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Weibull Modulus of Cleavage Fracture Toughness
of Ferritic Steels

W.-S. LEI, G. QIAN, Z. YU, and P. ZHANG

The ordinary Weibull distribution function has been commonly accepted for empirical
characterization of cleavage fracture toughness of nuclear reactor and containment pressure
vessel steels. However, this method lacks a fundamental basis. This work adopts the
standardized Weibull distribution function to analyze cleavage fracture toughness of ferritic
steels measured from different sized fracture mechanics specimens at different temperatures to
estimate the Weibull modulus. The toughness data of five different nuclear reactor and
containment vessel steels are analyzed. The estimations obtained the Weibull modulus (m) in the
range of 1.83 to 2.55 and strong temperature dependence of the threshold cleavage fracture
toughness Kmin, as opposed to the constant values of mK = 4 and Kmin = 20 MPam1/2 given in
ASTM E1921-19. The goodness of fit test by the one-sample Kolmogorov–Smirnov (K–S) test
validated Weibull distribution function for describing the toughness distribution.
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I. INTRODUCTION

FERRITIC steels are the materials of choice for
fabricating nuclear reactor and containment pressure
vessels. As defined by ASTM E1921-19,[1] ferritic steels
are typically carbon, low-alloy, and high-alloy grades,
with bainite, tempered bainite, tempered martensite, and
ferrite and pearlite as typical microstructures. Due to
their body-centered-cubic crystal structures, all ferritic
steels possess ductile-to-brittle transition temperature
(DBTT) fracture toughness characteristics. In the lower
shelf and the DBTT regime, the cleavage fracture
toughness exhibits a large variation and significant
specimen size dependence. As the most critical compo-
nent of a nuclear power plant, nuclear reactor and
containment pressure vessels are designed against catas-
trophic failure at a very low failure probability in the
order of 10�6 to 10�7. Since it is impossible to directly
test or duplicate such a low probability failure event on
the full-size scale at an affordable cost, a probabilistic
design methodology is demanded. This calls for a
statistical assessment of cleavage fracture toughness
data as an essential step. According to a critical review
by Lei[2] and the work by Qian et al.[3], major efforts on

statistical modeling of cleavage fracture toughness fall
into the empirical approach[4–7] and the fracture mech-
anism-based approach.[7–11] The empirical approach
adopts the following ordinary Weibull distribution
function to fit the cleavage fracture toughness data of
ferritic steels.

P KJc;Bð Þ ¼ 1� exp � KJc � Kmin

K0

� �mK
� �

½1�

where P (KJC, B) is the cumulative failure probability
corresponding to the fracture toughness KJC of speci-
men with thickness B, K0 is scale parameter for nor-
malization, and mK is the Weibull modulus. The
fracture mechanism-based approach has yet obtained
an explicit solution to the cumulative failure probabil-
ity as a function of cleavage fracture toughness. The
following two-parameter Weibull statistical model of
the fracture toughness KIc with a modulus of 4 formu-
lated by Margolin et al.[7] Beremin[8] and Wallin[9] is
disproved[2,10,11]:

P KJC ;Bð Þ ¼ 1� exp � B

B0

KJc

K0

� �4
" #

½2�

where B0 is reference thickness for normalization. As a
consequence, there lacks a valid theoretical basis or
rationale for the following three-parameter Weibull
distribution of fracture toughness KIc with a modulus
of 4 and a threshold toughness of Kmin ¼ 20MPa

ffiffiffiffi
m

p
,

which was arbitrarily extended from Eq. [2] by
Wallin[9] and later on adopted in the Master Curve
approach[1] for specimens of a given thickness at a
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specific temperature for ferritic steels with yield
strengths between 275 and 825 MPa in DBTT regime.

