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ABSTRACT

We solve analytically the period of a single triad interaction of homogeneous isotropic turbulence. Comparing with the traditional concept of
the timescale of energy transfer, we found that this period is a timescale of energy exchange among the three wave vectors of a triad.
Quantitatively, the timescale of energy exchange is usually longer if the equilibrium dissipation law is satisfied; however, when energy
transfer is suppressed, the energy exchange becomes dominant. We extract the periods in typical numerical experiments of triad interactions
and show that they are in good agreement with theoretical predictions. This picture implies that energy exchange corresponds to oscillation,
while energy transfer corresponds to damping, and the damping rate is correlated with the oscillation. The present results of the timescale of
energy transfer are expected to be applied in nonequilibrium turbulent flows.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0041020

I. INTRODUCTION

Turbulent flows typically feature chaos and spatiotemporal
complexity, amongst other characteristics. From the energy point
of view, in turbulent flows, the externally injected large-length-scale
kinetic energy fluxes successively across intermediate spatial scales
and ultimately dissipate at small scales. This whole process by
which the kinetic energy can achieve a dynamic balance is known
as the energy cascade. Kolmogorov first proposed the fundamental
theory for the turbulent energy cascade (K41).1 Based on the homo-
geneity assumptions at small scales, the �5/3 slope was obtained in
the inertial range of the energy spectrum for a fully developed tur-
bulent flow at a very high Reynolds number.1 Kolmogorov's asymp-
totic results show that apart from the large-scale range, some
statistical properties of turbulent flows should be universal, and in
addition, they introduce scale-dependent characteristic times to
quantify the energy cascade. In homogeneous isotropic turbulence,
the only characteristic time is the eddy turn-over timescale (the typ-
ical timescale for an eddy to undergo a significant distortion),
which can be obtained based on dimensional analysis and the equi-
librium dissipation law.1–3 In the inertial range, we can define the
energy flux PðkÞ over a wavenumber k, and then, dimensional
analysis can be written as

PðkÞ ¼ k4EðkÞ2hðkÞ; (1)

where E(k) is the energy spectrum and hðkÞ is the eddy turn-over
timescale. According to K41, the energy spectrum obeys the �5/3
power law, namely, EðkÞ ¼ CKe2=3k�5=3, with CK the Kolmogorov
constant and e the rate of energy dissipation. In the current paper, we
choose CK � 1:5, a widely used constant.4,5 Moreover, if the equilib-
rium dissipation law (a basic assumption of K41) is satisfied, the
energy fluxPðkÞ should be equal to the dissipation rate e when k is in
the inertial range. These relations finally yield

hðkÞ ¼ C�2
K e�1=3k�2=3: (2)

In homogeneous isotropic turbulence, this eddy turn-over timescale
describes a universal property of energy transfer at wavenumber k.

On the other hand, it is commonly accepted that the energy
transfer from large to small scales is due to nonlinear triad interactions
of the Navier–Stokes equations between different wavenumbers;6–8

thus, the eddy turn-over timescale is considered to be analogous to the
characteristic timescale of nonlinear triad interactions.9,10 Since a triad
interaction can involve three different wavenumbers k, p, and q, taking
the harmonic mean of the three eddy turn-over times is one way of
estimating the characteristic timescale associated with triadic interac-
tions, i.e.,

hkpq ¼
h�1
k þ h�1

p þ h�1
q

3

 !�1

: (3)
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This approximate timescale has been widely used in analytical turbu-
lence closures to describe the “eddy damping.”9,11 According to Ref.
11, the concept of eddy damping is to replace the memory integral of
the viscosity term of the equation of third-order cumulants; thus, we
can regard this as a characteristic evolution time of the total energy of
the triad, corresponding to the picture that energy transfer toward
other wave vectors. Accordingly, we will call hkpq the timescale of
energy transfer. Though nonlocal contribution always exists in triad
interactions, it can be covered by other interactions as illustrated by
the theoretical argument of Waleffe8 and the numerical results of
Zhou,4 and ultimately, the energy cascade in the inertial range mani-
fests itself as local interactions (namely, wave vectors in the triad are of
similar length). If we only consider local triad interactions, the time-
scale of energy transfer is similar to the eddy turn-over timescale of
any wave vector in the triad.

It follows directly from Eqs. (2) and (3) that the timescale of energy
transfer is related to e, which is connected with molecular viscosity.
However, since global energy flux is not always balanced with dissipa-
tion, there must exist a timescale that is not related to molecular viscos-
ity. A simple thought experiment is to imagine that we suddenly reduce
(or increase) the molecular viscosity in a fully developed equilibrium
turbulence, and then, e immediately changes. However, the energy flux,
which is related to nonlinear advection, will not change in a very short
time, implying that the timescale should not change by Eq. (1). Also, the
energy flux can be heavily suppressed and does not balance with dis-
sipation.12–14 It, then, follows that a new timescale, unrelated to dissipa-
tion, needs to be introduced, which can only be associated with the
wavenumber k and the characteristic velocity U , namely,

T / k�1U�1: (4)

This dimension is formally the same as the Heisenberg time,15,16 but the
underlying pictures are different. According to Refs. 16 and 17, the
Heisenberg time was introduced to explain the time delay of correlation
functions, together with other time scales (see Refs. 18–20). Also, these
time scales are combinations of dimensions rather than exact values.

In the present paper, we will derive a timescale with exact expres-
sions, by starting from a single triad interaction without viscosity. We
call this the timescale of energy exchange. Physically, this corresponds
to the period of energy exchange among the three wave vectors and is
not related to viscosity, as shown in Eq. (4). An intuitive picture on the
time scales of “energy exchange” and “energy transfer” is that the for-
mer describes the oscillation of the energy at a single wave vector,
while the latter describes the damping of amplitude of the energy.

