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ABSTRACT

The pattern formation and spatial–temporal chaos are interesting issues in nonlinear dynamics. A novel model based on machine learning
methods is designed to learn and imitate the pattern evolution in Bénard–Marangoni convection (BM convection). There is a supercritical
process, which is an inevitable and unique experimental phenomenon, on the way to chaos in BM convection. A single layer of fluid uni-
formly heated at the bottom is used as the experimental system. During the experiment, the temperature difference between top and bottom
of the liquid layer is increased first to make the system enter the supercritical convection state and then decreased after a while; surface tem-
perature distribution of the liquid layer is measured in real time with an infrared thermal imager, which visualized the formation and re-
organization of cellular convection during the supercritical state. The temperature data are used as the material that meets the conditions of
machine learning and then the machine learning method in charge of predicting the picture of temperature distribution that it never has
seen before in two steps. The experimental data are used to train an auto-encoder model based on convolutional neural networks and an
RNN–CNN joint model, in which the former is used for extracting low-dimensional features of the temperature field, and the latter is used
for predicting evolution results of the low-dimensional features and recovering them back to the temperature field. The models have finally
achieved the objectives of supplementing the missing experimental data and correcting actual experimental data by comparing the actual
experimental results with the prediction results of the machine learning approach and theoretical analysis results. On the other hand, active
exploration has been undertaken in predicting physical experimental results that have never happened before.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0036762

I. INTRODUCTION

Studying the evolution of patterns is an interesting and significant
subject. The self-organization phenomenon appeared in the
Bénard–Marangoni (BM) convection system is a typical example.
However, traditional research methods are not suitable to this kind
of system because theoretical solutions are difficult to obtain, the
experiment process is easily influenced, and numerical methods are
time-consuming. Compared with actual physical experiments, our
machine experiment can obtain results closer to theoretical results
because its calculation characteristics are hardly influenced by the
environment. In addition, the method of machine learning is to
observe problems from a statistical perspective, which is helpful in
analyzing structured information in the data and obtaining the dis-
tribution law of the data.

Convection is a very common phenomenon in nature. Different
forces can drive different types of convection. BM convection is driven
by the surface tension of liquid. In 1958, Pearson et al.1 theoretically
proved the instability mechanism of BM convection through linear
stability analysis and determined the critical Marangoni number and
the critical wavenumber of the convection.

Self-organization is an essential feature of Bénard convection.
Bénard–Marangoni convection appears in the form of Bénard cells,
which array themselves in a hexagonal honeycomb structure automat-
ically. Golovin et al.2 explained the generation of this structure using
the weakly nonlinear analysis, and they indicated that it was because
of the superimposition of disturbance waves that simultaneously
existed in the flow field in three directions with an angle of 120�

between each other. Koschmieder and Biggerstaff3 first experimentally
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discovered the subcritical bifurcation phenomenon in the critical con-
vection stage of BM convection. By observing the pattern of the sys-
tem, they found that the subcritical bifurcation behaved as follows:
when the critical Marangoni number was reached, the pattern of con-
vection was replaced by the hexagonal Bénard cells; as the Marangoni
number started to drop after passing the critical point, the hexagonal
Bénard cells did not disappear immediately when the Marangoni
number was at the critical value but disappeared when it was less than
the critical value. Scanlon and Segel4 conducted the weakly nonlinear
analysis on BM convection and determined the stable region around
the critical value, coming up with a better understanding of this pro-
cess from the point of view of the mechanism. Schatz et al.5 obtained
experimental results in agreement with theoretical analysis, providing
a reliable basis for the existence of subcritical bifurcations.

As the temperature gradient increases, BM convection will gradu-
ally lose stability and enter into the supercritical convection state on the
way from the steady state to chaos. Chaos is a phenomenon that appears
in a nonlinear system. It is a seemingly irregular movement and sensitive
to the initial values of parameters. That is to say, when the initial value is
slightly disturbed, the disturbance will increase exponentially with time,
resulting in unpredictable behavior of the system. Chaos is a common
form of movement in nature. In 1963, Lorenz6 extracted the Lorentz
equations as a simplified atmospheric convection model (a Bénard con-
vection model) in his study on the long-term weather forecast, and he
also studied the chaotic mechanism involved. Lorenz found that under
certain parameter conditions, the orbit starting from a finite set would
be drawn to a specified final state. This ultimate state is referred to as the
Lorentz attractor, which can be categorized as a strange attractor due to
its sensitive dependence on the initial conditions. Tucker7 eliminated the
conditions of specific parameters in the subsequent research and con-
cluded that the Lorenz equations had strange attractors under any condi-
tions. With the increase in the Marangoni number, BM convection
gradually enters into chaos through the critical state, the moderate super-
critical state, and the highly supercritical state, and the arrangement of
Bénard cells will turn into the two-dimensional spatiotemporal chaotic
state after a long-term nonlinear evolution.

Nowadays, there are various methods of exploring the flow stabil-
ity. In theoretical analysis, the linear stability theory represented by the
normal mode method and the weakly nonlinear theory represented by
the Landau equation are often used; however, due to the nonlinear
term in the equation, it is difficult to obtain the exact solution of the
differential equation. In the experimental study, due to the influence of
gravity on the ground, experiments under many working conditions
cannot be carried out smoothly. The method of numerical simulation
exists the contradiction between calculation accuracy and calculation
efficiency. Because the process of minimizing the calculation error
always means too much calculating load. In addition, in the process of
solving differential equations of the flow field by the numerical
method, the calculation is based on the state change of each point on
the grid, which will result in the lack of correlation between adjacent
points. In recent years, the method of machine learning has been
widely applied in various research fields,8 and the development in
computer vision has attracted particular attention. The method of
machine learning is not based on the state change of each grid point in
the flow field but treating the temperature distribution in the entire
field as a picture and using the convolution kernel to extract character-
istics of each picture, so the numerical values of adjacent points are

correlated, and structural information in the flow field is better
expressed. Since Bénard cells formed by BM convection are typical
temperature structure information, it has more advantage to employ
the machine learning methods to study the evolution of patterns
formed by BM convection.

Machine learning can be simply divided into supervised learning
and unsupervised learning. The key idea of supervised learning is to
revise the fitting (calculating) results of the model every time with the
help of a teacher. During the transition process of the fluid system
from the steady state to chaotic state, the law of motion of each point
in the system is changing from describable to indescribable (spectral
analysis), and intuitively, the system shows a developing trend into
random motion eventually. However, in fact, the motion of each point
has its own changing law, for example, strange attractors will appear
when the system is fully developed. The nature of the machine learn-
ing methods is to use statistical methods to fit the data to distributions.
Because the model uses many activation functions and there are a lot
of weights inside, compared with traditional methods, the machine
learning methods can determine the distribution characteristics of
each data and the entire dataset better. This is also intended to solve
the problems of fluid mechanics from another perspective.