P KJC ;Bð Þ ¼ 1� exp � B

B0

KJc � Kmin

K0 � Kmin

� �4
" #

½3�

The lack of a valid theoretical basis implies that Eq. [3]
is essentially an application of the ordinary empirical
Weibull distribution function Eq. [1]. The only differ-
ence is that Weibull modulus mK and threshold tough-
ness Kmin are determined by goodness of fit in the
empirical approach, while here they are assigned to
specific values with debatable rationale. Therefore,
further studies are necessary to justify the adopted
values of Weibull modulus mK ¼ 4 and threshold
toughness Kmin ¼ 20MPa

ffiffiffiffi
m

p
for ferritic steels with the

specified yield strengths (275 to 825 MPa). In view of the
foregoing, this work aims to explore an approach to
estimating the Weibull modulus of cleavage fracture
toughness. In the following, the method will be intro-
duced first. Then several groups of cleavage fracture
toughness data of nuclear vessel steels will be analyzed.
This is followed by the one-sample Kol-
mogorov–Smirnov (K–S) test as a goodness of fit test
to compare the proposed approach and the Master
Curve approach.

II. METHOD

A. Description

By assuming lK and rK as the mean and standard
deviation of fracture toughness KJc, the standardized
toughness parameter Z is introduced as follows:

Z ¼ KJc � lK
rK

½4�

Refer to Eq. [1], lK and rK are given by

lK ¼ Kmin þ K0C 1þ 1=mKð Þ ½5�

rK ¼ K0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C 1þ 2=mKð Þ � C 1þ 1=mKð Þ½ �2

q
½6�

where C mKð Þ ¼
R1
0

e�xxmK�1dx is the Gamma function.
Accordingly,

KJc � Kmin

K0
¼ C 1þ 1=mKð Þ þ Z

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C 1þ 2=mKð Þ � C 1þ 1=mKð Þ½ �2

q
½7�

Now the three-parameter Weibull distribution in
Eq. [1] reduces to the standardized format with a sin-
gle parameter mKð Þ:
P Z;mKð Þ ¼

1� exp � C 1þ 1=mKð Þ þ Z �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C 1þ 2=mKð Þ � C 1þ 1=mKð Þð Þ2

q� �mK
� �� �

½8�

Equation [8] is rewritten as:

P Z;mKð Þ ¼ 1� exp � Z� Zmin

Z0

� �mK
� �

½9�

The corresponding probability density function is

f Z;mKð Þ ¼ mK

Z0

Z� Zmin

Z0

� �mK�1

exp � Z� Zmin

Z0

� �mK
� �

½10�

with

Zmin ¼ � C 1þ 1=mKð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C 1þ 2=mKð Þ � C 1þ 1=mKð Þ½ �2

q ½11�

Z0 ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

C 1þ 2=mKð Þ � C 1þ 1=mKð Þ½ �2
q ½12�

For a given set of fracture toughness data
KJc;i i ¼ 1; 2; . . . ; nð Þ, in order to convert them into the
standardized format Zi i ¼ 1; 2; . . . ; nð Þ, the population
mean lKð Þ and standard deviation rKð Þ are estimated
by the sample average l̂K and standard deviation r̂K
as below

l̂K ¼
Pn

i¼1 KJc;i

n
½13�

r̂K ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

n� 1:5ð Þ
Xn
i¼1

KJc;i � l̂K
	 
2s

½14�

Note that Eq. [14] is slightly different with the follow-
ing common expression for sample standard deviation:

r̂K ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n� 1

Xn
i¼1

KJc;i � l̂K
	 
2s

½15�

This is based on the following considerations: Unlike
that Eq. [13] is an unbiased estimator of the popula-
tion mean lK, Eq. [15] is a biased estimator of the
population standard deviation rK. An approximate
formula for the unbiased estimator of the population
standard deviation rK for non-normal distributions
is[12]:

r̂K ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

n� 1:5� 0:25c2

Xn
i¼1

KJc;i � l̂K
	 
2s

½16�

where c2 denotes the population excess kurtosis. For
Weibull distribution with a modulus mK, there is

c2 ¼
�3 C 1þ 1

mK

� �h i4
þ6C 1þ 2

mK

� �
C 1þ 1

mK

� �h i2
�4C 1þ 3

mK

� �
C 1þ 1

mK

� �
þ C 1þ 4

mK

� �

C 1þ 2
mK

� �
� C 1þ 1

mK

� �h i2� �2

½17�

As shown in Figure 1, for 1:5 � mK � 6, there is
� 0:29 � c2 � 1:11. Within this range, with specimen
number n ¼ 10, the difference in the value of r̂K is 0.4 to
2.1 pct between Eqs. [14] and [16] and is 2.5 to 5.7 pct
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between Eqs. [15] and [16]. With specimen number
n ¼ 20, the corresponding difference reduces to< 0.01
and ~ 1.3 pct, respectively.

