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ABSTRACT

The capillary driven flow of a liquid in a tube of elliptical cross section under microgravity is studied in this paper. All the factors including
the dynamic contact angle between the liquid and the tube wall, the pressure loss caused by convection, the viscous resistance in the tube
and the reservoir, and the curved liquid surface in the reservoir are considered. The equation of capillary driven flow in the tube of elliptical
cross section is derived. The flow equation can be transformed into an equation that combines external forces on the control body in the
tube. In the case of low Ohnesorge (Oh) numbers, the flow behavior is divided into three time domains by using the capillary force as the
driving force that balances with the inertial force in the reservoir, the convective pressure loss in the reservoir, and the viscous resistance in
the tube in the three domains, respectively. The liquid climbing height in these three sections is proportional to t2, t, and

ffiffi
t

p
, respectively.

However, in the case of high Oh numbers, the flow is divided into two regions, something which has not been proposed in previous work
about capillary driven flow in cylinder tubes. This study is verified by drop tower experiments and numerical simulation with the volume of
fluid method.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0040993

I. INTRODUCTION

Capillary driven flow, which is defined here as a spontaneous
interfacial flow driven by surface tension force, is a significant part of
liquid behavior in spacecraft tanks. In order to control the space liquid
effectively, it is necessary to develop theories of capillary driven flow.

Lucus and Washburn1 first described the dynamic process
involved in capillary rise. They verified that the process could be
described using a mechanical balance between the capillary, viscous
and gravity forces, which resulted in the well-known Lucus–
Washburn equation. Concus and Finn2 studied the liquid equilibrium
interface in a container with internal angles and proposed the famous
Concus–Finn condition. Levine et al.3 considered capillary force, vis-
cous force, and convective loss precisely and proposed a theory of
capillary rise in cylindrical tubes. Stange et al.4 proposed a more com-
prehensive model of capillary rise in cylinder tubes, in which the
meniscus reorientation, the dynamic contact angle, and the develop-
ment of capillary flow were considered. The calculation method of
dynamic contact was improved by Jiang et al.5 and was widely
accepted. Dreyer et al.6 used the same method to explore capillary rise

between parallel plates. Weislogel and Lichter7 obtained accurate pre-
diction of liquid flow along interior corners, and it was extended to
interior corners with varying wettability (Weislogel and Nardin8) and
rounded interior corners (Chen et al.9). Higuera et al.10 analyzed the
penetration of a wetting liquid in the narrow gap between two vertical
plates making a small angle. Wolf et al.11 proposed the Lattice–
Boltzmann method based on field mediators to simulate the capillary
rise process between parallel plates by considering the effect of long-
range interactions between the fluids and the solid walls. Bolleddula
et al.12 presented a new analytic solution for flows along planar interior
edges. A selection of test cell geometries has then been discussed in the
case where compound capillary flows occur spontaneously and simul-
taneously on local and global length scales. Li et al.13 established the
governing equation of capillary driven flow in cylindrical interior cor-
ners and obtained the approximate analytical solution. Reyssat14

explored capillary bridges between a plane and a cylindrical wall and
obtained accurate prediction of the bridges’ shape. Wu et al.15 estab-
lished a comprehensive theoretical model to study the capillary flow
along curved interior corners. By analysis, the centrifugal force caused
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by the curve motion is the decisive factor, which makes the capillary
flow in curved interior corners different from that in straight interior
corners. Dushin et al.16 investigated the capillary driven filtration in
porous media under microgravity conditions. A new mathematical
model that allows taking into account the blurring of the front due to
the instability of displacement has been proposed. Chassagne et al.17

explored capillary driven infiltration of liquids into porous structures.
An analytical approach, as well as computer simulations based on the
free surface lattice Boltzmann (FSLB) method were presented. Chen
et al.18 used the capillary flow theory to optimize the structure of pro-
pellant management device (PMD) in tanks and conducted drop
tower experiments and simulation analyses with the volume of fluid
(VOF) method to examine its performance.

In this paper, a mathematical model of capillary rise in oval tubes
under microgravity is presented. The influences of the dynamic con-
tact angle, the pressure loss, the viscous resistance, and the curved liq-
uid surface in the reservoir on the capillary rise process are all
analyzed. The model is verified by drop tower experiments and
numerical simulation with the VOF method. Furthermore, the differ-
ential equation is transformed into an equation, which is composed of
a series of forces. And, the whole process is divided into different parts
by equating only two dominant forces at the same time.