This article attempts to associate the machine learning methods
with the experimental study on the supercritical convection stage of
BM convection. The work of the machine is to learn a certain number
of practical experimental pictures of the patterns in the supercritical
process; by summarizing the law of pattern evolution, it is to gain the
ability to supplement the data missing in the experiment and predict
the subsequent experimental results to a certain extent. In addition, by
comparing with theoretical analysis results and prediction results of
machine learning methods, the actual physical experiment results will
be corrected.

The structure of this article is as follows: Section II introduces the
fluid experiment system and the machine learning model; Sec. III
introduces the dimensionality reduction model and evaluates the
results it gained; Sec. IV introduces the model for supplement, correc-
tion, and prediction and evaluates the results it gained; and Sec. V
makes a summary of the work discussed in this paper and identifies
the prospects for future work.

II. FLUID EXPERIMENT SYSTEM ANDMACHINE
LEARNING MODEL
A. Fluid experiment system

Wu et al.9,10 studied the characteristics of the pattern at various
stages of the BM convection system with the change in the Marangoni
number, obtained the experimental results of the pattern evolution in
the supercritical process, and provided training data for the machine
learning research discussed in this paper. The forming mechanism of
the pattern can be simply expressed as follows: in a liquid layer with
cold top and hot bottom, the disturbance causes the hot fluid in the
lower part of the layer to migrate to the surface of the liquid layer,
forming hotspots on the surface; since the surface tension of the fluid
at the hotspot is less than that of the surrounding fluid, the fluid at the
hotspot is pulled away by the surrounding fluid, and at the same time,
the hotter fluid in the interior is driven upward to replenish; as a result,
the disturbance increases and convection forms in the fluid. The
model used in the experiment is a square liquid pool heated at the
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bottom. As shown in Fig. 1, the size of the horizontal cross section of
the liquid pool is 160 � 160mm2. The bottom is composed of copper
plates, thin engineering plastic plates, and aluminum plates to ensure
the uniformity of temperature at the bottom during heating. 50 cSt sili-
cone oil is selected as the experimental medium because it has stable
chemical nature and the interface is not easily polluted. In order to
obtain the spatial distribution of temperature of the flow field, an
infrared thermal imager (FLIR E60, resolution: 640*480) is used to
observe the temperature field on the upper surface of the liquid layer.
(The time interval between the recordings is 10 s. For example, if the
first picture is taken at 0 s, the ninth picture will be taken at 90 s.) The
Marangoni number (Ma) is a dimensionless number, and it is used to
describe the ratio of heat transport caused by thermocapillary convec-
tion to heat transport caused by heat conduction. When it exceeds the
critical number, convection actually starts,

Ma ¼ ð�@r=@TÞDTd
la

; (1)

where r represents the surface tension coefficient, DT represents the
temperature difference, d represents the thickness of the liquid layer, l
represents the dynamic viscosity coefficient, and a represents the thermal
conductivity coefficient. In the rest of this paper, we will abbreviate the
Marangoni number as Ma and express the critical Marangoni number
corresponding to the onset of oscillation of the single-layer fluid asMac.

This experiment is divided into two stages: heating and cooling.
The heating rate is 0.3 �C/min. The temperature at the hot end is grad-
ually increased from the room temperature to 70 �C and then
decreased to the room temperature. Because the temperature differ-
ence increases first and then decreases, the liquid layer undergoes a
process including static state, critical convection, supercritical convec-
tion, and then critical convection again. BM convection is a type of sta-
ble quasi-steady flow, but in the supercritical state, the appearance and
arrangement of Bénard cells show a new unsteady evolution process.
The infrared thermal imager records the change in the pattern during
this process at a rate of 0.1 fps. The experimental results are shown in
Fig. 2. The formation of Bénard cells in BM convection is essentially
caused by the surface tension gradient generated from the uneven tem-
perature distribution on the liquid surface. The polygonal hot region

in Fig. 2 represents a convective Bénard cell. The generation of new
Bénard cells must be accompanied by the generation of hotspots, and
the generation mechanism of a Bénard cell is influenced by the wave-
number, arrangement, and migration of surrounding Bénard cells.
Therefore, the motion of a Bénard cell shows itself in many forms at
the macrolevel, including splitting, merging, and independent genera-
tion. The region in the orange square shown in Fig. 2 presents one of
these generation processes.

As can be seen above, the generation and evolution of Bénard
cells are complex nonlinear processes, belonging to problems of pat-
tern dynamics. The formation and spatiotemporal chaos of the pattern
are interesting issues for most scientists. The location where Bénard
cells are generated is closely related to the local temperature change in
the liquid pool. In addition, Bénard cells array themselves precisely,
and a slight change in a Bénard cell will have a significant impact on
the overall pattern. Therefore, except for practical fluid experiments,
traditional research methods can hardly describe the overall pattern
accurately and comprehensively. The machine learning methods com-
bine statistics and algorithms. Statistics can be used to analyze the law
of data distribution and deduce the changing law of data distribution
after combined with specific algorithms. It is very helpful in the study
of the evolution law of the pattern.

In the process of attempting to simulate actual experiments
with the machine learning methods, the materials for machine
learning are pictures captured by using the infrared camera in the
heating and cooling processes after the BM convection enters the
supercritical convection state. These pictures are used to train mod-
els for supplementing, correcting, and predicting the actual physical
processes in the single-layer fluid system. In this process, the
machine has learned 740 sets of continuous experimental data
(7400 s in total) contained in the infrared images so that it has
gained the ability to deduce the subsequent development of the
experiment independently and the ability to judge the state of the
system at a certain moment during the experiment. The division
method of the datasets is shown in Table I. The experimental
pictures are counted from 0.

B. Machine learning model

In recent years, machine learning has been paid much attention
as a field of computer science. Using machine learning methods to
predict the evolution process is gradually applied to various disciplines.
Shi et al.11 used a convolutional long short-term memory (LSTM) net-
work in the now-casting of precipitation; Huang et al.12 successfully
predicted the evolution of 3D flame using the neural network and VT
technology; and Han et al.13 used a complex neural network structure
to predict the unstable flow field in the case of the flow around a circu-
lar cylinder.

In this experiment, the machine attempts to predict the pattern
at a certain time point based on the pattern pictures at three previous
moments in a specific order. In order to train the machine with the
law of formation of Bénard cells in more detail and make the machine
show it more clearly in the testing, in all the following cases, the
machine should be allowed to observe a pattern with a relatively large
change in the training process. Therefore, frame skipping is employed
in the selection of pictures for the training set and testing set, and such
a prediction method can be called a frame skipping prediction. In
order to ensure the prediction effect, the number of skipped frames

FIG. 1. Experimental system.
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should be the same when selecting the training set and the testing set.
Based on such experimental objectives, the RNN structure that is good
at time-series analysis and the CNN structure that is good at image
processing are associated in our work to obtain a joint model. Since
each pattern image is composed of 76 800 data points, the operation
speed is too slow, and the amount of information is too large to
memorize. Therefore, the entire experimental process is divided
into two steps. In the first step, a CAE model (auto-encoder model
based on the convolutional neural network) is utilized to reduce the
dimensionality of the 76 800 data points so that the picture infor-
mation can be compressed into feature vectors with a dimensional-
ity as low as possible; in the second step, the RNN part of the
RNN–CNN joint model is used to predict the change in the feature
vector with a lower dimensionality, and the improved CNN part of
the RNN–CNN joint model is used to restore the predicted feature
vectors to the predicted picture.