Since both Zmin and Z0 are functions of mK, the
logarithmic likelihood function of Weibull parameters
mK;Zmin;Z0ð Þ for the samples Z1, Z2, …, Zn depends
only on mK as below

L mK;Zmin;Z0ð Þ ¼ n ln
mK

Z0

� �

þ mK � 1ð Þ
Xn
i¼1

ln
Zi � Zmin

Z0

� �

�
Xn
i¼1

Zi � Zmin

Z0

� �mK

½18�

Now the maximum likelihood estimation reduces to
search for the value of the single parameter mK that
maximizes the likelihood function L mK;Zmin;Z0ð Þ.

Once the estimated value of mK, m̂K, is known, Kmin

and K0 are estimated as below due to Eqs. [5] and [6]:

K̂0 ¼
r̂Kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

C 1þ 2=m̂Kð Þ � C 1þ 1=m̂Kð Þ½ �2
q ½19�

K̂min ¼ l̂K � K̂0 � C 1þ 1=m̂Kð Þ ½20�

B. Significance of the Standardized Weibull Distribution
Function

The purpose of this section is to demonstrate the
validity of the proposed method with mK ¼ 4 as an
example. Equation [9] implies that for different fracture
toughness data sets, such as those measured at different
temperatures and with different specimen geometries,
the values of Kmin and K0 may vary. But so long as the
Weibull modulus mK remains constant as a material
property, all the data sets will fall onto a same curve
described by Eq. [9]. With all the data measured at
different temperatures and with different specimen
geometries as inputs, the Weibull modulus estimate
should be more accurate than one single data set at one
temperature for a given specimen size. As an example,
Figure 2(a) shows three distributions of fracture

toughness KJC all with mK ¼ 4 but different values of
Kmin and K0, which are arbitrarily assumed as examples.
50 data points are randomly generated on each pre-
scribed distribution as often used in Monte Carlo
simulation.[2,9] The corresponding population mean

Fig. 1—Variation of excess kurtosis c2 with Weibull modulus mK.

Fig. 2—Three cleavage fracture toughness distributions all with
mK ¼ 4 but different K0 and Kmin: (a) Raw toughness data, (b) the
standardized formats with population mean and standard deviation,
(c) the standardized formats with sample average and standard
deviation, (d) m̂K vs number of data sets, (e) maximum likelihood
estimation with all three data sets as input.
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and standard deviation are also shown in brackets
according to Eqs. [5] and [6]:

A.
mK ¼ 4; Kmin ¼ 0; K0 ¼ 5MPam1=2

lK ¼ 4:53MPam1=2; rK ¼ 1:27MPam1=2
� �

B.
mK ¼ 4; Kmin ¼ 20MPam1=2; K0 ¼ 15MPam1=2

lK ¼ 33:60MPam1=2; rK ¼ 3:81MPam1=2
� �

C.
mK ¼ 4; Kmin ¼ 30MPam1=2; K0 ¼ 100MPam1=2

lK ¼ 120:64MPam1=2; rK ¼ 25:43MPam1=2
� �

With the known population mean and standard
deviation and exact cumulative probability of the 50
data points in each distribution, Figure 2(a) is trans-
formed into the standardized format in Figure 2(b). It
shows that all the 150 data points from three distribu-
tions fall exactly onto a single master curve defined by
Eq. [9].