II. THEORETICAL ANALYSIS

As Fig. 1 shows, the meniscus height is named h and the menis-
cus average velocity is h

�
. The semi-major axis and semi-minor axis of

the oval tube are, respectively, a and b. A horizontal cross section of
the oval tube is shown in Fig. 2. The static contact angle and dynamic
contact angle of the liquid on the tube is a and ad, respectively. Owing
to liquid imbibition into tubes and the obstruction of anti-climb baf-
fles, there forms a curved meniscus in the reservoir, with a radius
named Rc. It is calculated by the distance between the wetting barriers,
c, and the radius of the centerline of the free surface inside the reser-
voir, d.

For convenience, the Cartesian coordinate system is selected to
analyze this problem. The basic assumptions for theoretical analysis
are listed below:

• No stress acts on the free surface.

• The flowing process is isothermal.
• It is fully developed Poiseuille flow.
• The liquid is Newtonian, incompressible, and homogeneous.
• There is no slip between the flowing liquid and the walls.

From the N–S equation, it is easy to obtain the velocity field in a
horizontal cross section of the oval tube

u x; y; tð Þ ¼ 2 h
�
1� x2

a2
þ y2

b2

� �� �
: (1)

From the N–S equation for component u, it yields

@u
@t

¼ � 1
q
@p
@z

þ �
@2u
@x2

þ @2u
@y2

 !
; (2)

where q is the liquid density and � is the kinematic viscosity.
Integrating with respect to x and y over the entire horizontal cross sec-
tion of the oval tube, it can be obtained that

@

@t

ð ð
X

udxdy ¼
ð ð
X

�1
q

@p
@z

dxdy þ �

ð ð
X

@2u
@x2

þ @2u
@y2

 !
dxdy; (3)

where X represents the entire horizontal cross section of the oval tube.
The volume flux across the horizontal section is

pab h
� ¼

ð ð
X

udxdy: (4)

By integrating Eq. (3) with respect to z from z ¼ �h0 to z ¼ h,
we have

pab hþ h0ð Þ h�� ¼ � 1
q

ð ð
X

p h; tð Þ � p �h0; tð Þ� �
dxdy

þ �

ðh
�h0

ð ð
X

@2u
@x2

þ @2u
@y2

 !
dxdydz: (5)

The capillary pressure on the upper control surface isFIG. 1. The front view of the oval tube flow.

FIG. 2. A horizontal cross section of the oval tube.
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pabpr ¼ �lr cos ad; (6)

where l is the approximate circumference of the oval tube’s cross sec-
tion. For a perfectly wetting liquid whose static contact angle is 0, there
is an empirical formula for calculating the dynamic contact angle,
which is written as

cos ad ¼ 1� 2 tanh 4:96 � lv
r

� �0:702
" #

: (7)

where l is the dynamic viscosity of the liquid, � is its velocity, and r is
its surface tension. This equation was proposed in Ref. 5 and verified
by experiments. And, it has been widely accepted. For example, it was
adopted to explore capillary rise in cylinder tubes in Ref. 4, as well as
to study capillary driven flow between parallel plates in Ref. 6. For con-
venience, the upper control surface is assumed to be a plane
(x; y; z ¼ h). The pressure on the upper control surface is

p h; tð Þ ¼ p0 þ pr; (8)

where p0 is the surrounding air pressure.
To calculate the pressure at the inlet (x; y; z ¼ �h0), a second

momentum balance on a control volume in the reservoir is required.
The same analysis as in Ref. 3 is used here based on an equivalent cir-
cular entrance whose radius, re, equals

ffiffiffiffiffi
ab

p
. As shown in Fig. 3, a

hemisphere region around the entrance in the reservoir is established
and set to be control volume 2 (CV 2). In CV 2, we have

Ic ¼ Ie � Il þ RF; (9)

where Ic stands for the rate of change of total momentum in CV 2, Ie
represents the flux of momentum entering CV 2, Il represents the flux
of momentum leaving CV 2, and RF stands for the sum of forces act-
ing on CV 2.