Different from the usual numerical methods for simulation and
prediction, machine learning methods are inclined to use statistical
methods to summarize experimental information, rather than using

numerical methods to iterate differential equations. This is a prelimi-
nary attempt to use machine learning methods to fit results of real
physical experiments.

III. DIMENSIONALITY REDUCTION MODEL AND
RESULTS ANALYSIS
A. Dimensionality reduction model

The CAE model is employed to reduce the dimensionality of the
original image data in this machine learning experiment. The CAE
model is an auto-encoder (AE) model based on the convolutional neu-
ral network. The AE14 consists of an encoder and a decoder, as shown
in Fig. 3. First, it extracts critical information from the sample through
the encoder, a set of neural networks, which is referred to as encoding.
Then, it reconstructs the data through the decoder, the mirror of the
encoder, or a set of inversely distributed neural networks, which is
referred to as reconstruction. In general, the reconstruction error is
calculated from the input data and output data of the auto-encoder.
The weight of each node in the network structure is adjusted at each

FIG. 2. The example of experimental results: (a) corresponding to the pattern at 300 s, (b) corresponding to the pattern at 320 s, and (c) corresponding to the pattern at 340 s.

TABLE I. Division of datasets.

Case

Training data
(numbering of

pictures)

Testing data
(numbering of

pictures) Dataset description Prediction method

Supplement 710 30 From the continuously changing 740 pictures, 30 pictures
are randomly selected as the testing set.

Based on actual experiment
pictures

Correction 710 30 From the continuously changing 740 pictures, 15 consecu-
tive pictures during the heating/cooling process (30 pictures
in total) were selected as the testing set.

Based on actual experiment
pictures

Short-term
prediction

740 15 740 continuously changing pictures are used as the training
set. After the training, based on the first 27 pictures of the
740 pictures, the results of subsequent experiments are
predicted autonomously.

Based on pictures calculated
by the machine learning
methods

Long-term
prediction

740 15 Continue to autonomously predict 15 pictures after short-
term prediction.

Based on pictures calculated
by the machine learning
methods
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round of learning of the machine learning approach, and the recon-
struction error will be minimized after several rounds of training.
Thus, the data in the middle layer are considered to represent all the
information of the original data, and dimensionality reduction is
achieved.

In the first step of dimensionality reduction, the picture is
encoded and compressed as much as possible by using the encoder.
The encoder compresses the image data from a 240 � 320 matrix to a
feature vector consisting of 2048 feature values; the decoder recovers
the feature vector back to a 240 � 320 matrix through upsampling
and convolution-and-pooling operations. If the picture can be recov-
ered through the above process successfully (the reconstruction error
is minimized), the auto-encoder is considered to have gained the abil-
ity to encode each picture through the encoder into a feature vector
containing 2048 feature values that carries all important information
of the picture. In this machine learning experiment, the mean square
error between original and reconstructed images is used as the recon-
struction error [Eq. (2)] to optimize the network structure. In Eq. (2),
LF represents the loss function, ym is the value of each pixel in the orig-
inal image, ym is the value of the corresponding pixel in the recon-
structed image, and M is the total number of pixels in the picture.
That the function is multiplied by 1

2 makes the subsequent backpropa-
gation algorithm easy to be accomplished. Due to the large amount of
information contained in the experimental data, in order to predict
successfully later on, the extracted feature vector should include the
information of the temperature state, the position of Bénard cells, and
other important information that is difficult to explicitly describe.
Therefore, in this experiment, a complex neural network structure
transformed from AlexNet15 is selected as the training model. In the
construction of the neural networks, the process of feature extraction
mainly depends on convolutional kernels. If the number of convolu-
tion kernels is too small, the model can only recover the large-scale
structure information (such as the temperature field distribution) of
the experimental pictures due to the lack of information extracted
from the model, but the detailed information (specific cell structure)
cannot be mastered. As we can see in NIPS-2012, AlexnNet is
designed as a neural network structure for classification and shows an

excellent classification effect on Cifar-10, which shows that the net-
work structure of the model has an excellent ability to extract features.
AlexNet analyzed three-channel color images on the Cifar-10 data-
set, while our images only have a single-channel, and the depth of
the convolution kernel should be adjusted in order to design the
neural network structure to meet the requirements. In the feature
extraction (coding) stage of the auto-encoder, we use the convolu-
tion kernel of the same scale as that of AlexNet in feature extraction
(encoding) and adopt the network structure with the same structure
but reverse distribution as the coding stage in the feature recovery
(decoding) stage of the auto-encoder. The model structure is illus-
trated in Fig. 4, and the specific structures of each layer are shown
in Table II,

LF ¼ 1
2M

XM

m¼1
ym � ymð Þ2: (2)

B. Analysis of dimensionality reduction results

Machine learning methods need to use the back-propagation
algorithm in the process of parameter optimization, in which the
learning rate can control the optimization degree of parameters. In the
initial stage of optimization, the parameter value is generally far away
from the optimal value, so we need to greatly optimize the parameters.
At this time, we need a larger learning rate. In the later stage of train-
ing, the parameter value has been adjusted around the optimal value;
we only need to fine-tune, so we need to use a smaller learning rate.
Therefore, we developed a learning rate optimization method suitable
for this experiment.

In order to enable the machine to grasp the important informa-
tion of the experimental pictures better and help the machine to make
a more reasonable calculation, we need to preprocess the pictures
before putting them into the model for calculation. There are two
kinds of normalization operations: (1) z-score normalization: the pic-
tures provided to the machine experiment are infrared thermal imager
pictures, so the average value of the pictures is closely related to the
average temperature of the flow field. In the process of convolution
operation, if the mean value difference between the same batch of
images is too large, the machine cannot summarize the unified infor-
mation about the specific structure in the feature extraction process,
resulting in the misunderstanding of the original experimental results.
(2) The layer normalization: in a deep neural network, the input of the
middle layer is the output of the previous layer. Therefore, the previous
calculation in the neural layer will lead to a large difference in the dis-
tribution of input in the current layer. When the gradient descent is
used to update the parameters, each parameter update will cause the
input distribution of each layer in the middle of the network to change.

FIG. 4. The structure of the auto-encoder in the experiment.

FIG. 3. The structure of an auto-encoder.
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The deeper the layer is, the more obvious the input distribution will be
changed. In the matrix operation, the smaller data will be swallowed.
We choose the layer normalization method to solve this problem.

1. Dimensionality reduction results

In this experiment, we use the reconstruction error of the model
to describe the dimensionality reduction effect. The backpropagation
algorithm is used to update the parameters of the model. The optimi-
zation curve of the loss function is shown in Fig. 5, where the abscissa
represents the number of times the model is optimized and the ordi-
nate represents the average of reconstruction errors of all pictures after
each optimization, which is the value of the model's loss function. It
can be seen that with the increase in training rounds, the value of the
loss function decreases from the maximum value 44.46 to the mini-
mum value around 1.04, with an obvious optimization effect.