However, in a real experiment, the exact cumulative
probability of each measured data point, the population
mean, and population standard deviation are all
unknown. Therefore, the rank probability, the sample
average and standard deviation in Eqs. [13] and [14] are
adopted as corresponding estimators. The accuracies of
these three estimators are affected by the number of

samples. Figure 2(c) shows the corresponding standard-
ized distributions with the rank probability calculated
by

Pi ¼ i� 0:3ð Þ= nþ 0:4ð Þ ½21�

where n is the total number of samples in one data set.
In this example, n ¼ 50. i is the sequential number of
the ith data point when all the data are ranked in an
ascending order, i ¼ 1; 2; . . . ; n: Regardless of the
minor deviations, it is obvious that all the three sets of
data points closely fall onto the theoretical curve
P Z;mKð Þ according to Eq. [9]. When using the
one-sample Kolmogorov–Smirnov (K–S) test for good-
ness of fit test, the standardized data sets converted in
both ways in Figures 2(b) and (c) follow the Weibull
distribution P Z;mK ¼ 4ð Þ as defined by Eq. [9]. In
order to evaluate the minor deviation of using the
rank probability to approximate the true probability
and adopting the sample average and standard devia-
tion to estimate the population average and standard
deviation, the root-mean-square error (RMSE) is cal-
culated for each case for comparison. RMSE is defined
in Eq. [22] and it measures the differences between the
values of probability P calculated by a prescribed dis-
tribution function and the observed values. It is often
used for either testing the goodness of fit of a pre-
scribed distribution function to different data sets or
comparing the errors of different distribution functions
for a particular variable. A lower value of RMSE cor-
responds to a more precise model.

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn
i¼1

P̂i � Pi

	 
2s
½22�

where P̂i is the predicted failure probability based on a
prescribed distribution such as Eq. [9], Pi is the
probability value corresponding to the standardized
value Zi of each toughness datum KJc;i (i = 1, 2,…, n),
which is often estimated by the rank probability based
on Eq. [21], n is the total number of toughness data
points.
For each of the three data sets, when the true

probability of each datum is known and the population
mean and standard deviation are adopted for standard-
ization as shown in Figure 2(b), RMSE ¼ 0 is obtained.
While when the rank probability of each datum and the
sample mean and standard deviation are adopted for
standardization as shown in Figure 2(c), RMSE ¼
0:04; 0:03; 0:04 is obtained, respectively. It tells that
while Figure 2(c) is less accurate than Figure 2(b) in
terms of data fitting with the standardized Weibull
distribution P Z;mK ¼ 4ð Þ, the RMSE value is still low.
To show the effect of sample number on the bias of

estimation using Eq. [18], mK is estimated with the
following data conditions as input:

(A) 50 data points in each data;
(B) 100 data points of any two data sets;
(C) all 150 data of three data sets.

The results are summarized in Figure 2(d). A single
data set yields m̂K ¼ 3:0; 4:7; 4:95; Any two data sets

Fig. 2—continued.
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lead to m̂K ¼ 3:7; 3:8; 4:8; All the 150 data points give
m̂K ¼ 4:0. Figure 2(e) shows the result of maximum
likelihood estimation with all 150 data as input.

III. STATISTICAL ANALYSIS OF CLEAVAGE
FRACTURE TOUGHNESS DATA

Several groups of cleavage fracture toughness data of
nuclear reactor or containment vessel steels are analyzed
using the statistical method to assess potential effects of
temperature and specimen size on Weibull modulus mK.
All the toughness data are measured with the ratio of
crack length to specimen width of approximately 0.5
conforming to fracture toughness measurement require-
ments regardless of specimen size and are given in a
table in related references.

A. Cleavage Fracture Toughness of SA738Gr.B Steel

The effect of temperature on Weibull modulus mK is
evaluated for a given specimen size. Zhang et al.[13]

reported the experimental results of cleavage fracture
toughness of SA738Gr.B steel measured with 1T-CT
specimens at four different temperatures namely, 133 K,
143 K, 153 K, and 163 K. SA738Gr.B is a bainistic steel
used for manufacturing nuclear containment vessels that
serve as the third and final barrier for leakage preven-
tion of radioactive materials after the nuclear fuel shell
and the first-circuit pressure boundary. Each tempera-
ture is controlled within ± 3 K using a regulated liquid
nitrogen flow in an insulated chamber equipped with
PID controller. The standard 25.4 mm thick 1T-CT
fracture toughness specimens are prepared along the
T–L direction from a 60 mm thick SA738Gr.B plate.
Taking the upper surface of the CT specimen as the
sampling reference location, the specimens are extracted
from four region namely, at surface, at 1=8 plate
thickness, at 1=4 plate thickness, and at 1=2 plate
thickness for the specimens to be tested at 133 K, 143 K,
153 K, and 163 K in sequence. The fracture toughness
measurements according to ASTM E1921[1] are reported
in table format in Reference 13. In total, there are 116
data points at all four temperatures including: 28 at
133 K, 30 at 143 K, 46 at 153 K, and 12 at 163 K. All
the measured KJc values are below the limit value
KJc(limit) specified by the ASTM E1921 standard[1] and
were valadiated by SEM fractographic analysis.
Figure 3(a) shows the experimental data, and
Figure 3(b) shows the result of maximum likelihood
estimation. It is determined that m̂K ¼ 1:9. Figure 3(c)
presents the standardized distribution of cleavage frac-
ture toughness. The solid line is the fitting curve using
Eq. [9] with m̂K ¼ 1:9. For individual data set at each
temperature, the values of m̂K are 1.6 (133 K), 1.42
(143 K), 2.05 (153 K) and 1.03 (163 K).