Combined with the mass conservation equation, the flux of
momentum in the z direction entering the hemisphere across R ¼ re is

2pqr2e

ðp
2

0
sin hw2

R¼re cos hdh ¼ 1
4
pqre

2 h
�
2: (10)

The flux of momentum leaving at z ¼ �h0 is

q
ð ð
X

u2dxdy ¼ 4
3
pqre

2 h
�
2: (11)

The force in the z direction that exerts over the hemisphere sur-
face R ¼ re by the fluid in the reservoir outside R ¼ re is

x1 ¼ pre
2 p0 þ pR � 1

2
qre h

�� � 2l
re

h
�� �

; (12)

where pR is the capillary pressure caused by Rc. According to the geo-
metric relationship, an approximate equation of Rc can be obtained,
which is written

Rc ¼ � c3d
6abh

; (13)

pR ¼ r
Rc

: (14)

The force in the z direction that exerts over the circular base
z ¼ �h0 by the fluid in the equivalent entrance is

x2 ¼ 2p
ðre
0
rp z ¼ �h0; tð Þdr: (15)

The acceleration distribution inside CV 2 is unknown, so taking
the average of acceleration in the volume between the hemisphere sur-
face, R ¼ re, and the tube entrance, x; y; z ¼ �h0, as the mean acceler-
ation of CV 2, the flux acceleration in the z direction inwards R ¼ re is

2pre
2
ðp

2

0

Dw
Dt

� �
R¼re

sin hwR¼re cos hdh ¼ 1
4
pre

2 h
�

h
��þ 1

re
h
�
2

� �
: (16)

And, the flux acceleration in the z direction across z ¼ �h0 isð ð
X

u
du
dt

dxdy ¼ 4
3
pr2e h

�
h
��
: (17)

Therefore, the rate of change of total momentum in CV 2 is

2
3 pre

3q 19
24 h

��þ 1
8re

h
�
2

� �
.

Inserting Eqs. (10)–(17) into Eq. (9), we can obtain the pressure
force at the inlet, which reads

x2 ¼ pre
2 p0 þ pRð Þ � 2plre h

� � 37
36

qpre
3 h
�� � 7

6
qpre

2 h
�
2: (18)

Inserting Eqs. (1), (18), and (6)–(8) into Eq. (5), the differential
equation for the height of the meniscus can be obtained, written as

h
�� ¼ 1

hþ h0 þ 37
36

re

r
q

l
pab

cos ad � 1
Rc

� �	

� 4ða2 þ b2Þ
abð Þ2 hþ h0ð Þ þ 2

re

" #
� h

� � 7
6
h
�
2

)
: (19)

When a equals b, Eq. (19) becomes the equation for capillary rise in
cylinder tubes. Equation (19) can be solved using a forth-order

Runge–Kutta method with the initial conditions, h
�ðt ¼ 0Þ

¼ hðt ¼ 0Þ ¼ 0. Equation (19) can be scaled using the characteristicFIG. 3. An equivalent circular entrance and the control volume around the inlet.
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viscous time, tc ¼ ab=ð8�Þ, and the characteristic velocity,

vc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2r=qre

p
. Introducing the dimensionless variables, t� ¼ t=tc

and h� ¼ h=ðtcvcÞ, leads to

h
��

� ¼ 1

h� þ 8 K1 þ 37
36

� �
Oh

K2 cos ad� � K3h�
16Oh

	

� K4h� þ 8K1 þ 2ð ÞOh½ � h� � � 1
2
h2�
� 


(20)

where Oh ¼ l=
ffiffiffiffiffiffiffiffiffi
qrD

p ¼ re=ð8tcvcÞ, K1 ¼ h0=re, K2 ¼ l=ð2preÞ, K3

¼ 6r4e =c
3d, and K4 ¼ ða2 þ b2Þ=ð2abÞ. It can be seen that Eq. (20)

depends only on the Oh number and the geometric ratios, K1;K2;K3,
and K4. This means that Eq. (19) is scaled and non-dimensionalized
by using tc and vc.

III. DISCUSSION

As Dreyer et al. discussed in Ref. 6, Eq. (19) can also be written as
a sum of forces. The capillary flow can be divided into different time
domains, and in each of them only two forces play the dominant role.
With the capillary force in the oval tube being the driving force,
Eq. (19) reads

Fct ¼ Fit þ Fir þ Fcr þ Fft þ Ffr þ Fpl: (21)

The meanings of the force terms are:

(i) Capillary force in the tube Fct ¼ lr cos ad .

(ii) Inertia force in the tube Fit ¼ qpabh h
��
.

(iii) Inertia force in the reservoir Fir ¼ qpab 37
36 re þ h0
� �

h
��
.

(iv) Capillary force in the reservoir Fcr ¼ 6pa2b2
c3d rh.

(v) Friction force in the tube Fft ¼ 4ða2þb2Þplðhþh0Þ h
�

ab .

(vi) Friction force in the reservoir Ffr ¼ 2plre h
�
.