Figure 6 shows the comparison between the reconstructed pic-
ture (a) at 500 s and its corresponding original picture (b) at 500 s. It

can be seen intuitively that the two pictures are very similar in terms
of the shape and position of the Bénard cells, as well as the overall tem-
perature distribution.

2. Mean square error analysis

After multiple rounds of training on the model, each connection
weight is optimized through the backpropagation algorithm, and effec-
tive training results have been achieved. According to Eq. (2), the
mean square error between the reconstructed and original pictures at
500 s is only 0.002. The average mean square error of all pictures is
0.0023, and it can reach the order of 10−3. This indicates that each
reconstructed picture and original picture have a very small difference
in the total pixel value.

3. R2 analysis

If the mean square error of a model is close to the mean square
error of the average model, havg, the fitting effect of the model is not
ideal, here R2 � 0. The farther the mean square error of the model is
from the mean square error of havg, the closer the value of R

2 is to 1
and the better the model's fitting effect. R2 can be expressed as Eq. (3),

where h x ið Þð Þ is the mapping set corresponding to the original data
point x ið Þ after the calculation by model h, y ið Þ represents the actual
result set corresponding to the original data point x ið Þ, and y represents
the average of the actual results corresponding to all original data
points in one picture,

R2 ¼ 1�
Pm

i¼1 h x ið Þð Þ � y ið Þ
� �2

Pm
i¼1 y � y ið Þ� �2 : (3)

After the first step of training, the final experimental results of
the model can reach R2 = 0.9695. This means that the CAE model has
mapped the differences between different pixels in the original picture
matrix well in the resulting picture matrix. The reconstructed picture
and the original picture have similar distribution of pixel values, rather

TABLE II. Auto-encoder structure.

Numbering of neural network layers Layer type Convolution kernel size/full connection size Layer normalization or not

Coding Layer 1 Conv.-pooling 3, 3, 1, 96 Y
Layer 2 Conv.-pooling 3, 3, 96, 256 Y
Layer 3 Conv.-pooling 3, 3, 256, 384 Y
Layer 4 Conv.-pooling 3, 3, 384, 256 N
Layer 5 FC 4096 N
Layer 6 FC 2048 N

Decoding Layer 7 FC 2048 N
Layer 8 FC 4096 N
Layer 9 Conv.-pooling 3, 3, 384, 256 N
Layer 10 Conv.-pooling 3, 3, 256, 384 N
Layer 11 Conv.-pooling 3, 3, 96, 256 N
Layer 12 Conv.-pooling 3, 3, 1, 96 N

FIG. 5. The optimization curve of the loss function of the CAE.
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than the elements in the original picture that are simply mapped to
the average pixel value of the original picture to reduce the reconstruc-
tion error. The model has high credibility. Thus, the CAE model has
been ready to provide feature vectors for subsequent models; then, we
can use these low-dimensional data to supplement, predict, and cor-
rect the practical experimental data with RNN–CNN in the follow-up
work.

IV. MODEL FOR SUPPLEMENT, CORRECTION, AND
PREDICTION AND RESULTS AND DISCUSSION
A. Structure of the model for supplement, correction,
and prediction

The RNN–CNN joint model is used to supplement, correct,
and predict the actual experimental data in this paper. The RNN16

part of the joint model is referred to as a recurrent neural network,
and it is widely used in forecasting scenarios involving time-series
information. In the machine learning experiment, the changing
trend of a physical quantity in the past should be considered for
the prediction of its value in the future. The same logic is used in
the prediction of pattern evolution, that is to say, the overall
appearance of the pattern at some previous moments is needed for
the machine to deduce the pattern at present. In our machine
learning experiment, the machine needs to grasp the preferred posi-
tions of new generated Bénard cells from the training set to reason-
ably deduce the evolution of Bénard cells in the testing set. In
addition, although there is a big difference between two pictures
when one of them has a new generated Bénard cell and the other
has none, it is a gradual process when a Bénard cell is generated. If
the machine wants to be able to describe this process coherently, it
must learn to predict the small difference between adjacent pictures.
Therefore, the RNN is needed in the entire network structure to
predict the changing trend of the feature vectors.

CNN is referred to as a convolutional neural network. It is widely
applied in the scenario where image processing is involved.17 Because
the CNN contains a lot of activation functions, it is frequently used in
solving complex nonlinear problems. The two types of activation func-
tions used in this paper are shown in Fig. 7, and the two kinds of acti-
vation operations are expressed by Eq. (4). In this kind of problem, the
weight of the node is updated through the backpropagation algorithm
for fitting the nonlinear relationship. In addition, a large number of
convolutional kernels can be set in the convolutional neural network,

and the ability of feature extraction can be controlled by adjusting the
number of kernels. This is a convenient way to regulate the efficiency
of machine learning. The low-dimensional information extracted by
using the encoder is too complicated to understand. Figure 8 shows
the low-dimensional information (feature vectors) of two random
figures, where rdm represents the sequence number of the extracted
low-dimensional features and max, min, means, and std represent the
maximum, minimum, mean, and variance values of the feature vector,
respectively; the values in the feature vectors of each picture are repre-
sented by red dots; the blue curve is obtained by sorting these values
represented by the red dots. The blue curves of both pictures have the
same changing trend, and the statistical quantities such as the maxi-
mum, minimum, mean, and variance values of different feature
vectors are very close. This indicates that the machine may have
grasped the general law of temperature distribution after learning in
step 1. Because the pictures can be reconstructed precisely, it is reason-
able to believe that the complicated spatial–temporal information such
as the position of Bénard cells and temperature is contained in the
feature vectors. This information is coupled together to constitute the
feature vectors finally. Therefore, it is an effective way to use the CNN
to recover the picture of the temperature field from the feature vectors
predicted by the RNN,

SigmoidðxÞ ¼ 1
1þ e�x

;

ReLUðxÞ ¼ x if x > 0

0 if x � 0:

( (4)

In step 2, the joint model of RNN and CNN is utilized to predict
the evolution of the pattern. LSTM is used to help the model extract
and remember important information effectively. LSTM serves as a
memory cell with a logic gate system. Its forgetting module helps the
memory cell select information that should be remembered. The struc-
ture of LSTM is shown in Fig. 9. The operation in the memory cell is
expressed by Eq. (5), where Ct represents the state of the cell, ft repre-
sents the forget gate, it represents the input gate, and ht represents the
hidden cell. In order to recover the picture more effectively, in the joint
model, the CNN is rebuilt by adding upsampling structures based on
the nearest neighbor algorithm between convolutional layers instead
of using traditional convolution and pooling operation. The model
structure is shown in Fig. 10, and the specific structures of each layer
are shown in Table III,

