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Abstract: Overhang provides a simple but effective way of coupling (sub)structures, which has been
widely adopted in the applications of optomechanics, electromechanics, mass sensing resonators,
etc. Despite its simplicity, an overhanging structure demonstrates rich and complex dynamics such
as mode splitting, localization and eigenfrequency veering. When an eigenfrequency veering oc-
curs, two eigenfrequencies are very close to each other, and the error associated with the numerical
discretization procedure can lead to wrong and unphysical computational results. A method of com-
puting the eigenfrequency of two overhanging beams, which involves no numerical discretization
procedure, is analytically derived. Based on the method, the mode localization and eigenfrequency
veering of the overhanging beams are systematically studied and their variation patterns are summa-
rized. The effects of the overhang geometry and beam mechanical properties on the eigenfrequency
veering are also identified.

Keywords: overhang; mode localization; eigenfrequency curve veering; mode splitting

1. Introduction

The model of the diatomic chain with perfect regularity, which assumes a simple
cubic lattice with two different masses and the nearest neighbor interaction only, predicts
that its frequency spectrum consists of two parts: The upper optical band and the lower
acoustic band [1,2]. The effect of the introduction of an impurity atom into a perfect crystal
is to bring a local defect, which changes the mass and stiffness at that given point. The
existence of a local defect generates two new eigenfrequencies, which are isolated from
both the optical and acoustic bands [1,2]. The normal modes associated with these two new
eigenfrequencies are the localized modes [1], in which vibration concentrates around the
local defect. The mechanism for the localized modes can be roughly given as follows: When
a crystal vibrates with these isolated eigenfrequencies, which are the forbidden bands for
most of the atoms, those atoms keep motionless except that of the local defect and few
neighboring ones vibrating with much smaller amplitudes [1]. As early as in 1877, Lord
Rayleigh’s study on the effect of the parameter variations on dynamical systems showed
that under right circumstances a vibration mode can split away from the band of modes and
exists above the maximum frequency of the unperturbed system [3]. In optics, the localized
mode was firstly observed by Schaefer [4] in his experiment on the absorption spectrum
of potassium chloride (KCl) at the frequencies above the maximum phonon frequency,
in which a sharp localized optic mode appears due to the presence of a hydrogen ion
impurity. In the study of electron transport, Anderson’s model [5] (nowadays known as the
Anderson localization) shows that the electron motions becomes localized once an impurity
is introduced into an “unperturbed” system, which can lead to the transition of a metallic
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conductor to a semiconductor or an insulator. In acoustics, the localized modes are realized
by the so-called locally resonant sonic materials, which consist of two different materials:
hard lead particle coated with soft silicone rubber [6]. The transmission coefficient of the
lead–rubber composite structure has the sudden decreases at two different frequencies
of an incidence wave, which are referred to as the dip frequencies [6]. At the lower dip
frequency, the lead particle is similar to a mass in an oscillator, which moves as a whole as
a rigid body; at the same time, the rubber displacements except those around the interface
are very small. At the higher dip frequency, things are reversed: the lead particle now has
almost no motion and most of the vibration is in the rubber. The motions at these two
dip frequencies are referred to as the localized modes [6]. In these localized modes, most
vibrations are confined either in the rubber layer or as the oscillation of the lead particle [6];
almost no waves are transmitted into the lead particle, i.e. the particle has no deformation.
This localized mode provides another effective way of sound attenuation rather than
absorption [6]. In optomechanics, a strong optomechanical coupling results in a localized
mode, in which the reflection/absorption of photons or microwave phonons is dramatically
changed [7]. Similar to in solid mechanics, the mode localization is also encountered once
the periodicity/cyclicity of a structure is broken by a defect/irregularity [8,9].

Mode localization and veering are closely related [10]. Some scholars think that
they are the two manifestations of a same drastic phenomenon [11]. Veering describes the
phenomenon that two eigenvalues, which can physically correspond to either eigenfrequen-
cies [10,11] or buckling loads [12,13], rapidly approach each other and then diverge abruptly
without crossing. To emphasize this non-crossing property, veering is also variously called
avoided crossing [14] or anti-crossing [15]. Coupling is the mechanism responsible for the
mode localization and veering [16]. When two eigenfrequencies are well-separated, the
effect of mode coupling is usually modest, and the modal motions are essentially inde-
pendent from each other [17]. The mode coupling can be enhanced when the ratio of two
eigenfrequencies is an integer, which is also called harmonic [18]. However, most structures
with small linear vibrations do not have the harmonic property; various methods, such as
the step-like design [19], are used to make a cantilever beam harmonic. Mode coupling
can also be enhanced in nonlinear regime, in which large motion induced tension can
effectively change the system stiffness and, therefore, tune the system eigenfrequencies
to be harmonic [17,20]. Another alternative approach to enhance the mode coupling is to
bring the two eigenfrequencies closer because veering indicates strong mode coupling [15].
For example, two modes of a square membrane with the eigenfrequency difference of 0.07%
have been used to achieve a strong mode coupling in a cavity optomechanical system [21].
In the Kuramoto model of coupled oscillators, the effective strength of coupling is the
paramount parameter of determining the synchronization [22] and pattern formation [23]
in a dynamical system. However, extracting the effective strength of coupling directly from
a real physical system is rather difficult. An advantage of studying the eigenfrequency
curve veering is to provide an efficient way of evaluating/obtaining the effective strength
of coupling.