(vii) Pressure loss force at the entrance Fpl ¼ 7
6 qpab h

�
2.

A typical force progression for SF 1 is shown in Fig. 4, where the
x axis is the time, t, and the y axis is the force, F. The red line

represents the capillary driven force, Fct , the green line stands for the
inertia force in the reservoir, Fir , the light blue line represents the pres-
sure loss in the entrance, Fpl , the deep blue line represents the friction
force in the tube, Fft , the magenta line stands for the capillary force in
the reservoir, Fcr , and the dashed line stands for the inertia force in the
tube, Fit . The capillary driven force is effective from the beginning and
starts with the maximum value. The initial development of the menis-
cus from flat to curved equilibrium surface is ignored. As the velocity
of the meniscus increases quickly at the beginning, capillary driven
force decreases rapidly until it reaches the minimum value. This is due
to the influence of dynamic contact angle. Besides the capillary driven
force, in the beginning, the inertia force in the reservoir is the domi-
nant force but decreases rapidly. And then, the pressure gradient force
plays the dominant role. It reaches its maximum value quickly and
decreases with the decreasing velocity of the meniscus. At certain
times, the friction force in the oval tube surpasses the pressure gradient
force and becomes the major one. Approximate solutions can be
obtained by equating only two forces in the respective time domains.
The capillary force is always the driving force. Combining the inertia
force in the reservoir, Fir , and the capillary force, Fct , in the first time
domain, yields the flow speed

h
�
1 tð Þ ¼ Fct

pab
37
36

re þ h0

� �
q

t: (22)

The initial condition is h
�ðt ¼ 0Þ ¼ 0. In the second time domain, the

capillary force is equated to the pressure gradient force, which yields

h
�
2 tð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
6Fct
7qpab

s
: (23)

Time t1 in the end of the first time domain can be obtained from the
intersection of the two velocity curves, that is

t1 ¼ 1:64re
37
36

re þ h0

� � ffiffiffiffiffiffi
q
Fct

r
: (24)

Time t1 terminates the inertia-controlled domain. To calculate liquid
flow velocity in the third region, equating the capillary force with the
friction force in the tube. For capillary flow in the case of lowOh num-
ber, the initial liquid height, h0, can be neglected compared to liquid
flow distance in this region

h3
�

tð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

abFct
8p a2 þ b2ð Þl

s
1ffiffi
t

p : (25)

This is a Lucus–Washburn equation for the third time domain. The

curves of h2
�
and h3

�
intersect at the time, t2 ¼ 7a2b2

48ða2þb2Þ� ¼ 7ab
6ða2þb2Þ tc.

However, the capillary driven flow in oval tubes cannot be
divided into three parts in all cases. The development of different
forces vs time under different conditions is plotted in Figs. 5 and 6.
The meanings of different colored lines are same as those in Fig. 4.
Stange et al. presented in Ref. 4 that, if K1 was large enough, it was
possible to oppress region 2 and the flow changed directly from region
1 into region 3. This rule is also applicable in oval tubes. As Figs. 5(a)
and 5(b) show, when K1 equals 8.16, Fpl cannot be ignored. But when
K1 equals 81.6, Fpl can be ignored compared to Fir and Fft , which

FIG. 4. Development of different forces vs time for Shin-Etsu Silicone Oil KF-96 SF
1 (25 �C) in the oval tube with a ¼ 5 mm, b ¼ 4 mm, and h0 ¼ 20 mm.
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means region 2 does not exist under this condition. They also pre-
sented that, in the case of high Oh numbers, regions 1 and 2 were
completed very fast. This is not quite accurate according to this study.
As presented in Fig. 6(b), the pressure loss force in the entrance, which
is used to balance with capillary driven force to calculate velocity in
region 2, is much smaller than that in Fig. 6(a), and it can be ignored
compared to capillary driven force and friction force in the tube, which
means in the case of high Oh number, region 2 is also oppressed. In
this condition, the liquid flow speed is not fast and its flow distance is
not long enough in the early seconds, so h0 cannot be ignored.
Equating the capillary force with the friction force in the tube, yields

h2h tð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2
1h

2
0 þ 2C1Fctt

p � C1h0
C1

þ C;C1 ¼ 4 a2 þ b2ð Þpl
ab

; (26)

where C is a constant. The velocity in the second region becomes

h2h
�

¼ Fctffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2
1h

2
0 þ 2C1Fctt

p : (27)