FIG. 6. Comparison between the reconstructed picture and its corresponding original picture: (a) corresponding to the reconstructed result at 500 s and (b) corresponding to
the experimental result at the same time (500 s).
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ft ¼ r Wf � ht ; xt½ �� �þ bf ;

it ¼ r Wi � ht�1; xt½ �ð Þ þ bi;

~Ct ¼ tanh WC � ht�1; xt½ �ð Þ þ bC;

Ct ¼ ft 	 Ct�1 þ it 	 ~Ct ;

ot ¼ r Wo � ht�1; xt½ �ð Þbo;
ht ¼ ot 	 tanh Ctð Þ:

(5)

In this experiment, the mean square error between the original
and predicted pictures is used as the loss function [Eq (6)] to optimize
the network structure. In order to help the machine to learn the data
better, the input low-dimensional feature vectors should also be nor-
malized before calculating. In the normalization process before
RNN_CNN training. If we want to help the machine understand the
data better, we need to ensure the reduced image matrix (740 � 2048)
is normalized by column, otherwise, the data of a certain dimension
will become so small that be ignored in the training,

LF ¼ 1
2M

XM

m¼1
ym � ymð Þ2; (6)

where LF represents the loss function, ym is the value of each pixel in
the original picture, ym is the value of the corresponding pixel in the
predicted picture, andM is the total number of pixels in the picture.

In order to help the model to calculate better, we added the lasso
regression term after the loss function. Lasso regression is actually
adding an L1 norm about model weight after the loss function,
compared with other regularization methods, and the L1 norm can
effectively generate sparse coefficients in the subsequent gradient
descent calculation. Therefore, it can be said that lasso regression
makes a “parameter selection,” and the unselected weights are
returned to 0. The regression term can help the model avoid
over-fitting and enhance the generalization effect of the model.

FIG. 7. ReLU (a) and sigmoid (b).

FIG. 8. Low-dimensional feature vectors. FIG. 9. The structure of LSTM.
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B. Supplement and correction to the data

The frame-by-frame prediction method is employed in the
supplement and correction to the actual experimental data. The
frame-by-frame prediction focuses on making the machine deduce
the experimental result at present according to the experimental
results at three previous moments. In the frame-by-frame prediction,
two different ways of dividing the datasets are adopted. The first one is

to select 30 pictures randomly from 740 original pictures as the testing
dataset and use the other 710 pictures as the training dataset in order
to judge the machine's degree of mastery of the overall law and its abil-
ity to supplement actual data; the second one is to select 15 consecutive
pictures in the process of heating and cooling, respectively (30 in total),
as the testing dataset in order to judge whether the machine has the
ability to identify the details of the data and understand the rules of
generation and evolution of Bénard cells and whether it is possible to
correct real experimental data.

1. The data supplement

In the process of data supplement, pictures in the testing set need
to be selected randomly. After several rounds of training, weights in
the network are optimized by machine, and good results have been
achieved finally. Figure 11 shows the comparison between the result
(d) on the testing set, which is predicted from results (a)–(c), and the
corresponding practical experimental picture (e) after multiple rounds
of learning. There is a Bénard cell generated obviously in the area
framed by the red square. It shows that the prediction results of the
model are highly similar to the actual results.

The following two methods are used to describe the quantitative
relationships between the predicted image and the original image in
the total pixel value and the distribution of pixel values. The weights in
the model are optimized by using the backpropagation algorithm.
According to Eq. (6), the average mean square error is 0.0024 on the
training set and 0.02 on the testing set. This means there is little differ-
ence in the total pixel value between original and predicted pictures.

According to Eq. (3), R2 = 0.9990 on the testing set. This indi-
cates that the joint model has represented the differences between

FIG. 10. The structure of the RNN–CNN joint model.

TABLE III. RNN–CNN structure.

Number of neural
network layers

Neural network
parameters Activation function

Layer normalization
or not

RNN 2048, 2048 ReLu N
FC1 4 096 None N
FC2 76 800 ReLu N
Conv.1 3, 3, 256, 256 ReLu N
Conv.2 3, 3, 256, 384 ReLu N
Conv.3 3, 3, 384, 256 ReLu N
Conv.4 3, 3, 256, 96 ReLu N
Conv.5 3, 3, 96, 1 Sigmoid N

TABLE IV. Cross validation.

Val.1
(calculated)

Val.2
(calculated)

Val.3
(calculated)

Test
(calculated)

Val.1 (experimental) 0.101 0.747 0.814 0.549
Val.2 (experimental) 0.806 0.059 0.854 0.831
Val.3 (experimental) 0.851 0.839 0.073 0.865
Test (experimental) 0.684 0.866 0.901 0.096
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different elements in each feature vector well in the resulting picture.
The predicted pictures have similar distribution of pixel values with
the original pictures, rather than that the elements in the feature vector
are simply mapped to the average pixel value of the corresponding
original picture to reduce the prediction error. Hence, the model has
high credibility.

In this part, the predicted results by using the machine learning
approach show remarkable agreement with the practical experimental
results. This indicates that machine learning methods have strong abil-
ity to learn from data. A few randomly selected pictures are used as
the testing set. Since the machine has mastered the evolution law of
the pattern before and after the selected picture during the training, it
can perform predictions on the selected picture in the testing set. It
will be really helpful for data supplement in the future work. We can
train the model by selecting pictures before and after the missing
frame as the training set and treat the picture at the missing frame as
the testing set. The predicted results in the testing set can be used as
the supplement to the missing data of the experiment.

2. The correction of data

In the process of data correction, consecutive pictures need to be
selected as the testing set. There are big differences in training methods
between the experiment with the consecutive extraction method and
the experiment with the random extraction method. In order to gain
the ability to generate continuously changing pictures, the machine
needs to have (gain) creativity when being trained to learn the law of
evolution of the pattern. Therefore, the loss function should not be
decreased too low, the regularization term should be added to the loss
function, and the training rounds should be reduced as well.

After many rounds of training, every weight in the model has
been optimized, and good results have been achieved finally. The com-
parisons between the forecast results (a)–(c) from the testing set and
the corresponding actual results (d)–(f) are shown in Figs. 12 and 13.
It can be seen that the machine learning approach has successfully pre-
dicted the generation of Bénard cells at different positions with good
continuity in the Bénard cells generation process. This demonstrates
that after learning through the training set, the machine has inferred
the law of evolution of the pattern that is suitable for the supercritical
convection, and then, it has predicted the evolution results in the test-
ing set accurately.