The rest of this paper is organized as follows: In Sec. II, we derive
the exact formula of the timescale of energy exchange, which is in the
same order as (4). Specifically, in Sec. II C, we show that this timescale
is usually longer than the timescale of energy transfer, indicating that
in real turbulence with the equilibrium dissipation law, the timescale
of energy exchange is not dominant. However, in some typical exam-
ples where energy transfer is suppressed in a short time, the timescale
of energy exchange is dominant and can be clearly observed in numer-
ical experiments as shown in Sec. III based on the direct numerical
simulation (DNS). Finally, a conclusion is given in Sec. IV.

II. PERIOD OF A SINGLE TRIAD INTERACTION

Following Refs. 8, 21, and 22, we represent the velocity field of an
incompressible fluid by using the helical decomposition.We transform

the velocity field vðxÞ in physical space to uðkÞ in Fourier space with k
the wave number vector. Being divergence-free due to incompressibil-
ity, k � uðkÞ ¼ 0, each velocity component in Fourier space has only
two degrees of freedom, and hence, two complex helical waves h6

¼ ŵ � k̂6 iŵ can form orthogonal bases, where i ¼
ffiffiffiffiffiffi
�1

p
, known as

the imaginary unit. Here, the unit vector ŵ can be chosen as ŵ ¼ z
�k=jz � kj for an arbitrary vector z. It, then, follows that

uðkÞ ¼ uþðkÞhþðkÞ þ u�ðkÞh�ðkÞ: (5)

Under this decomposition, the Navier–Stokes equations can be rewrit-
ten as

@t þ �k2
� �

uskðkÞ ¼ � 1
4

X
kþpþq¼0

X
sp;sq

ðspp� sqqÞ

� hsp � hsq � hsk½ ��uspðpÞ�usqðqÞ; (6)

where � is the kinematic viscosity, the overbar stands for complex con-
jugation, and the superscripts sk; sp; sq ¼ þ=� denote different helical
modes. It is remarked that when sk; sp; sq appear as variables in formu-
las, they are equal to61.

The quadratic nature of the Navier–Stokes equations indicates
that nonlinear triad interactions play an important role in homoge-
neous turbulence.8 The triad interactions are defined by assuming that
energy transfer only occurs among three wave numbers ðk; p; qÞ with
specific helical modes ðsk; sp; sqÞ. In the inviscid limit, this leads to a
nonlinear system formed of three complex ordinary differential equa-
tions (ODEs) as follows:

_uskðkÞ ¼ gðspp� sqqÞ�uspðpÞ�usqðqÞ;
_uspðpÞ ¼ gðsqq� skkÞ�usqðqÞ�uskðkÞ;
_usqðqÞ ¼ gðskk� sppÞ�uskðkÞ�uspðpÞ;

(7)

where the overdot denotes the time derivative and g ¼ � 1
4 ½h

sp � hsq

� hsk � is a prefactor. As shown in Ref. 8, these equations are formally
similar to the Euler equations for the motion of a solid body around
one of its points, which are defined in real space. Following a standard
argument, it is easy to derive two first integrals (i.e., conserved physical
quantities) from Eq. (7) as follows:

jusk j2 þ jusp j2 þ jusq j2 ¼ const:;

skkjusk j2 þ sppjusp j2 þ sqqjusq j2 ¼ const:;
(8)

corresponding to the conservation of energy and the conservation of
helicity, respectively. It is noted that for complex unknowns, we can
deduce differential equations of modulus and complex arguments for
all velocity components (see Appendix A).

Equation (7) describes a single triad interaction, which assumes
that energy only exchanges among three wave vectors and does not
transfer to any wave vector outside. As pointed out in Ref. 23, usually
a single triad interaction cannot correctly predict the long-term
dynamics, but we will show in Sec. III that if energy transfer is sup-
pressed in a short time, the energy exchange can be reproduced by
direct numerical simulations (DNS).

In the following, we analytically investigate Eq. (7) for real
usk ; usp ; usq , and g and focus on the period of nonlinear energy trans-
fer. Cases for the complex prefactor and unknowns have also been
checked numerically in Appendix B. It is found that the periods for
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real and complex cases have little difference, and at least, they are of
the same order of magnitude (see also Ref. 24). As illustrated in
Appendix C, in some situations, which correspond to the cases in Sec.
IIIA, the periods for real and complex cases are exactly the same.
Therefore, for the sake of simplicity, we will only focus on the real
cases in the subsequent analyses.

A. Two of skk, spp, and sqq being equal

It is obvious that if skk ¼ spp ¼ sqq holds, there is no energy
transfer between different modes. When two of skk, spp, and sqq are
equal, without loss of generality, it suffices to consider skk ¼ spp > sqq
here. Then, the system (7) reduces to

_uskðkÞ ¼ gðspp� sqqÞuspðpÞusqðqÞ ;
_uspðpÞ ¼ gðsqq� skkÞusqðqÞuskðkÞ ;

_usqðqÞ ¼ 0 ;

(9)

and we can rearrange equalities (8) as

jusp j2ðpÞ ¼ sqqT �H

sqq� skk
� jusk j2ðkÞ ;

jusq j2ðqÞ ¼ skkT �H
skk� sqq

;

(10)

where T ¼ jusk j2 þ jusp j2 þ jusq j2 and H ¼ skkjusk j2 þ sppjusp j2
þ sqqjusq j2 are conserved energy and helicity, respectively. Solutions to
this system are trigonometric functions, taking the form of

uskðkÞ¼6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sqqT�H

sqq�skk

s
sin g

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðskk�sqqÞðskkT�HÞ

p
ðt�t0Þ

� �
;

uspðpÞ¼6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sqqT�H

sqq�skk

s
cos g

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðskk�sqqÞðskkT�HÞ

p
ðt�t0Þ

� �
;

usqðqÞ¼6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
skkT�H
skk�sqq

s
;

(11)

where

t0 ¼ � 1

g
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðskkT � HÞðskk� sqqÞ

p sin�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sqq� skk

sqqT �H

s
usk0 ðkÞ

0
@

1
A;

with usk0 ðkÞ the initial value of uskðkÞ, and the sign of each equation is
determined by the initial conditions. It follows directly from the solu-
tions that the period of energy transfer is

T ¼ p

g
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðskk� sqqÞðskkT �HÞ

p : (12)

Note that uskðkÞ has twice the period of energy, which is defined as
ðuskðkÞÞ2.