B. Cleavage Fracture Toughness of A533B Cl.1 Steel

The examples of A533B Cl.1 steel mainly intend to
evaluate the effect of specimen size on Weibull modulus
mK at a same temperature.

Williams et al.[14] reported cleavage fracture tough-
ness data of A533B Cl.1 steel (HSST Plate 13) measured
on 12.5 mm thick (0.5 T), standard 25 mm thick (1 T)
and 50 mm thick (2 T) CT specimens at 123 K. Figure 4
summarizes the experimental data and analysis. It is
determined that m̂K ¼ 1:83.

Fig. 3—(a) Experimental data of cleavage fracture toughness KJC of
SA738Gr.B steel measured with 1T-CT specimens at different
temperatures (data listed in Ref. [13]), (b) maximum likelihood
estimate of Weibull modulus mK using all 116 experimental data, (c)
comparison of experimental KJC distribution with estimation.
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Onizawa et al.[15] compared cleavage fracture tough-
ness measured from 10 pre-cracked Charpy (PCCv)
specimens of 10 9 10 9 55 (mm) size, with 5 mm crack
length, and 12 standard 25 mm thick (1T) CT spec-
imens at two temperatures (193 K and 223 K). Both
types of specimens are side- grooved by 10 pct of
thickness on each side of the specimen after pre-crack-
ing. The materials are an old version (designated as

‘‘Steel A’’) and a modern version (designated as ‘‘Steel
B’’) of A533B-1 steel. Figures 5 and 6 summarize the
experimental data and analysis for both steels. It is
determined that m̂K ¼ 2:3 for Steel A and m̂K ¼ 2:55 for
Steel B. The results seem to support the suggestion of
using the less expensive side-grooved pre-cracked
Charpy specimens to replace the standard 1T CT

Fig. 4—(a) Experimental data of cleavage fracture toughness KJC of
A533B Cl.1 steel measured with 0.5 T, 1 T and 2 T specimens at 123
K (data listed in Ref. 14], (b) maximum likelihood estimate of
Weibull modulus mK using all 38 experimental data, (c) comparison
of experimental KJC distribution with estimation.

Fig. 5—(a) Experimental data of cleavage fracture toughness KJC of
A533B-1 steel (Steel A) at different temperatures (data listed in Ref.
15), (b) maximum likelihood estimate of Weibull modulus mK using
all 44 experimental data, (c) comparison of experimental KJC

distribution with estimation.
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specimens for Weibull modulus mK assessment of
cleavage fracture toughness.[15]

C. Cleavage Fracture Toughness of DIN 22NiMoCr37
Steel

To evaluate the combined effects of temperature and
specimen size on cleavage fracture toughness distribu-
tion characteristics, previously published fracture

toughness data of a DIN 22NiMoCr37 steel are ana-
lyzed. The Euro fracture toughness dataset of a
quenched and tempered RPV steel DIN 22NiMoCr37
is developed in the project ‘‘Fracture Toughness of Steel
in the Ductile to Brittle Transition Regime’’ sponsored
by ‘‘Measurement and Testing Programme
(MAT1-CT-940080)’’ of the European Commission.[16]