From the pattern evolution process, as shown in the square areas
of Fig. 12 [the prediction images (a)–(c) correspond to the experimen-
tal images (d)–(f), respectively, at the same time points], it is clear that
the new generated Bénard cell at the center of the square area is in the
hotspot region; the prediction results have the same temperature dis-
tribution as the actual experimental results, and the prediction results
are synchronized with actual experimental results. However, some-
times the generation time point is delayed, as shown by the square
areas with blue frames in Fig. 13 [the prediction images (a)–(c) corre-
spond to the experimental images (d)–(f), respectively, with the time
points of the experimental pictures ahead of the predicted pictures],
and the generation time points of Bénard cells predicted by machine
learning methods are later than that shown in the actual experimental
results. Sometimes, a completely different way of pattern formation is
produced, as shown by the square areas with purple frames in Fig. 13.
It is predicted by the machine learning methods that the Bénard cell is
generated at the center because a new hotspot has appeared at the cen-
ter; however, in the actual experiment, the hotspot is obviously closer
to the Bénard cell on the left, and the generation process is manifested

FIG. 11. Data supplement results: (d) corresponding to the supplement result on the testing set, which is predicted from experimental results (a)–(c), and the corresponding
practical experimental picture (e).
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as the split of the Bénard cell on the left. During the practical experi-
ment, the evolution of the pattern is closely related to the disturbance
of temperature field; therefore, whether the machine learning
approach can predict the results the same as experimental results

mostly depends on whether it can predict the distribution of the tem-
perature field accurately. Comparing forecast pictures and experimen-
tal pictures of Fig. 13, we can see that the actual experimental results
show a big change in the temperature distribution, but the prediction

FIG. 12. Synchronized results [forecast images on the top and original images on the bottom: the prediction images (a)–(c) correspond to the experimental images (d)–(f),
respectively, at the same time points].

FIG. 13. Delayed results [forecast images on the top and original images on the bottom: the prediction images (a)–(c) correspond to the experimental images (d)–(f), respec-
tively, with the time points of the experimental pictures ahead of the predicted pictures].
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results show little change in the temperature distribution. The hotspots
appear on the surface before the generation of Bénard cells, so the two
locations where Bénard cells are generated in the square areas in the
predicted pictures are both in the higher temperature regions; well, in
the actual experimental pictures, it does not have a higher temperature
at the same locations. This can explain the difference between pre-
dicted results and actual results to a certain extent.

The following two methods are used to describe quantitative rela-
tionships between the predicted image and the original image in the
total pixel value and the distribution of pixel values. According to
Eq. (6), the average mean square error is 0.03 on the testing set. This
shows that each forecast picture has little difference in the total pixel
value from the original picture. According to Eq. (3), R2 = 0.9416 on
the testing set. Although the differences between different elements in
each feature vector have been well represented on the testing set, the
prediction effect is not as good as the method with the training pic-
tures being selected randomly. This is normal in fact.

The continuity in the results above shows that the machine has
mastered the law of evolution of the pattern through the training set,
and the model it gained can be generalized to a dataset that has not
been seen before, which, to some extent, reflects that the machine has
gained the ability to identify slight differences between adjacent pic-
tures and the ability to imitate real experiments. As the number of
consecutive pictures extracted for the testing set increases (1 and 15),
although the overall effect (the value of R2) of the model is damaged,
the predicted pictures still have good continuity, as shown in Figs. 12
and 13. This reflects that as the number of consecutive pictures
extracted from the picture pool increases, the influence from outside
becomes more and more non-negligible. The same as performing
weather forecasts with machine learning methods, in the short-term
forecast, if the disturbing factors are similar to those have been learned,
the predicted results are similar to the actual results; however, in the
long-term forecast, due to the complex and diversified influencing fac-
tors and the addition of unknown interference factors, the prediction
results tend to have larger and larger deviations from the actual results.
Therefore, the decrease in the value of R2 is quite reasonable.

The above results also show that the machine has learned the
rule that Bénard cells will be generated at hotspots; in addition, it has
formed its own opinion about temperature distribution and has
obtained prediction results that are not consistent with the actual
experimental results of the generation process of Bénard cells. At the
same time, by observing the computing results of machine learning
methods, it is found that the temperature drift has a great impact on
the generation process of Bénard cells, but this kind of influence will
be eliminated after the Bénard cell is generated. Since the real experi-
mental process is accompanied by the interference of external environ-
mental factors and the Marangoni number of the experiment has
exceeded the critical value, even a small disturbance at any moment
will affect the experimental results; as a result, the experimental results
(pattern images) are uncertain. However, the calculation performed by
machine learning methods is a matrix operation essentially. Except for
the laws of the physical process itself, the machine simply summarizes
the disturbances that have been observed before without any further
disturbances being added. Therefore, there is no uncertainty in the
results of the machine learning experiment, so it is quite normal that
computing results do not match the actual results. From this perspec-
tive, it can be considered that the prediction results of the machine

learning approach are closer to theoretical facts compared with the
actual experimental results, and they have a certain correction effect
on the actual experimental results to some extent. Because of the influ-
ence of gravity, many working conditions of BM convection cannot be
achieved on the ground. The machine can be fed with the actual exper-
imental data under the conditions of adjacent parameters to supple-
ment the experimental data under the condition of the current
parameter that is missing or difficult to obtain. In addition, if the
machine learns data from a more idealized experiment, it should be
able to predict experimental results closer to theoretical facts and help
scientists to correct actual experimental results.

Due to the small size of the data, the testing set accounts for a
small proportion in the process of dividing the dataset. In order to
prove that there is no over-fitting phenomenon in the model, we con-
duct cross validation. The dataset is divided into one testing set and
three validation sets finally. If over-fitting exists in the model, the cal-
culation results will be very similar in the data correction process, and
there will be no continuous cell generation process in the results. The
continuity of the final generated data qualitatively shows that the
model maintains good creativity and has no over-fitting phenomenon.
In the process of cross-comparison, we calculate the mean square error
of the testing set and the validation set. The results show that the
mean square error of each dataset reaches the minimum only when
compared with the corresponding experimental results. In the mean
square error calculation with other experimental datasets, we can see
that the calculation result is one order of magnitude larger. It also
shows that there is no over-fitting phenomenon in the data. The spe-
cific results of cross-validation are shown in Table IV.

C. Short-term forecast

The continuous prediction method is adopted in the machine
learning experiment for testing the forecast capability of the model.
Continuous prediction allows the machine to use the learned model to
predict subsequent continuous experimental results autonomously
based on a given number of initial actual experimental pictures. In
continuous prediction, all the 740 pictures are used as training data for
the frame skipping learning, and then, in the test, only the preliminary
27 real experimental pictures are saved in the trained model for auton-
omous continuous prediction, and a total of 770 pictures are obtained
in the end. Because this kind of forecast will cause error accumulation
after every picture is predicted by the machine learning methods, the
27th–739th predicted pictures can reflect the self-correction ability of
the machine learning approach. The 740st–754th pictures can demon-
strate the short-term prediction ability of the machine learning
approach, and the 755th–769th pictures can demonstrate the long-
term prediction ability of the machine learning approach.

The backpropagation algorithm is used to update the model's
parameters. The optimization curve of the loss function is shown in
Fig. 14, where the abscissa represents the number of times the model is
optimized and the ordinate represents the average of the forecast
errors of all pictures after each optimization, i.e., the value of the mod-
el's loss function. It can be observed that with the increase in training
rounds, the value of the loss function decreases from the maximum
value 119.49 to the minimum value around 2.33, so the optimization
effect is obvious.

