a copper complex species containing
only one NH3 (Fig. 6B) in order to efficiently leach
out > 90% of the Cu as observed in some samples
(Fig. 6B). In this case, the Cu concentration – d15N rela-
tionship can be explained by a batch model (the triangular
area labeled by Cu(NH3)

+/2+ in Fig. 6B) with
lnaNHþ

4
�CuðNH3Þþ=2þ values of +7.5‰ to + 10.1‰. Even apply-

ing the isotope fractionations of Cu(NH3)4
2+ or Cu(NH3)2

+,
which have larger coordination numbers than the expected
species of Cu(NH3)

2+ or Cu(NH3)
+, respectively, these

large isotope fractionations correspond to a small tempera-
ture range of 200–320 �C for Cu2+ or 150–270 �C for Cu+,
both are significantly lower than the large and high temper-
ature ranges to explain the N concentration – d15N relation-
ship (Fig. 6A). The real isotope fractionations between
NH4

+ and Cu(NH3)
+/2+ would be smaller than these

between NH4
+ and Cu(NH3) 4

2+ or between NH4
+ and Cu

(NH3) 2
+ given that 15N is expected to be more enriched in

species with smaller coordination numbers. Consequently,
it requires even lower temperature range to explain the
data. This self-inconsistency between the temperature
ranges yielded from the N content-d15N relationship
(Fig. 6A) and from the Cu content-d15N relationship
(Fig. 6B) implies that the observed nitrogen signature of
the meta-gabbros (Busigny et al., 2011) might not be con-
trolled by leaching during seafloor hydrothermal alteration,
or at least have been overprinted by other geochemical
processes.
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6. CONCLUSION

Theoretical calculations of equilibrium nitrogen isotope
fractionation factors between gaseous and aqueous ammo-
nium, ammonia, N2 and metal-ammine complexes indicate
that 15N is enriched following the order of NH4

+ >N2 -
> NH3(aqueous) > NH3(gaseous), with all but one metal-
ammine complexes lying between NH4

+ and NH3(aqueous).
Our calculation suggests anharmonic effect is not significant
on the isotope fractionation between NH4

+ and NH3. In the
metal-ammine complexes, coordination number may play
an important role in controlling the isotope fractionations.
Our new calculation results verify that nitrogen isotope
behavior in a natural system involving multiple nitrogen
species may be very complicated. The propagation of
isotope fractionations along a reaction network may result
in a much larger isotopic effect than expected.
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