The moment, t1h, which demarcates these two regions can be

obtained by equating h1
�
and h2h

�

t1h ¼ s1 þ s2; s1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

q2

4
þ p3

27

r
� q
2

3

s
; s2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2

4
þ p3

27

r
� q
2

3

s
;

p ¼ � C2
1h

4
0

12F2
ct
; q ¼ C3

1h
6
0

108F3
ct
� C2

2

2C1Fct
; C2 ¼ pab

37
36

re þ h0

� �
q:

(28)

In the case of low Oh numbers, from the equations of velocities
in different time domains, an approximate solution for hðtÞ can be
obtained. The height before t1 is

FIG. 5. Development of different forces vs time for SF 1 (25 �C) in the oval tube with a ¼ 3 mm, b ¼ 2 mm. (a) h0 ¼ 20 mm and (b) h0 ¼ 200 mm.

FIG. 6. Development of different forces vs time in the oval tube with a ¼ 5 mm, b ¼ 4 mm, and h0 ¼ 20 mm. (a) SF 1 (25 �C) and (b) SF 20 (25 �C).
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h1 tð Þ ¼ Fct

2pab
37
36

re þ h0

� �
q
t2 (29)

with the initial condition, h1ð0Þ ¼ 0. The height at t ¼ t1 is

h1 t1ð Þ ¼ 0:429
37
36

re þ h0

� �
: (30)

In the second time domain, the height is

h2 tð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
6Fct
7pqab

s
t � t1ð Þ þ h1 t1ð Þ: (31)

It can be seen that it is a linear relation between the meniscus height
and time. The height at t ¼ t2 is

h2 t2ð Þ ¼ 0:0762
re3

a2 þ b2ð Þ�

ffiffiffiffiffiffi
Fct
q

s
� 0:429

37
36

re þ h0

� �
: (32)

The third time domain, in which h3ðtÞ is proportional to
ffiffi
t

p
, is

namedWashburn domain

h3 tð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

abFct
8 a2 þ b2ð Þpl

s ffiffi
t

p � ffiffiffiffi
t2

p� �
þ h2 t2ð Þ: (33)

Therefore, the capillary driven flow in oval tubes is divided into
three regions when the Oh number is low and is divided into two
regions when the Oh number is high, as shown in Figs. 7(a) and 7(b),
where the x axis is time, t, and the y axis is the liquid climbing height,
h. The blue line represents the development of height vs time.
Different regions are also labeled in the diagrams. In Fig. 7(a), during
the first region, the height increases in proportion with t2; during the
second region, the height is proportional to t; and during the
Washburn domain, the height is proportional to

ffiffi
t

p
. In Fig. 7(b), dur-

ing the first region, the height increases in proportion with t2; during
the second region, when the liquid flow distance is so long that h0 can
be ignored, the height is also proportional to

ffiffi
t

p
according to Eq. (26).

However, Eqs. (29)–(33) are obtained by simplifying forces, which
means that the result is not the exact solution. But, it is quite simple
and useful to calculate the transition times and flow distances roughly
without solving the exact solution numerically.

IV. COMPARISON BETWEEN THEORETICAL,
NUMERICAL, AND EXPERIMENTAL RESULTS

The microgravity experiments are carried out in Beijing Drop
Tower. The image acquisition devices can take 50 frames per second.
During experiments, the platform is fixed in the drop cabin. It falls
freely for 3.5 s first from the top of the drop tower and its microgravity
level is 0.001 g. Cylindrical containers made of PMMA with internal
diameters of 160 and 100mm are used for the experiments. The oval
tubes, open on top and bottom, are immersed into the liquid from
above, as Fig. 1 shows. The measuring devices are attached to the outer
sides of tubes to evaluate the flow distance. Wetting barriers are also
included in the model. When the velocity field in a horizontal cross
section of the oval tube can be expressed by Eq. (1), the capillary driven
flow is considered to be fully developed. In order that the flow enters the
fully developed stage faster, tubes with small inner sizes are chosen.
Generally speaking, when �t=re2 ¼ 0:75, the flow is considered to be
fully developed. For example, when in a tube with a ¼ 5 mm and
b ¼ 4 mm, and SF 10 is used, it will take 1.5 s to get into the fully devel-
oped stage. For capillary driven flow in cylinder tubes, there exists a rela-
tion for correcting pressure drop, Fpl , owing to liquid development at
the beginning. The effect of this term is small and the influence caused
by absence of this term’s correction is negligible as long as liquid enters
the fully developed stage quickly.