This steel is similar to steel type A508 Cl.3 and is widely
used in nuclear power plants. About 800 fracture
toughness tests were performed using 12.5 mm (1/2 T),
25 mm (1 T), 50 mm (2 T), and 100 mm (4 T) thick
compact tension (CT) fracture toughness specimens.
Refer to Reference 16 for the internet link to download
the dataset. Figure 7 shows all the 555 valid data points
of cleavage fracture toughness. Table I summarizes the
number of valid cleavage fracture toughness measure-
ments for different sized specimens at different temper-
atures. Note that the 7 data points at 233 K and 2 data
points at 253 K are not included in the following
analysis.
First, the toughness data from same sized specimens

but at different temperatures will be analyzed together
to explore temperature effect. Next, all the toughness
data in Table I will be analyzed together to understand
the specimen size effect as well. Figure 8 summarizes the
results of maximum likelihood estimation in each case.
The values of m̂K ¼ 2:9; 2:4; 2:15; 3 are estimated for 1/2
T, 1 T, 2 T and 4 T CT specimens in sequence. When all
the 555 data points of cleavage fracture toughness
measured from different sized CT specimens in Figure 7
are used for maximum likelihood estimation, m̂K ¼ 2:5
is determined.
Figure 9(a) shows all 170 data of cleavage fracture

toughness measured with 1/2 T CT specimens (exclud-
ing the 7 data points at 233 K and 2 data points at
253 K). Figure 9(b) shows the standardized distribution
of cleavage fracture toughness.
Figure 10(a) shows all 161 data points of cleavage

fracture toughness measured from 1T CT specimens.
Figure 10(b) shows the standardized distribution of
cleavage fracture toughness.
Figure 11(a) shows all 170 data points of cleavage

fracture toughness measured from 2 T CT specimens.

Fig. 6—(a) Experimental data of cleavage fracture toughness KJC of
A533B-1 steel (Steel B) at different temperatures (data listed in Ref.
15], (b) maximum likelihood estimate of Weibull modulus mK using
all 44 experimental data, (c) comparison of experimental KJC

distribution with estimation.

Fig. 7—All 555 valid data points of cleavage fracture toughness
(Data listed in Ref. 16).
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Figure 11(b) shows the standardized distribution of
cleavage fracture toughness.

Figure 12(a) shows all 45 data points of cleavage
fracture toughness measured from 4 T CT specimens.
Figure 12(b) shows the standardized distribution of
cleavage fracture toughness.

When all the 555 data points of cleavage fracture
toughness measured from different sized CT specimens
in Figure 7 are used for maximum likelihood estimation,
m̂K ¼ 2:5 is determined. Figure 13 is the corresponding
standardized distribution of cleavage fracture
toughness.

IV. DISCUSSIONS

A. Temperature Dependence of Kmin and K0

The estimated Weibull modulus m̂K falls in the range
of 1.83 to 2.55 for the toughness data as a single group
for each steel and 1.03 to 3 for the toughness data
measured at each temperature or with a same specimen
size. It does not show a strong tendency of either
temperature or specimen size dependence. With the
estimated Weibull modulus m̂K as input, the threshold
toughness Kmin and the scale parameter K0 are estimated
via Eqs. [19] and [20] and are summarized in Figure 14.
While there are relatively large scatters of the data,
particularly for K0, The results suggest a strong tem-
perature dependence of both Kmin and K0 while less
sensitivity to specimen size. This large scatter is possibly
due to the sample size and the microstructural inhomo-
geneity of steels.

B. Goodness of Fit Test

As highlighted in the Section I, it is a popular
empirical assumption rather than a strict theoretical
inference that cleavage fracture toughness of ferritic
steels follows the Weibull distribution. This work
develops an approach to including more toughness data
measured from different sized specimens and at different
temperatures for Weibull parameters estimation. This
empirical assumption is validated by all the examples
shown. To evaluate this work from a statistical stand-
point, the one-sample Kolmogorov–Smirnov (K–S) test
is used as goodness of fit test. First, calculate the test
statistic D, which is the maximum deviation between the

Table I. Number (n) of Valid Cleavage Fracture Toughness Measurements for Different Sized Specimens at Different

Temperatures

Test Temperature (K)