In Subsection IIB, a similar formulation of the period of energy
transfer will be obtained for the more general case, and we will elabo-
rate on its physical interpretation.

B. None of skk, spp, and sqq being equal

Without loss of generality, we assume spp > skk > sqq. According
to Eq. (8), jusp j2ðpÞ and jusq j2ðqÞ can be represented by jusk j2ðkÞ as

jusp j2ðpÞ ¼
sqq� skk

sqq� spp

sqqT �H

sqq� skk
� jusk j2ðkÞ

 !
;

jusq j2ðqÞ ¼ spp� skk

spp� sqq

sppT �H

spp� skk
� jusk j2ðkÞ

 !
:

(13)

Substituting (13) into (7), we can obtain, by employing the elliptic
integration,ðusk ðtÞ

u
sk
0

duffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � u2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � u2

p ¼ 6g
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðskk� sqqÞðspp� skkÞ

q
t; (14)

where a2 ¼ sqqT�H
sqq�skk

and b2 ¼ sppT�H
spp�skk

. Note that the positivity of a2 and

b2 can be demonstrated by substituting T ¼ jusk j2 þ jusp j2 þ jusq j2

and H ¼ skkjusk j2 þ sppjusp j2 þ sqqjusq j2 into their definitions.
Therefore, solutions to the triad interaction (7) can be expressed as the
Jacobi elliptic functions. When a2 < b2, one obtains

uskðkÞ ¼ 6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sqqT �H

sqq� skk

s
sn g

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðskk� sqqÞðsppT �HÞ

p
ðt � t0Þ

� �
;

uspðpÞ ¼ 6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sqqT � H

sqq� spp

s
cn g

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðskk� sqqÞðsppT �HÞ

p
ðt � t0Þ

� �
;

usqðqÞ ¼ 6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sppT � H

spp� sqq

s
dn g

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðskk� sqqÞðsppT �HÞ

p
ðt � t0Þ

� �
;

(15)

where

t0 ¼ � 1

g
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðsppT �HÞðskk� sqqÞ

p sn�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sqq� skk

sqqT �H

s
usk0 ðkÞ

0
@

1
A;

with usk0 ðkÞ the initial value of uskðkÞ, and the sign of each equation is
determined by the initial conditions.

According to the properties of elliptic functions: uskðkÞ and
uspðpÞ have a period of 4K

g
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðskk�sqqÞðsppT�HÞ

p , while their signs change

with time symmetrically; usqðqÞ has a period of 2K
g
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðskk�sqqÞðsppT�HÞ

p with

a fixed sign. Here, K is the complete elliptic integral defined as

K ¼
ð1
0

duffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� u2Þð1� a2u2Þ

p ;

with a ¼ ja=bj < 1. Thus, the energy transfer period of the triad sys-
tem reads

T ¼ 2K

g
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðskk� sqqÞðsppT �HÞ

p : (16)

It is clear that the theoretical predictions of the period, Eqs. (16)
and (12), are formally similar. As a special case, solutions are no longer
periodic functions for the case of a2 ¼ b2, and the reader is referred to
Appendix D for more details. We remark that the solution (15) has
already been noticed by Bustamante and Kartashova24,25 by using the
Hamiltonian formulation, but the details were not represented.
Moreover, the derivations presented here allow further discussions on
the physical interpretations.
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In the present paper, the exact formulas of the solutions, i.e.,
Eqs. (16) and (12), are not of interest. Instead, we are rather interested
in the underlying timescale T in these solutions. The physical inter-
pretations are explained as follows. Considering the same shape of
triad with different moduli of wave vectors, i.e., enlarging k, p, and q
proportionally, from Eqs. (16) and (12), we have T / k�1. On the
other hand, enlarging usk ; usp ; usq proportionally gives T / U�1,
where U is the characteristic velocity scale. It, then, follows directly
from the scaling (4) that the newly defined timescale is a “purely
advective” timescale and unrelated to viscosity. We will show in
Subsection IIC that the new timescale has completely different physics
in comparison with the timescale of energy transfer.

C. Quantitative comparison with the timescale
of energy transfer

The concept of the timescale of energy exchange is completely
different from the timescale of energy transfer hkpq. According to our
derivations in Subsections IIA and IIB, when three wave vectors
exchange energy, we do not consider any energy transfer to other
wave vectors, and the total energy of ðk; p; qÞ is conserved. In the fol-
lowing, we will first compare the magnitudes of two time scales, then
analyze the difference in physics between them, and illustrate the rea-
sonableness of the timescale of energy exchange.

According to Eqs. (16) and (12), the timescale of energy exchange
depends not only on k, p, and q but also on the helical modes sk; sp; sq;
therefore, we denote by T k;p;qðsk; sp; sqÞ the timescale of energy
change. By contrast, the timescale of energy transfer hkpq does not
depend on helical modes. Recalling the traditional expression of hkpq, i.
e., Eq. (3), the timescale of energy transfer appears as a harmonic
mean of the time scales of all wave vectors. The underlying intuition is
that the fastest-evoluting mode is dominant in the global evolution of
the triad. It is similar for the timescale of energy exchange since the
fastest-developing triad among different combinations of helical
modes should be dominant for fixed (k, p, q). Consequently, following
Ref. 9 and using the harmonic mean, we define a global timescale at
(k, p, q) by considering all helical modes,

hckpq ¼
1
8

X
sk;sp;sq

T k;p;qðsk; sp; sqÞ�1
 !�1

: (17)

The quantitative comparison between hckpc and hkpq is performed
by assuming that (k, p, q) are located in the inertial range with the
�5=3 energy spectrum E(k). From Eq. (5), the modal kinetic energy
can be given by 1

2 uðkÞ�uðkÞ ¼ uþðkÞ�uþðkÞ þ u�ðkÞ�u�ðkÞ. Another
parameter ask ¼ ðuskðkÞ�uskðkÞÞ=ð12 uðkÞ�uðkÞÞ is introduced to account
for the ratio between the helical mode sk and the total energy of k. For
isotropic turbulence, the energy of a shell with a radius k in Fourier
space can be written as