After multiple rounds of training, each weight of the model has
been optimized by the machine learning methods autonomously, and
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very good training results have been achieved finally. Figure 15(d)
shows the predicted picture based on the consecutive forecast pictures
in Figs. 15(a)–15(c) according to the law learned by the machine learn-
ing methods before. It can be seen intuitively from Fig. 15(d) that a
Bénard cell is generated obviously in the square area. The actual exper-
imental picture is shown in Fig. 15(e) for the convenience of compari-
son. The forecast picture matches the actual experimental picture well
not only in the overall pattern but also in the distribution of the tem-
perature field. It indicates that the machine learning approach has a
great capability of self-correction because the error accumulation
caused by the continuous prediction method does not affect the judg-
ment of the machine learning approach on the Bénard cell's evolution
and temperature distribution. Figure 16(d) shows the prediction effect

of the 749th (7500 s) picture by the machine learning methods. It can
be observed that a Bénard cell has split obviously in the square area of
the picture. The 749th (7500 s) picture of the practical experiment is
shown in Fig. 16(e) for the convenience of comparison. Noticeably,
Figs. 16(a)–16(d) show the calculation results by the machine learning
methods, and in addition to that, Figs. 16(c) and 16(d) show pictures
that the machine has never seen during the training process. From
Figs. 16(c) and 16(d) as well as from Figs. 16(c) and 16(e), the central
Bénard cell in the square area has increased evidently, indicating that
the machine has realized that the wavenumber of the disturbance
wave will decrease at this spot. The prediction result is also very similar
to the actual experimental result, but the prediction effect is not as
good as the 99th (1000 s) picture. In Fig. 16, the pattern shape is pre-
dicted correctly by the machine learning methods, but the temperature
distribution is not predicted accurately. This is probably caused by
unpredictable experimental noise and the addition of the law that has
not been learned by the machine or because it is hard for the machine
to make long-term predictions to the randomly changing temperature
distribution.

The following two methods are used to describe quantitative
relationships between the predicted image and the original image in
the total pixel value and the distribution of pixel values. According
to Eq. (6), the average mean square error is 0.004 on the testing set
and the training set, which can reach the order of 10−3. This shows
that each predicted picture has little difference in the total pixel
value from the original picture. According to Eq. (3), R2 = 0.9995.
This shows that the joint model has represented the differences
between different elements in each feature vector well on the
resulting set. The forecast picture and the original picture are simi-
lar in the distribution of pixel values. It is not just that the elements

FIG. 15. The prediction effect of the 100th (1000 s) picture: (d) corresponding to the forecast result on the testing set, which is predicted from calculated results (a)–(c), and
the corresponding practical experimental picture (e).

FIG. 14. The optimization curve of the loss function of RNN and CNN.
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in each feature vector are simply mapped to the average pixel value
of the original picture to reduce the prediction error. The model
has high credibility.

From the above analysis, it can be seen that the machine has
grasped the law of evolution of the pattern to some extent when the
Ma number is increased first and then decreased within a certain range
in this experimental environment, and it has gained a certain ability to
perform experiments independently, that is to say, the experiment can
be carried out accurately and autonomously by itself after the initial
conditions are given, and the results similar to the practical experi-
mental results can be obtained. At the same time, in order to obtain
continuous experimental results, the machine must have the ability to
distinguish adjacent frames of pictures; otherwise, there will be muta-
tions caused by the generation of Bénard cells and their changes in
position. The slight difference between adjacent frames of pictures is
sometimes difficult to recognize by the human eyes, but the picture is
just a two-dimensional matrix for the machine learning approach.
When the value of an element in the matrix changes, it can be found
by the machine in time. Therefore, compared with humans, it is not a
complicated task for the machine learning approach to predict the tiny
difference between adjacent frames of pictures. The success of the con-
tinuous prediction method also shows that the machine does have
gained the ability to distinguish slight differences between neighboring
pictures, reflecting the superiority of machine learning in this work.
The results of experiments under unachievable experimental condi-
tions can be predicted through this method. The prediction results
demonstrate that the model has good ability in the short-term forecast
in this process. During the short-term prediction of this machine
learning experiment, uncontrollable interference of external

environmental factors does not affect the experimental results signifi-
cantly, so this method can be well applied in actual predictions.

D. Long-term forecast

After the model discussed in 4.3 has been trained and the short-
term prediction has been completed, long-term forecast is performed
by the machine learning methods for predicting the experimental
results after the 755th picture. Figure 17 shows the mean square errors
of each picture calculated by Eq. (2), where the abscissa represents the
sequence number of the picture and the ordinate represents the mean
square error of the picture. It can be seen from Fig. 17 that the values
of MSE are lower than 0.04 before the 755th picture (7560 s) but
higher than 0.04 after that. This indicates that the model can only pre-
dict the experimental results of the first 755 pictures (before 7560 s)
accurately. After the 755th picture (7560 s), the mean square error of
the model's prediction result will rise significantly. In order to explain
this phenomenon, we plot the changing curve of average values of 798
original experimental pictures, as shown in Fig. 18, where the abscissa
represents the sequence number of the picture and the ordinate repre-
sents the average pixel value of the picture. It can be seen that the aver-
age pixel value of the first picture and that of the 755th picture are
both around 42.98 on the same horizontal line. In terms of the experi-
mental state, the average temperature of the fluid system is the same in
the two pictures. In other words, after the 755th picture, the model is
called upon to make predictions in a temperature range that has never
been learned. It is more complicated that the model learns a hydrody-
namic process that includes subcritical bifurcations and leads to chaos,
which means that the evolution of the pattern during the decreasing
process of temperature difference of the BM convection system is not

FIG. 16. The prediction effect of the 750th (7500 s) picture: (d) corresponding to the forecast result on the testing set, which is predicted from calculated results (a)–(c), and
the corresponding practical experimental picture (e).
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a simple inverse of that during the increasing process of temperature
difference. Therefore, sudden deterioration of the prediction effect is
understandable when the temperature range and the amount of learn-
ing data are limited.

The Ma number is gradually decreasing after the 755th (7560 s)
picture. There are two forms of abnormal prediction effect shown in
Fig. 19 [the predicted pictures (a) and (b) correspond to the experi-
mental pictures (d) and (e), respectively, at the same time points]. One
of the abnormal results is that the pattern is incorrect and disappear-
ing, as shown by the pictures on the left of Fig. 19. However, in some
clear regions, as we can see in the square areas with orange frames, the
calculated results are relatively correct in many locations but have a lit-
tle displacement compared with the actual results. Noticeably, the pat-
tern near the red line in the square area is having a new Bénard cell
being generated, so the pattern here is more representative. To some
extent, it reflects that although the evolution of the pattern during the
decreasing process of temperature difference is not a simple inverse of
that during the increasing process of temperature difference due to the
existence of subcritical bifurcations, the formation mechanism of the
Bénard cell has not changed. At the same time, it can be seen that there
are differences between the pattern in the areas circled by blue curves
and surrounding areas of the predicted picture and that in the corre-
sponding areas of the original picture. The pattern has more Bénard

cells with a more complicated structure in these areas of the predicted
picture. Since the temperature difference between the high-
temperature zone and the low-temperature zone at these locations in
the predicted picture is larger than that in the original picture, this
effect is expected. The other abnormal result is the blurred pattern, as
shown by the pictures on the right of Fig. 19. However, in some clear
regions, as shown in the square area with the purple frame, we can see
that the correct pattern is given by the machine. In this way, we can
use machine learning methods to predict the results of some experi-
ments that are not completed practically. The abnormal prediction
results still have some value. On the one hand, the normal part of the
predicted picture may reflect the characteristics of the pattern without
external interference. On the other hand, the anomalous part of the
predicted picture may reflect the influence of uncontrollable factors
(such as changes in temperature and physical background) on the
actual experimental results. They all have certain enlightenment values
for the final result analysis.