Several kinds of Shin-Etsu Silicone Oil KF-96, which are labeled
by their kinematic viscosity (SF 1, SF 2, SF 10, and SF 20), are used.
Their properties are listed in Table I. According to the user manual of
Shin-Etsu Company, there exists a relationship between liquid kinetic
viscosity and temperature

log10 �Tð Þ ¼ 763:1
273þ T

� 2:559þ log10 �25�Cð Þ;
� 25�C � T�C � 250�C: (34)

FIG. 7. General representation of capillary rise in oval tubes under microgravity. The meniscus height h vs time t. (a) Capillary driven flow in the case of low Oh numbers, and
(b) in the case of high Oh numbers.
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Besides, liquid density and surface tension can also be expressed
as a function of temperature. For example, for SF 2, its change rate of
surface tension with respect to temperature is 7� 10−5 N/(m K). And
its density at a certain temperature is

qT ¼ 873 � 1:029� 0:00116 � Tð Þ; 0�C � T�C � 25�C: (35)

To ensure the accuracy of the comparison, theoretical calculations and
corresponding numerical simulations are performed using the liquid
properties at the temperature, which is measured during the respective
experiment.

Figure 8 shows a series of frames of capillary rise in a drop tower
experiment. The first picture (t ¼ 0) shows the liquid surface in the
reservoir before the cabin is released. It can be seen that the liquid sur-
face is almost flat and there is no liquid climbing upwards in the tube.
The next five pictures present that, once the cabin is released, the reori-
entation of the liquid surface begins, and the liquid flows into the oval
tube. The position of liquid–gas interface in the tube goes higher and
higher with time. The climbing height, h, is measured from the video
recording frame by frame. For convenience, it is measured every 0.1 s.
Figure 8 also shows that a curved free surface is formed in the tube,
which is the source of capillary driven pressure.

Corresponding numerical simulation is conducted with the VOF
method in Fluent. A typical 3D mesh model is shown in Fig. 9. For
convenience, a square-shaped reservoir is used instead of a cylinder-
shaped one and its equivalent radius is used in theoretical calculations.
Since the effects of capillary force in the reservoir are quite small, the
impact of this simplification is negligible. The total number of grids is
about 1.2 � 106. Boundary layers are also established near the walls.
The height of the first boundary layer is about 0.1mm, and the expan-
sion rate between two adjacent layers is 1.2. Each simulation is per-
formed for a second time after the boundary layers are adjusted
slightly, and the average is taken as the final result.

According to Table II, Re number is much smaller than 2000, so
the laminar flow is chosen as the flow mode in the simulation. The
pressure–velocity coupling equation is numerically solved by
SIMPLEC algorithm. The SIMPLEC algorithm uses a relationship
between velocity and pressure corrections to enforce mass conserva-
tion and to obtain the pressure field. PRESTO is used for the spatially
discretized pressure equation. The spatially discretized gradient equa-
tion is based on least square cell. The spatially discretized momentum
equation uses the second-order upwind style, and Geo-Reconstruct is
used for the spatially discretized volume fraction equation. When the
iterative residual decreases to 10−6, the calculation is considered to be
converged. The relaxation factor for each equation is set by default.
During calculations, the Courant number is mostly smaller than 1,
which indicates that the calculation process is quite stable. The
Courant number is significant for transient flow. For a one-
dimensional grid, it is defined by

Courant ¼ uDt=Dx; (36)

where u is the liquid flow speed, Dx is the mesh length and Dt is the
time step size. Different time step sizes are adopted for different
liquids. The time step size is 0.000 1 s for SF 1, 0.000 2 s for SF 2,
0.000 4 s for SF 10 and 0.000 5 s for SF 20. For comparison, the front
position of the meniscus is also recorded every 0.1 s. The numerical
result of capillary driven flow is shown in Fig. 10. The red part repre-
sents the liquid. The entire height of the model is 170mm. At the
beginning, the liquid is all in the bottom. As soon as the simulation
begins, it flows upwards quickly into the oval tube and forms a con-
cave surface in the tube.

TABLE I. Liquid properties.

Liquid l [kg/(ms)] q (kg/m3) r (N/m) � (mm2/s)

SF 1 (12.4 �C) 0.001 082 830 0.017 9 1.30
SF 1 (25 �C) 0.000 818 818 0.016 9 1
SF 2 (12.3 �C) 0.002 308 886 0.019 2 2.61
SF 2 (25 �C) 0.001 746 873 0.018 3 2
SF 10 (6.8 �C) 0.014 032 952 0.021 2 14.7
SF 10 (13.0 �C) 0.012 170 946 0.020 8 12.9
SF 10 (25 �C) 0.009 35 935 0.020 1 10
SF 20 (25 �C) 0.019 950 0.020 8 20

FIG. 8. Capillary rise of SF 2 (12.3 �C) in an oval tube with a ¼ 7 mm, b ¼ 4 mm, and h0 ¼ 12 mm.