ðDkÞEðkÞ ¼ 2p
k2

ðDkÞ2
huðkÞ�uðkÞi;

where Dk denotes the mesh size and h�i is an ensemble average opera-
tor (see Ref. 26). This equation connects the energy in discrete and
continuous spaces. The total energy T and the total helicityH in helical
modes ðsk; sp; sqÞ can be, thereby, calculated as

T ¼ ask
EðkÞ
4pk2

ðDkÞ3 þ asp
EðpÞ
4pp2

ðDkÞ3 þ asq
EðqÞ
4pq2

ðDkÞ3

¼ CKe
2
3ðDkÞ3

4p
ask k

�11
3 þ aspp

�11
3 þ asqq

�11
3

� �
;

H ¼ skask
EðkÞ
4pk

ðDkÞ3 þ spasp
EðpÞ
4pp

ðDkÞ3 þ sqasq
EðqÞ
4pq

ðDkÞ3

¼ CKe
2
3ðDkÞ3

4p
ask k

�8
3 þ asp p

�8
3 þ asqq

�8
3

� �
: (18)

Since the triad interaction is defined at discrete wave vectors whose
extremities follow the nodes of a regular grid of mesh, we denote
k ¼ mDk; p ¼ nDk, and q ¼ lDk with m2; n2; l2 2 N. The discre-
tized eddy-damping time can, then, be written as

hmnl ¼
h�1
m þ h�1

n þ h�1
l

3

� ��1

;

where hm ¼ ð12Þ
1
3e�

1
3m�2

3ðDkÞ�
2
3.9 Similarly, we can obtain the formula

for hcmnl by substituting Eq. (18) into energy transfer periods.
Subsequently, we can calculate the ratio of these two time scales
Rmnl ¼ hmnl=h

c
mnl , which does not depend on Dk or e.

It is found that Rmnl � 1 in most cases, indicating that the time-
scale of energy exchange is usually much longer than the eddy-
damping timescale. For example, if we select aþ ¼ a� ¼ 0:5, then
Rf1;1;

ffiffi
2

p
g ¼ 0:019 8. We can obtain RmnlZ1 only when two legs of the

triangle are much longer than the third one, for example,
Rf1;100000;100000g ¼ 1:074 1. This fact means that in real turbulence, the
energy transfer from a triad to other wave vectors is usually much
faster than the energy exchange. This explains why in traditional tur-
bulence closures we only need the eddy-damping timescale and never
consider the timescale of energy exchange. However, we will show in
Sec. III that in particular cases, when transfer is not balanced with dis-
sipation, the energy exchange among the three wave vectors can be
important, and the period is in good agreement with the theoretical
prediction. Specifically, we will consider the case that a triad transfers
energy to outside very slowly.

III. NUMERICAL RESULTS

As discussed above, in real turbulence, a triad is more likely to
transfer energy to outside, rather than exchange energy among the
three wave vectors, because the timescale of energy exchange is usually
much smaller than the timescale of energy transfer. However, we
should remark that the timescale of energy transfer is usually used to
characterize turbulent flows where transfer and dissipation are equilib-
rium. There also exist turbulent flows out of equilibrium. To give an
extreme example, energy transfer can be fully eliminated if a parallel
relation is satisfied in a single-scale flow,14 but unfortunately, triad
interactions are also eliminated in this situation. To overcome the
difficulty, here we only inject initial energy into several typical wave
vectors, and it can be proved that the initial zero-energy wave vectors
will receive energy in the magnitude of Oðt2nÞ, where n 	 1 is a
positive integer representing the distance to energy-containing wave
vectors.13 This estimate implies that these zero-energy modes will
not change significantly in a short time, or equivalently, the energy-
containing modes do not transfer energy to others in a short time.
Under such circumstances, we are able to focus on the energy
exchange in a triad and investigate the time scales.
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Direct numerical simulations for the full Navier–Stokes equations
are performed by using a standard pseudo-spectral solver and a
fourth-order Runge–Kutta time integration scheme, with a semi-
implicit treatment of the viscous term.27 The computational domain is
a periodic box in three dimensions with a staggered grid of size 1283,
corresponding to maximum wavenumber kmax ¼ 64 in Fourier space.
A hyperviscosity term in the form ofr4v is introduced to prevent the
truncation accumulation at high wavenumbers, while it hardly affects
lower wavenumbers.28

In Subsections IIIA and IIIB, we will show two types of exam-
ples, which correspond to the local and nonlocal triad interactions,
respectively. By statistical analysis, these two types of triad interactions
were found to contribute to the local energy transfer via different
mechanisms, respectively.29,30 We will show that the timescale of
energy exchange exists in both types of triad interactions.

A. Local triad interactions

The initial field here is generated by injecting energy into an 18-
wave set, as shown in Fig. 1. We have tested different initial fields and
selected two typical cases described in Table I, which can result in the
simplest and purest triad interactions (other cases are mixtures of
these two).

As explained above, a striking feature of this initial field is that
although triad interactions always exist, the mean energy on a sphere
of wave vectors remains constant in a short time by neglecting the vis-
cosity, namely,

_eðkÞjt¼0 ¼ 0 ; 8k ¼
ffiffiffi
j

p
; j 2 Nþ; (19)

where e(k) is defined as

eðkÞ :¼ 1
Nk

X
jkj¼k

uþðkÞ2 þ u�ðkÞ2
� �

; (20)

with Nk the number of waves satisfying jkj ¼ k. We omit the detailed
proof, and the interested reader is referred to Ref. 13.

We remark that the definition of e(k) differs from the traditional
definition of the energy spectrum, in which energy is averaged on a
continuous sphere. We call e(k) the “discrete energy spectrum” since it
is an average over discrete Fourier modes. A difference is that approxi-
mating the continuous energy spectrum by using discrete points will
lead to integration errors.31 Moreover, from the present definition,
some integer wavenumbers of k2 do not contain energy, such as
k2 ¼ 7; 15, and 23, since they cannot be expressed as a summation of
three complete square numbers. However, as will be shown in the sub-
sequent parts, the general envelope of e(k) is similar to the traditional
energy spectrum.