The learning material prepared for the machine learning
approach does not contain knowledge about how the Bénard cell will
annihilate during the cooling process. Therefore, it is normal that the
machine cannot determine how the Bénard cell should develop in the
region where the Bénard cell is about to disappear during the predic-
tion process.

The following three points are also the reasons for the abnormal
results in the long-term forecast.

1. Unpredictable temperature field

During training, the machine has learned that the location where
Bénard cells will be generated is closely related to the temperature dis-
tribution. During the actual experiment, the temperature distribution
will be affected by various disturbances. In the short-term prediction,
the temperature drift will not have too much influence on the genera-
tion location and moving direction of the Bénard cell, so the machine
can obtain conclusions that match the experimental results; however,
in the long-term prediction, such temperature changes are unpredict-
able, so the machine will be confused, leading to abnormal results.

2. Chaos effect

When the Ma number exceeds the critical value in the actual
experiment and BM convection gradually evolves into chaos, the dif-
ferential equation will be more and more easily affected by the qua-
dratic term (nonlinear term), so the influence of small disturbances on
the convective system will be more and more significant. Due to error
accumulation during the calculation process and the fact that the
actual experiment may be subject to unpredictable interference of
external factors in the following part, the machine learning approach
will lose the basis of prediction in the relatively long-term prediction,
resulting in abnormal prediction results. To a certain extent, this can
also prove that the machine learning approach has discovered that the
nonlinear equation satisfying the fluid system is sensitive to the initial
value.

3. The complexity of the physical process

In the task of fitting the actual physical model with the machine
learning methods, we select a section of the supercritical process withFIG. 18. Average (temperature) changing curve.

FIG. 17. Scatter plot of MSE.
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the flow system being heated up first and then cooled down. Because
the selected experimental process is incomplete, the machine does not
have chance to learn the rule of pattern disappearance and the knowl-
edge about unpredictable interference of external factors in the follow-
ing part of the experiment. Therefore, it is difficult for the machine
learning methods to predict long-term results accurately based on the
existing dataset.

In addition, when the temperature difference of the fluid system
increases first and then decreases, the characteristics of the pattern at
different stages (such as the proportion of different pattern shapes)
will also change. Our experiment is a preliminary study on the charac-
teristics of the overall change in the pattern under supercritical convec-
tion conditions. Because the heating and cooling processes are not
subdivided into smaller sections, the knowledge about pattern evolu-
tion grasped by the machine is insufficient for long-term predictions.
However, to some extent, this also reflects the authenticity and reliabil-
ity of machine learning methods.

V. CONCLUSIONS

This machine experiment is only a preliminary attempt to com-
bine the machine learning method with the hydrodynamics experi-
ment. The focus of the machine experiment is to judge whether the
machine can master the laws of fluid mechanics and grasp the law of
experimental data change from the perspective of algorithm and statis-
tics. Through the above analysis, we know that the complexity of the
physical process is the main reason for the deviation of the calculation

results from the experimental results. In future research, if we can fur-
ther subdivide the physical process and add physical quantities such as
boundary conditions to constrain the calculation system, then the pre-
diction results of the machine will be more accurate.

In this experiment, 740 infrared thermal images of the one-layer
fluid in the supercritical process of BM convection have been prepared
for the machine learning. We have obtained a powerful model suitable
for predicting the state of the BM convection system. It combines
dimensionality reduction algorithms with prediction algorithms and
has obtained better prediction results with less data. In this paper, the
CAE model based on the convolutional neural network has excellently
performed dimensionality reduction on the dataset and has success-
fully completed the task of extracting the feature vector of the image.
76 800 pixels in each figure are replaced with 2048 data points, the
amount of data is compressed to 3% of the original, and the computa-
tional efficiency of the subsequent RNN–CNN model is improved; the
RNN–CNN joint model has predicted the change in the feature vector
extracted by using the CAE and has successfully recovered the final
predicted feature vectors from predicted pictures. The three models of
data supplement, data correction, and short-term data prediction have
all achieved excellent results with R2 greater than 0.94 on the testing
set, which shows that the model has grasped the rules of the distribu-
tion of data points and the rules of the evolution of data point distribu-
tion in the picture. The model has achieved the objective of
supplementing the missing experimental data and the objective of cor-
recting actual experimental data through a comparison between actual

FIG. 19. Two error modes (incorrect pattern on the left and blurred pattern on the right): the predicted pictures (a) and (b) correspond to the experimental pictures (d) and (e),
respectively, at the same time points.
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experimental results, prediction results by the machine learning meth-
ods, and theoretical analysis results. These two achievements will have
good application prospects in practical research work. At the same
time, active exploration has been conducted in predicting physical
experimental results. The model we have trained can be generalized to
get more theoretical results. The prediction results that match or
unmatch actual experimental results are all valuable in understanding
the law of evolution of the supercritical process in BM convection
(chaos system).

This is a novel attempt to model the supercritical process of
Bénard–Marangoni convection in a one-layer fluid system. The
machine learning methods no longer provide discrete differential
equations and build a computational mesh to gradually deduce the
state of the system at a certain moment but use statistical methods to
fit the experimental data to the statistical distribution to infer
unknown experimental results. In addition, a lot of convolution ker-
nels are used to extract structured information of the pattern. All these
are very helpful for the research on BM convection. The entire
machine learning experiment shows obvious advantages of the new
method in computational efficiency and the authenticity of results.

In the above machine learning experiment, after mastering the
law of evolution of the pattern in the learning stage, the machine can
autonomously deduce the pattern evolution in the testing stage and
predict subsequent experimental results continuously from a few ini-
tial experimental pictures. The trained machine (network) has the abil-
ity to imitate actual physical experiments to some extent. In addition,
the image data we have used in the machine learning experiment con-
tain complex spatial–temporal information, so the structure of the
model can be generalized to other application scenarios where image
data are also used.

The trained machine has learned part of the law of evolution of
the pattern in the fluid system under certain working conditions when
the Ma number changes within a limited range. For the experimental
study on BM convection, in the future, the pattern learning data that
are more detailed, in a larger range, and under more working condi-
tions of the fluid system will be provided to the machine for targeted
learning in order to develop autonomous experiments completely con-
ducted by the trained machine. At the same time, we will try to
describe the strange attractor's appearance after the system enters into
chaos under specified working conditions, which will help us to under-
stand the turbulent structure better.
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