FIG. 9. 3D Mesh model of numerical simulation.
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Figures 11(a) and 11(b) present the comparison between theoret-
ical and numerical results. In the figures, the curves represent the theo-
retical height vs time, and the square signs stand for numerical results.
It can be seen that the numerical results are in good agreement with
theoretical ones. According to Table II, the moments that demarcate
different regions are labeled in Figs. 11(a) and 11(b). In Fig. 11(a), the
Oh number is 0.002 33 in the oval tube with a ¼ 5 mm and b ¼ 4
mm, and 0.003 08 in the oval tube with a ¼ 3 mm and b ¼ 2 mm. In
the first region, the curve of the data are parabolic, and in the second
region, the data fit a straight line. In order to observe this trend more
intuitively, a dashed line that starts from the height at t1 is established.
After t2, the data deviate from the dashed line, because the height is
proportional to

ffiffi
t

p
in the third region. In Fig. 11(b), the Oh number is

0.045 2 in the oval tube with a ¼ 5 mm and b ¼ 4 mm, and 0.030 8 in
the oval tube with a ¼ 3 mm and b ¼ 2 mm. The region, in which the
meniscus height is proportional to t, does not exist any longer. The
flow is divided into two regions under this condition.

More comparisons between theoretical and numerical results are
shown in Figs. 12(a)–12(c). The line represents theoretical results and

the square sign stands for numerical results. The black lines and square
signs represent data of SF 1, the red lines and square signs represent
data of SF 2, and the blue lines and square signs represent data of SF
10. The first region lasts for a short time. In order to show flow fea-
tures in region 1, more numerical data are plotted than in other
regions. While in experiments, owing to the wetting barriers obstruc-
tion, it is hard to measure the meniscus position at the beginning. So,
experimental data start from 0.2 s or 0.3 s. It can be seen that numeri-
cal results are all in good agreement with theoretical ones. And, the
increase in viscosity will significantly slow down the flow rate.

Figures 13(a)–13(d) show the comparison between theoretical,
experimental, and numerical results. In the figures, the curves repre-
sent the theoretical height vs time, and the red square signs stand for
the numerical results and the black square signs stand for the experi-
mental results. The results of the three methods are in good agree-
ment. The moments that demarcate different regions are also labeled.
Figures 13(a) and 13(b) present that, in the first region, the curve of
the data are parabolic, and in the second region, the data fit a straight
line. And after t2, the data deviate from the dashed line. Figures 13(c)

TABLE II. Experimental and numerical parameters.

No. a (mm) b (mm) h0 (mm) Liquid vmax (mm/s) Remax tc (s) vc (mm/s) t1/t1h (s) t2 (s) Oh 10−3 Experimental or numerical

#1 3 2 15 SF 1 (25 �C) 90.5 443 0.750 129.9 0.134 0.404 3.08 Numerical
#2 3 2 15 SF 10 (25 �C) 32.1 44.3 0.075 132.5 0.106 … 30.8 Numerical
#3 5 4 10 SF 10 (6.8 �C) 29.6 18.0 0.170 99.8 0.154 … 33.0 Both
#4 5 4 10 SF 10 (13.0 �C) 31.9 22.2 0.194 99.2 0.154 … 29.0 Both
#5 5 4 20 SF 1 (25 �C) 71.4 639 2.50 96.1 0.255 1.42 2.33 Numerical
#6 5 4 20 SF 1 (12.4 �C) 70.1 481 1.92 98.0 0.171 1.09 2.97 Both
#7 5 4 20 SF 20 (25 �C) 19.6 8.76 0.125 97.3 0.215 … 45.2 Numerical
#8 6 3 15 SF 1 (25 �C) 74.9 636 2.25 98.7 0.186 1.05 2.40 Numerical
#9 6 3 15 SF 2 (25 �C) 65.4 277 1.13 99.4 0.191 0.525 4.70 Numerical
#10 6 3 15 SF 10 (25 �C) 33.1 28.1 0.225 101 0.167 … 23.4 Numerical
#11 6 5 15 SF 1 (25 �C) 66.5 728 3.75 86.9 0.238 2.15 2.10 Numerical
#12 6 5 15 SF 2 (25 �C) 59.7 327 1.88 87.5 0.246 1.08 4.2 Numerical
#13 6 5 15 SF 10 (25 �C) 34.0 37.2 0.375 88.6 0.251 … 20.6 Numerical
#14 7 4 12 SF 2 (12.3 �C) 58.5 238 1.34 90.5 0.197 0.675 5.44 Both
#15 7 4 12 SF 1 (25 �C) 69.3 733 3.50 88.4 0.190 1.76 2.10 Numerical
#16 7 4 12 SF 2 (25 �C) 62.2 329 1.75 89.0 0.197 0.880 4.20 Numerical
#17 7 4 12 SF 10(25 �C) 35.3 37.4 0.35 90.1 0.201 … 21.0 Numerical