The time evolution of total energy is shown in Fig. 2. In the early
stages, both cases approximately conserve energy since most energies
are stored at small wavenumbers, which are hardly influenced by the
hyperviscosity r4v. In the long time dynamics, both cases decay via a
t�2:6 scaling, with the exponent related to the form of hyperviscosity.
An obvious difference between these two cases is that case B decays
earlier than case A (t 
 2 vs t 
 3). This indicates that the same initial
energy spectra can lead to different energy evolutions. We show the
discrete energy spectra e(k) in Fig. 3. At t¼ 0, there are only two wave-
numbers containing energy, as designed in Table I. Energy is, then,
transferred to higher wavenumbers via triad interactions, dissipates at
the highest wavenumbers due to hyperviscosity, and finally features a
�5=3 inertial range in spectra for both cases.

Figure 4 shows the time evolution of e(k) for the first three wave-
numbers. In general, e(1) and e

ffiffiffi
2

p� �
decay since energy is transferred

to higher wavenumbers; e
ffiffiffi
3

p� �
increases while receiving energy from

smaller wavenumbers, and then decays by transferring energy to
higher wavenumbers. The long-term decay of e(1) satisfies the t�2:6

law of total energy, illustrating that e(1) is the dominant part of total
energy; the short-term increase in e

ffiffiffi
3

p� �
satisfies the t2 law, corre-

sponding to the scaling of small-scale response.13

The most striking phenomenon is that the discrete energy of case
B oscillates much faster and stronger than that of case A, in particular
for e(1) and e

ffiffiffi
2

p� �
. This fluctuation, obviously, is quasiperiodic and

should correspond to a specific timescale. The difference in parameters
between cases A and B implies that this timescale should be related to
the distribution of energy in helical modes uþ and u–, as predicted by
the timescale of energy exchange. In the following, we will extract this
period and compare it with the theoretical predictions in Sec. II.

In order to extract the period of fluctuation of e(1) in case B, we
decompose the signal by using the method of Prony analysis.32,33 The

FIG. 1. Sketch of the initial 18-wave set that contains energy. Numbers are identi-
fiers of different waves.

TABLE I. Initial velocities in different numerical cases.

Case Wave identifiersa Wavenumber Helical mode Initial value

A 1–6 1 uþ 1.0
u� 0.0

7–18
ffiffiffi
2

p
uþ 0.5
u� 0.0

B 1–6 1 uþ 1.0
u� 0.0

7–18
ffiffiffi
2

p
uþ 0.0
u� 0.5

aCorresponding to the numbers in Fig. 1.
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choice of Prony analysis, instead of other methods such as Fourier
decomposition, is due to its capacity on those signals that vibrate and
decay simultaneously. In Prony's method, an input signal S(t) is repre-
sented by a sum of complex exponentials as SðtÞ ¼

PN
n¼1 Ane�iknt ,

where N is the maximum mode number with a numerical truncation
and An and kn are complex numbers standing for both modal ampli-
tude and modal frequency, respectively. Note that the real part of kn
indicates the frequency of the n-th wave component. The dominant
mode of the input signal can be defined as the mode with the largest
amplitude jAnj. After applying Prony's method to the signal with t
from 0 to 4.25 and N¼ 1700, the period of the dominant mode of e(1)
is T numerical ¼ 1:912 5. For a robustness test, the original signal can be
well reconstructed from summing the first 15 modal terms (see
Appendix E for the details).

The theoretical prediction for the timescale of energy exchange
can be obtained by substituting initial conditions of case B to Eqs. (16)
and (12). For the first class modes in case B (namely, the length of
wave vectors is equal to 1), at the initial moment, there are only five

types of triad interactions according to elements of the ensemble fskk;
spp;sqqg¼f1;1;�

ffiffiffi
2

p
g;f1;1;

ffiffiffi
2

p
g;f1;�1;�

ffiffiffi
2

p
g;f1;�

ffiffiffi
2

p
;
ffiffiffi
3

p
g; and

f1;�
ffiffiffi
2

p
;�

ffiffiffi
3

p
g. With the initial velocities shown in Table I, the

period of energy transfer of each triad interaction can be calculated,
yielding T f1;1;�

ffiffi
2

p
g ¼12:566; T f1;1;

ffiffi
2

p
g ¼þ1; T f1;�1;�

ffiffi
2

p
g ¼2:8975,

T f1;�
ffiffi
2

p
;
ffiffi
3

p
g ¼5:0497, and T f1;�

ffiffi
2

p
;�
ffiffi
3

p
g ¼1:9602, respectively. The

comparison between analytical and numerical results indicates that the
smallest analytical period T f1;�

ffiffi
2

p
;�
ffiffi
3

p
g ¼1:9602 and the numerical

value T numerical¼1:9125 are of the same order in magnitude with a
very small relative difference,

er ¼
T f1;�

ffiffi
2

p
;�
ffiffi
3

p
g � T numerical

T f1;�
ffiffi
2

p
;�
ffiffi
3

p
g

¼ 2:43%:

Here, the smallest period corresponds to the fastest energy evolution
for wavenumber 1, which should be the most evident in short time.
Since all triad interactions are coupled, this fastest energy evolution

FIG. 2. Time evolution of the total energy: (a) normal view and (b) log –log view.

FIG. 3. Discrete energy spectra at different times: (a) case A and (b) case B.
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will change the energy of wavenumber 1 in short time and then change
all other longer periods accordingly. Therefore, it is not easy to observe
longer periods in the present case. In brief, the oscillation of energy in
a short time corresponds to the energy exchange in triad interactions,
and the period of oscillation can be well predicted by the exact time-
scale of energy exchange.