Specimen Size and Configuration

½ T (12.5 mm) CT 1 T (25 mm) CT 2 T (50 mm) CT 4 T (100 mm) CT

119 35 39 32
163 55
182 31 34 30 14
213 49 34 30
233 7 32 30
253 2 22 30 15
273 18 16

Fig. 8—Results of maximum likelyhoold estimation: (a) 1/2 T CT,
1 T CT and 2 T CT specimens; (b) 4T CT specimens; (c) all CT
specimens.
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rank probability P(i) according to Eq. [23] and the
cumulative probability P calculated with Eq. [1] and the
estimated Weibull parameters, as below:

D ¼ Max P ið Þ � Pj j ½23�

Second, find the critical value of the test statistic D
corresponding to a given sample number (n) at a
significance level of a ¼ 0:05, KS0:05. If D<KS0:05, the
measured data follow the estimated Weibull distribu-
tion. The values of KS0:05 can be found in literature,
e.g,.[17]

Figure 15 summarizes the results of goodness of fit
test on the Weibull distribution functions determined by
the proposed approach for all the steels .

It is clear that all the test statistic D values are below
the critical value KS0:05. This suggests that at 95 pct
confidence level, the fracture toughness data for differ-
ent steels follow Weibull distributions with the param-
eters estimated by the maximum likelyhood method for
the standardized Weibull distrbution.

The one-sample Kolmogorov–Smirnov (K–S) test can
be also used to assess the Master Curve approach for the
same data sets. To do this, the scale parameter K0 in
Eq. [3] is estimated as follows at each temperature:

First, at each temperature, the fracture toughness for
different thicknesses are converted into the standard
fracture toughness by Eq. [24] with the reference
thickness B0 ¼ 25mm:

KJC 1TCTð Þ ¼ 20þ KJc � 20ð Þ � B

B0

� �1=4

½24�

Second, K0 at each temperature is estimated by

K0 ¼
Xn
i¼1

KJc � 20ð Þ4

r� 0:3

" #1=4

½25�

where n is the total number of specimens tested at a
same temperature, and r is the number of specimens
corresponding to brittle fracture.
Accordingly, the cumulative probability P is calcu-

lated by Eq. [3] for the Master Curve approach with
B0 ¼ 25mm; Kmin ¼ 20MPa

ffiffiffiffi
m

p
and K0 from Eq. [25].

This allows to calculate the test statistic D as the
maximum deviation between the rank probability P(i)
according to Eq. [21] and the cumulative probability P
by the Master Curve approach.
Figure 16 summarizes the results of goodness of test

on the Weibull distribution functions determined by the
Master Curve approach for all the steels. It is found that
some of the test statistic D values are above the critical
value KS0:05. This tells that at 95 pct confidence level, the
fracture toughness data for different steels do not always
follow the Weibull distribution functions with the

Fig. 9—Cleavage fracture toughness of 1/2 T CT specimens: (a)
experimental data (Data listed in Ref. [16]), (b) standardized
distribution of cleavage fracture toughness.

Fig. 10—Cleavage fracture toughness of 1 T CT specimens: (a)
experimental data (Data listed in Ref. [16]), (b) standardized
distribution of cleavage fracture toughness.
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parameters mK ¼ 4; Kmin ¼ 20MPa
ffiffiffiffi
m

p
ð Þ determined by

the Master Curve approach.
The one-sample Kolmogorov–Smirnov (K–S) test

provides an alternative way to illustrate the limitations
of the Master Curve (MC) approach, which have been
identified by other researchers.[13,18,19] As stated by
Lucon and Scibetta,[18] the conventional Master Curve
approach is only intended and applicable for macro-
scopically homogeneous ferritic steels. However, certain
deterministic inhomogeneities, such as the locations to
extract specimens within a steel plate,[13] may be
unavoidable for thick section ferritic steels. For inho-
mogeneous materials, the bi-modal and multi-modal
Master Curve approaches have been proposed,[18] which
still assume mK = 4 and Kmin = 20 MPam1/2 with 3 or
more parameters for the bi-modal or multi-modal
Weibull distributions. However, no specific criterion is
given to identify a data set as inhomogeneous. In
addition, calibration of a bi-modal and multi-modal
Weibull distribution is more complicated than that of
the conventional Master Curve distribution. For exam-
ple, the bi-modal Master Curve approach is expressed as
follows:

P KJC ; 1CTð Þ ¼ 1� pa � exp � KJc � 20

K01 � 20

� �4
" #

� 1� pað Þ

� exp � KJc � 20

K02 � 20

� �4
" #

½26�

Equation [26] involves two scale parameters (K01 and
K02) and the probability pa of the data set belonging to
distribution a (the probability of the data set belonging
to distribution b is pb ¼ 1� pa). Recently, Meshii[19]

reported the fracture toughness of ferritic CrMo steel
JIS SCM440 measured at temperatures from 213 K to
373 K, in which the yield strength varies from 410 to 523
MPa. It is concluded that while this steel satisfies the
prerequisites of ASTM E 1921-19 standard, the Master
Curve approach fails to characterize its fracture tough-
ness temperature dependence.
A one-to-one comparion of the proposed method and

the Master Curve approach is made for all the cited
steels to inspect the difference between the rank prob-
ability at the measured fracture toughness and the
corresponding cumulative probability estimated by the
proposed approach and the Master Curve approach.

Fig. 11—Cleavage fracture toughness of 2 T CT specimens: (a)
experimental data (Data listed in Ref. [16]), (b) standardized
distribution of cleavage fracture toughness.

Fig. 12—Cleavage fracture toughness of 4 T CT specimens: (a)
experimental data (Data listed in Ref. [16]), (b) standardized
distribution of cleavage fracture toughness.
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Figure 17 shows some typical scenarios as examples.
The following observations can be made:

A. The proposed approach. For each steel, all the
toughness data fit well with Eq. [1] for Weibull
distribution with a same value of Weibull modulus
determined by maximum likelihood estimation of
the standardized ordinary Weibull distribution,
while the threshold toughness Kmin and the scale
parameter K0 may vary with specimen size and
tempewrature.

B. The Master Curve approach. Depending on the
specimen size and test temperature, the conven-
tional Master Curve approach results in the follow-
ing different types of predictions: (i). The prediction
fits well with the experimental results within the
whole toughness range (Figure 17(a)); (ii). The
predicton overestimates the failure probability
within the whole toughness range (Figure 17(b));
(iii). The prediction underestimates the failure
probability within the whole toughness range
(Figure 17(c)); (iv). The prediction overestimates
the failure probability in some toughness range but
underestimates the failure probability in the other
range (Figure 17(d)). This is consistent with the
observations from Figure 16.

In a review of the history and technical basis of the
Master Curve approach, Kirk[20] confirms that the
original proposal of the Weibull modulus mK ¼ 4 is
based on Eq. [2] derived from the micromechanical
model[7–9] and that of the threshold toughness of Kmin ¼
20MPa

ffiffiffiffi
m

p
is based on Monte Carlo simulation of the

expected confidence bounds in accord with experimental

Fig. 13—Standardized distribution of cleavage fracture toughness of
all CT specimens.

Fig. 14—Summary of (a) estimated Kmin and (b) K0 of different
steels.

Fig. 15—Results of Kolmogorov–Smirnov (K–S) test of the
proposed method.

Fig. 16—Results of Kolmogorov–Smirnov (K–S) test of the Master
Curve approach.
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evidence then available in 1984.[9] These references
support the argument in Section I that it lacks rigorous
theoretical basis to assign mK ¼ 4 as a constant. This
work clearly shows that mK is more likely in the range of
2 to 2.5. However, it remains a task to make a proper
simplification of the threshold toughness of Kmin with its

temperature dependence and to explicitly express the
specimen size effect on toughness.

V. CONCLUSION

1. The maximum likelihood estimation of the stan-
dardized Weibull distribution of cleavage fracture
toughnes resulted in Weibull modulus of 1.8 to 2.5
and revealed strong temperature dependence of the
threshold toughness and the scale parameter while a
less sensitivity to specimen size.

2. The one-sample Kolmogorov–Smirnov (K–S) test
based goodness of fit test validated the practice of
using the standardized Weibull statistics to charac-
terize cleavage fracture toughness and estimate
Weibull modulus, rather than assuming a constant
value as prescribed by ASTM E1921-19.
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