FIG. 10. A vertical cross section of the numerical model. The liquid is SF 2 (12.3 �C) and a ¼ 7 mm, b ¼ 4 mm, and h0 ¼ 12 mm.
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FIG. 11. Comparison between theoretical and numerical results. (a) SF 1 (25 �C) in the oval tube with a ¼ 5 mm, b ¼ 4 mm, h0 ¼ 20 mm, and SF 1 (25 �C) in the oval tube
with a ¼ 3 mm, b ¼ 2 mm, and h0 ¼ 15 mm. (b) SF 10 (25 �C) in the oval tube with a ¼ 3 mm, b ¼ 2 mm, h0 ¼ 15 mm, and SF 20 (25 �C) in the oval tube with a ¼ 5 mm,
b ¼ 4 mm, and h0 ¼ 20 mm.

FIG. 12. Comparison between theoretical and numerical results. (a) a ¼ 7 mm, b ¼ 4 mm, h0 ¼ 12 mm, (b) a ¼ 6 mm, b ¼ 3 mm, h0 ¼ 15 mm, and (c) a ¼ 6 mm, b ¼ 5 mm,
h0 ¼ 15 mm.
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and 13(d) show that the flow is divided into two regions. All of these
features accord with theoretical analysis above. It is a pity that limited
by the camera’s field of view, the flow distance is less than 80mm.
And during drop tower experiments, the free surface in the reservoir
did not change from flat into a curved one slowly as imagined. Owing
to wetting barriers obstruction and vibration caused by release, the
free surface in the reservoir kept shaking slightly during experiments
and exceeded wetting barriers. This leads to deviation between experi-
mental data and theoretical results in late period in Figs. 13(c) and 13
(d). The reservoir will be enlarged and optimized to reduce its impact
and more experiments will be carried out.

V. SUMMARY

The exact equation for capillary driven flow into oval tubes is
obtained and verified by drop tower experiments and numerical simu-
lation with the VOF method. Several sizes of oval tubes and four kinds
of Silicone Fluids are used in our analysis. The theoretical result is in
good agreement with the experimental and numerical results.

Moreover, an approximate solution by considering simplified
forces is also presented. In the case of low Oh numbers, by using the
capillary force as the driving force and balancing it with the inertia
force in the reservoir, the convective pressure loss in the reservoir, and
the viscous resistance in the tube, respectively, we can see that the flow
behavior is divided into three time domains. In region 1, the capillary
driven force and the inertia force in the reservoir play the dominant
role. However, the inertia force in the reservoir decreases very quickly,
therefore, region 1 just stays for a short time. While the flow enters
region 2, the pressure loss in the entrance takes the place of inertia
force in the reservoir. The pressure loss decreases with time and the
friction force in the tube starts to play an important role, and the liquid
flow enters region 3. The liquid climbing height is proportional to t2,
t, and

ffiffi
t

p
in these three domains, respectively. And in the case of high

Oh numbers, the pressure loss in the entrance can be ignored com-
pared to the inertia force in the reservoir and the friction force in the
tube, therefore, The region, in which the meniscus height is propor-
tional to t, does not exist any longer. The flow is divided into two
regions under this condition.

FIG. 13. Comparison between theoretical, experimental, and numerical results. (a) SF 1 (12.4 �C) in the oval tube with a ¼ 5 mm, b ¼ 4 mm, h0 ¼ 20; (b) SF 2 (12.3 �C) in
the oval tube with a ¼ 7 mm, b ¼ 4 mm, h0 ¼ 12; (c) SF 10 (13.0 �C) in the oval tube with a ¼ 5 mm, b ¼ 4 mm, h0 ¼ 10; (d) SF 10 (6.8 �C) in the oval tube with a ¼ 5 mm,
b ¼ 4 mm, and h0 ¼ 10.
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