In addition, the theoretical timescale of energy exchange for case
A can also be obtained by the same way. For the first-class modes in
case A, at the initial moment, there are another five types of triad inter-
actions according to elements of the ensemble fskk; spp; sqqg
¼ f1; 1;�

ffiffiffi
2

p
g; f1; 1;

ffiffiffi
2

p
g; f1;�1;

ffiffiffi
2

p
g; f1;

ffiffiffi
2

p
;
ffiffiffi
3

p
g; and f1;

ffiffiffi
2

p
;

�
ffiffiffi
3

p
g. With the initial conditions of case A, the period of energy

transfer of each triad interaction can be calculated, yielding Tf1;1;
ffiffi
2

p
g

¼ 12:566; Tf1;1;�
ffiffi
2

p
g ¼ þ1; Tf1;�1;

ffiffi
2

p
g ¼ 8:437 1, Tf1;

ffiffi
2

p
;
ffiffi
3

p
g

¼ 4:644 5, and Tf1;
ffiffi
2

p
;�
ffiffi
3

p
g ¼ 18:565, respectively. Quantitatively, the

global eddy turn-over time, defined as Tto :¼
ffiffiffiffiffiffiffi
3=2

p
ðE=�Þ, is

approximately estimated as TtoðTf1;
ffiffi
2

p
;�
ffiffi
3

p
g=2Þ ¼ 7:11, the same

order as Tf1;
ffiffi
2

p
;�
ffiffi
3

p
g ¼ 4:644 5. This indicates that the energy transfer

effect is fast; thus, we cannot observe an oscillation of e(1) for case A in
Fig. 4(a). By contrast, for case B, the smallest period Tf1;�

ffiffi
2

p
;�
ffiffi
3

p
g ¼

1:960 2 corresponds to a very large eddy turn-over time
TtoðTf1;�

ffiffi
2

p
;�
ffiffi
3

p
g=2Þ ¼ 110:07, indicating that the energy transfer is

slow, and thus, we can clearly observe the energy exchange effect.

B. Nonlocal triad interactions

In this subsection, we perform another DNS case corresponding
to nonlocal triad interactions, where one leg in the triangle is short
and the other two legs are long.

The numerical experiment is conducted in a periodic box with a
grid of 643, corresponding to the maximum wavenumber kmax ¼ 32
in Fourier space. Initially, energy is only injected into the wave vectors

FIG. 4. Evolution of discrete averaged energy e(k) for different wavenumbers: (a) k¼ 1 with a subfigure log-log view focusing on long-term evolution, (b) k ¼
ffiffiffi
2

p
, and (c)

k ¼
ffiffiffi
3

p
with a subfigure log-log view focusing on short-term evolution.
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uþð0; 0; 1Þ ¼ �uþð0; 0;�1Þ ¼ 1 and u�ð20; 0; 0Þ ¼ �u�ð�20; 0; 0Þ
¼ 0:5, while all other helical components are set to 0. The short time
evolution of e(20) is shown in Fig. 5.

Using the Prony analysis mentioned in Sec. III, e(20) is recon-
structed by 8 modal terms whose detailed information is shown in
Appendix E, and the numerical result of period of fluctuation reads
T numerical ¼ 0:567 5. Analytical predictions can be obtained by
substituting initial conditions to Eq. (16), which turn out to be
T f1;�20;

ffiffiffiffiffi
401

p
g ¼ 24:352 and T f1;�20;�

ffiffiffiffiffi
401

p
g ¼ 0:586 0. The relative

difference between the numerical value and the smallest analytical
period is

er ¼
T f1;20;�

ffiffiffiffiffi
401

p
g � T numerical

T f1;20;�
ffiffiffiffiffi
401

p
g

¼ 3:16%:

This very small difference indicates that the exact timescale of energy
exchange is also well captured in nonlocal triad interactions.

IV. CONCLUSIONS

In this paper, we solve analytically the period of a single triad
interaction. This period is regarded as the timescale of energy
exchange. Specifically, it does not relate to viscosity, differing from the
traditional concept of timescale of energy transfer. Quantitatively, the
timescale of energy exchange is usually longer if the equilibrium dissi-
pation law is satisfied. However, when energy transfer is suppressed,
the energy exchange becomes dominant and can be clearly observed
in numerical calculations. Good agreement between numerical results
and theoretical predictions is achieved, and the relative differences are
shown to be less than 4% for both local and nonlocal tested cases.

Formally, the timescale of energy exchange is derived under the
helical decomposition, which implies that different combinations of
helical modes can lead to different time scales, even if the total energy
remains the same. In another word, the timescale of energy exchange
involves new physics for the velocity phase [see Eq. (A3) for the for-
mula], which is not considered in the timescale of energy transfer, i.e.,
Eqs. (1) and (2). In fact, the velocity phase has been illustrated to be
one of the key factors in the nonequilibrium turbulent flows, in which
transfer is no longer balances with dissipation.3,12,13,34–36 As an

example, Ref. 12 reverses all velocities, leading to a delay of decay. We,
therefore, expect to apply the timescale of energy exchange in these
flows to reveal more underlying physics in future studies.
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APPENDIX A: EQUATIONS OF COMPLEX
ARGUMENT IN TRIAD INTERACTIONS

In general cases, the prefactor g is a complex constant for each
individual triad interaction, and the velocity modes are complex as
well. We can express the helical modes and g by introducing the
phases as follows:

uskðk; tÞ ¼ jusk jðk; tÞeihsk ðk;tÞ;
uspðp; tÞ ¼ jusp jðp; tÞeihsp ðp;tÞ;
usqðq; tÞ ¼ jusq jðq; tÞeihsq ðq;tÞ;

g ¼ jgjeihg ;

(A1)

where jusk j; jusp j; jusq j; jgj are moduli and hsk ; hsp ; hsq , and hg are
phases. Substituting (A1) into (7), one obtains

@jusk jðk; tÞ
@t

eihsk ðk;tÞ þ ijusk jðk; tÞ @hskðk; tÞ
@t

eihsk ðk;tÞ

¼ ðspp� sqqÞgjusp jðp; tÞjusq jðq; tÞe�iðhsp ðp;tÞþhsq ðq;tÞÞ: (A2)

The real and imaginary parts on both sides should be, respectively,
equal; hence,

@jusk jðk; tÞ
@t

¼ ðspp� sqqÞjgjjusp jðp; tÞjusq jðq; tÞ

� cosðhg � hskðk; tÞ � hspðp; tÞ � hsqðq; tÞÞ;

jusk jðk; tÞ@hskðk; tÞ
@t

¼ ðspp� sqqÞjgjjusp jðp; tÞjusq jðq; tÞ

� sinðhg � hskðk; tÞ � hspðp; tÞ � hsqðq; tÞÞ : (A3)

It is remarked that this type of phase equation is important for
investigations of the one-dimensional Burgers equation.37,38 We,
then, expect that these new equations will inspire future studies on
three-dimensional Navier–Stokes flows.

APPENDIX B: COMPARISON OF PERIODS OF TRIAD
INTERACTIONS IN THE COMPLEX AND REAL
FIELDS

In the complex field, Eq. (7) does not have an explicit solution;
thus, periods of triad interactions cannot be obtained analytically.
However, we can check the ratio of periods for complex and real

FIG. 5. Evolution of discrete averaged energy e(20).
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FIG. 6. Period ratio R of the triad interaction ðskk; spp; sqqÞ ¼ ð1; 10:5;�10Þ with jusq jðt ¼ 0Þ ¼ 1; Uðt ¼ 0Þ varies from 0 to 2p and jusk jðt ¼ 0Þ varies from 0 to 10. (a)
jusp jðt ¼ 0Þ ¼ 0:6, (b) jusp jðt ¼ 0Þ ¼ 0:8; (c) jusp jðt ¼ 0Þ ¼ 1, (d) jusp jðt ¼ 0Þ ¼ 2, and (e) jusp jðt ¼ 0Þ ¼ 3.
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cases numerically. This ratio can be defined as R ¼ T complex=T real ,
where T real is the energy transfer period of a triad system in the real
field and T complex denotes the period of the same triad interaction
ðskk; spp; sqqÞ with the complex prefactor and unknowns. In this
section, we take ðskk; spp; sqqÞ ¼ ð1; 10:5;�10Þ as an example to
analyze the values of R under different initial conditions.

From the equations of complex argument and modulus [Eq.
(A3)], it is observed that the “triad phase” Uðk; p; q; tÞ
¼ hg � hskðk; tÞ � hspðp; tÞ � hsqðq; tÞ can lead to the variation of
the timescale. Hence, the initial value of U has an impact on the
period ratio R. Moreover, enlarging the moduli jusk j; jusp j; jusq j pro-
portionally implies that T / U�1, where T is the period of the triad
interaction and U is the characteristic velocity scale. This statement
holds for both real and complex fields according to Eq. (A3), and as
a result, enlarging jusk j; jusp j; jusq j proportionally has no influence
on the period ratio R. Without loss of generality, we fix jusq j ¼ 1 at
the initial moment. The evolution of R with different initial values
of jusk j; jusp j and U is shown in Fig. 6. It is clear that the value of R
is greater than 0.8 under most initial conditions. This numerical
experiment indicates that the periods for real and complex cases are
in the same order of magnitude.

APPENDIX C: PERIODS OF TRIAD INTERACTIONS
AMONG COMPLEX MODES

If the prefactor g is a complex number, usually the period of
energy exchange cannot be exactly the same as that in real cases.
However, at least we can show that, for the five types of triad inter-
actions mentioned in Sec. III A, i.e., fskk; spp; sqqg ¼ f1; 1;�

ffiffiffi
2

p
g;

f1; 1;
ffiffiffi
2

p
g; f1;�1;�

ffiffiffi
2

p
g; f1;�

ffiffiffi
2

p
;
ffiffiffi
3

p
g, and f1;�

ffiffiffi
2

p
;�

ffiffiffi
3

p
g,

particular solutions can be obtained with initial conditions listed in
case B of Table I. The periods of energy exchange for complex
modes are the same as those for the real modes. This statement is
proved in detail below.

(1) For the triad interaction fskk; spp; sqqg ¼ f1; 1;
ffiffiffi
2

p
g, the solu-

tion is

uskðk; tÞ ¼ 1 ; uspðp; tÞ ¼ 1 ; usqðq; tÞ ¼ 0 : (C1)

Thus, the period is T f1;1;
ffiffi
2

p
g ¼ þ1 for both real and complex

systems.
(2) For the triad interactions f1;�

ffiffiffi
2

p
;�1g; f1;�

ffiffiffi
2

p
;
ffiffiffi
3

p
g, and

f1;�
ffiffiffi
2

p
;�

ffiffiffi
3

p
g, the initial values of uskðkÞ; uspðpÞ, and usqðqÞ

are 1, 0.5, and 0, respectively. The equations of complex argu-
ment and modulus [Eq. (A3)] are analyzed. Particular solutions
to the complex argument equations take the form

hskðk; tÞ ¼ 0 ; hspðp; tÞ ¼ 0 ; hsqðq; tÞ ¼ hg ; (C2)

regardless of values of jusk jðk; tÞ; jusp jðp; tÞ, and jusq jðq; tÞ.
Consequently, the modulus equations can be rewritten as

@jusk jðk; tÞ
@t

¼ ðspp� sqqÞjgjjusp jðp; tÞjusq jðq; tÞ;

@jusp jðp; tÞ
@t

¼ ðsqq� skkÞjgjjusq jðq; tÞjusk jðk; tÞ;

@jusq jðq; tÞ
@t

¼ ðskk� sppÞjgjjusk jðk; tÞjusp jðp; tÞ;

(C3)

which have the same forms as Eq. (7) in the real field. As
pointed out by Ref. 8, the prefactors g of a triad interaction
have the same modulus in different helical coordinate systems.
Therefore, the period of modulus dynamics, which indicates the
period of energy transfer, is the same as that in the real field.

(3) For the triad interaction f1; 1;�
ffiffiffi
2

p
g, Eq. (7) can be rewritten

as

_uskðk; tÞ ¼ gðspp� sqqÞ�uspðp; tÞ�usqðq; tÞ;
_uspðp; tÞ ¼ gðsqq� skkÞ�usqðq; tÞ�uskðk; tÞ;

_usqðq; tÞ ¼ 0:

(C4)

We can infer from Eq. (C4) that usqðq; tÞ is constant and the
second-order derivatives of uskðk; tÞ and uspðp; tÞ are, respectively,

€uskðk; tÞ ¼ �ðspp� sqqÞ2jgj2jusqðqÞj2uskðk; tÞ ;
€uspðp; tÞ ¼ �ðspp� sqqÞ2jgj2jusqðqÞj2uspðp; tÞ :

Hence, the general solution for uskðk; tÞ is

uskðk; tÞ ¼ C1eixt þ C2e�ixt ; (C5)

where C1 and C2 are complex constants and x ¼ jspp
�sqqj � jgj � jusqðqÞj. As a consequence, juskðk; tÞj2 ¼ jC1j2 þ jC2j2

þ2ReðC1C2ei2xtÞ, where Reð�Þ stands for the real part. Thus, the
period of energy transfer is

T f1;1;�
ffiffi
2

p
g ¼

2p
2x

¼ p
jspp� sqqjjgjjusqðqÞj

;

which is the same as Eq. (11).
In brief, for these typical triad interactions, the periods of

energy exchange among complex modes are the same as those in
the real case.

APPENDIX D: THE CASE OF a25b2 IN SEC. II B

When a2 ¼ b2, which corresponds to the case that H ¼ skkT ,
i.e., ðskk� sppÞjusp j2 ¼ ðskk� sqqÞjusq j2, the integral (14) can be
rewritten as

ðusk ðtÞ
u
sk
0

du
a2 � u2

¼ 6g
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðskk� sqqÞðspp� skkÞ

q
t: (D1)

The solutions can be expressed via hyperbolic functions as

uskðkÞ ¼ 6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sqqT � H

sqq� skk

s
tanh g

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðskk� sqqÞðsppT � HÞ

p
ðt � t0Þ

� �
;

uspðpÞ ¼ 6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sqqT �H

sqq� spp

s
sech g

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðskk� sqqÞðsppT �HÞ

p
ðt � t0Þ

� �
;

usqðqÞ ¼ 6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sppT �H

spp� sqq

s
sech g

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðskk� sqqÞðsppT �HÞ

p
ðt � t0Þ

� �
;

(D2)

where
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t0 ¼ � 1

g
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðsppT �HÞðskk� sqqÞ

p tanh�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sqq� skk

sqqT � H

s
usk0 ðkÞ

0
@

1
A;

with usk0 ðkÞ the initial value of uskðkÞ, and the sign of each equation
is determined by initial conditions. In this case, the solutions are
not periodic any more.

APPENDIX E: PRONY DECOMPOSITIONS

The first 15 modal terms of e(1) in the case of the local triad
interaction and the first 8 modal terms of e(20) in the case of the
nonlocal triad interaction, including complex frequencies kn and
complex amplitudes An, are listed, respectively, in Tables II and III.
For e(1), the period of the dominant mode (mode 1 or 2) reads
T ¼ 2p

3:28534 ¼ 1:912 5. However, for e(20), the first modal term is a
purely decaying signal, and the period of the dominant mode
(mode 2 or 3) reads T ¼ 2p

11:07094 ¼ 0:567 5. The comparisons
between the original and reconstructed signals, e(1) and e(20), are
shown in Figs. 7 and 8, respectively.

TABLE III. Information of the first 8 modal terms of e(20).

Mode number (n) Modal frequency (kn) Modal amplitude (An) Magnitude of amplitude (jAnj)

1 �11.283 51i 0.007 65 0.007 65
2 11.070 94� 9.973 20i 0.002 15þ 0.003 45i 0.004 06
3 �11.070 94� 9.973 20i 0.002 15� 0.003 45i 0.004 06
4 �1.415 97i 0.002 09 0.002 09
5 18.728 54� 2.862 15i 0.001 12þ 0.001 51i 0.001 87
6 �18.728 54� 2.862 15i 0.001 12� 0.001 51i 0.001 87
7 21.169 06þ 0.333 25i 0.000 20þ 0.000 13i 0.000 24
8 �21.169 06þ 0.333 25i 0.000 20� 0.000 13i 0.000 24

FIG. 7. Original and reconstructed signals of e(1).

TABLE II. Information of the first 15 modal terms.

Mode number (n) Modal frequency (kn) Modal amplitude (An) Magnitude of amplitude (jAnj)

1 3.285 34� 5.809 44i 12.461 24þ 14.056 14i 18.784 50
2 �3.285 34� 5.809 44i 12.461 24� 14.056 14i 18.784 50
3 �5.518 75� 4.086 57i �6.166 20þ 3.633 58i 7.157 16
4 5.518 75� 4.086 57i �6.166 20� 3.633 58i 7.157 16
5 �1.811 97� 2.305 34i �5.354 57� 0.426 53i 5.371 53
6 1.811 97� 2.305 34i �5.354 57þ 0.426 53i 5.371 53
7 �8.786 30� 4.643 47i �0.677 22� 0.608 09i 0.910 16
8 8.786 30� 4.643 47i �0.677 22þ 0.608 09i 0.910 16
9 �0.640 33i 0.464 66 0.464 66
10 29.138 67� 29.785 25i 0.008 70� 0.012 23i 0.015 01
11 �29.138 67� 29.785 25i 0.008 70þ 0.012 23i 0.015 01
12 �13.722 17� 2.176 33i �0.000 91� 0.013 40i 0.013 43
13 13.722 17� 2.176 33i �0.000 91þ 0.013 40i 0.013 43
14 16.903 54� 2.214 98i �0.001 77þ 0.005 91i 0.006 17
15 �16.903 54� 2.214 98i �0.001 77� 0.005 91i 0.006 17
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DATA AVAILABILITY

The data that support the findings of this study are available
from the corresponding author upon reasonable request.
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