The coupling between the optical and mechanical modes can result in either the
damping or anti-damping force for either mode [24]. The damping effect has been used
to cool down the thermal motion of a macroscopic resonator to the quantum ground
state [25]. Quality factor is an essential factor determining the mass sensitivity in a mass
resonator sensor application [26–28]. The quality factor of a mechanical resonator can
be significantly improved by the anti-damping due to the optomechanical coupling [29];
the cavity optomechanical system is a possible candidate for the ultimate limit of mass
detection [7,30]. One of the fast developing trends in optomechanics is to replace the
optical cavity with an electrical one, which leads to electromechanics. When the materials
of the mechanical end mirror are highly transparent to light, the radiation pressure exerted
by photons can be weak, which is the means of the optomechanical coupling [31]. For
example, graphene is 98% transparent to light, but it is basically opaque to the electric
field [31]. Therefore, instead of an optical cavity, a microwave-regime electric cavity is
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introduced [7,31]. The vibration of the graphene resonator forms a movable capacitance
together with a substrate; the electrical and mechanical energies are thus coupled [31].
Another trend is to replace the optical or electrical cavity by a higher mode of the mechanical
resonator [32,33]. Overhang is a simple but effective structure to realize a strong coupling
between modes by bringing the two neighboring eigenfrequencies closer. For example,
Okamoto et al. [32] realized a strong mode coupling by using two modes of overhanging
beams with the two closely spaced eigenfrequencies of 293.94 and 294.37 kHz, which
also achieves a highly efficient energy transfer between the two modes. As shown in
Figure 1, overhang is a mechanical sledge shared by two or several (sub)structures [34–36].
Overhang physically couples the (sub)structures and leads to the eigenfrequency veering
and mode localization, which has been used as an effective mechanism to increase the
sensitivity of mass sensing [35–38]. Furthermore, a veering locus also (approximately)
corresponds to the maximum shift of an eigenfrequency [37], which is a much sought-after
property in a mass resonator sensor [26–28].
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Figure 1. The schematic diagram of the doubly clamped overhang-two beams-overhang structure
and its dimensions. Here, x and y are the length and width directions, respectively. The structure
vibrates transversely in the z-direction.

Due to their simple design, overhanging structures are an important type of resonator
structure [32–41]. Various numerical methods have been used to study the mode localiza-
tion and eigenfrequency veering of the overhanging structures. However, most numerical
discretization methods create or destroy the self-adjointness property of a continuous
system [42], which causes error and even unphysical (un)coupling, and therefore, leads to
wrongful results. This problem becomes much more serious when two eigenfrequencies
are very close to each other in the veering region [43]. Even for a numerical discretiza-
tion method which preserves the (non)self-adjointness property, such as the Galerkin
method [42], wrongful computational results can still be obtained, as demonstrated by
Leissa [44]. The finite element method fails in the computation of the three overhang-
ing cantilevers due to the discretization asymmetry, which physically is induced by an
adsorbate [41]. The asymptotic series and perturbation method can also break down as
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they assume slight changes in the modes [43]. Once a numerical discretization method
is used for the computation of eigenfrequency veering, its validity is always a heated
debate [42,44,45]. In this study, the matrix for the eigenfrequency computation is analyt-
ically derived and the computation is carried out without any numerical discretization.
A comprehensive study on the variations of the eigenfrequencies and mode shapes of
two overhanging clamped–clamped beams is presented. In contrast with the deceptive
simplicity of the two overhanging beams, rich variation patterns of the mode localization,
eigenfrequencies and their veerings are revealed. For each eigenfrequency of a uniform
beam, a new and larger eigenfrequency is generated due to the coupling effect of an
overhanging structure, which resembles the above case of lattice dynamics [1,2]. As the
overhang length increases, this newly generated eigenfrequency increases much more
quickly, which causes the separation of the two eigenfrequencies. Consequently, the modes
associated with these two separating eigenfrequencies undergo the so-called mode split-
ting [14]. Furthermore, this new eigenfrequency also approaches the eigenfrequency of a
higher mode and then diverges, which results in veering. The effects of the overhang geom-
etry on the veering and mode localization are systematically studied. This comprehensive
study should be of some help to the design of the overhanging resonator structures [32–41].
Recently, Kasai et al. [46] proposed an efficient method called “virtual coupling”, which
can effectively change the coupling strength of a system through a nonlinear feedback
scheme. Their method has great potential to be applied to various coupled systems. Besides
designing the overhanging structures, this paper also presents a rather general study on
the properties of coupled systems, which can provide some help to other coupled systems,
such as optomechanical [21,24,29–31] and electromechanical [33,47,48] ones.

2. Model Development

In the schematic diagram of Figure 1, two beams are connected by two overhangs,
which are clamped. L1, b and h and L2, b∗ and h∗ are the lengths, widths and thicknesses
of the two overhangs, respectively. The widths and thicknesses of the two beams are b1
and h1 and b2 and h2, respectively. The kinetic energy (T) of the system is given as follows

T =
∫ L1

0

m
2

(
∂w
∂t

)2
dx +

∫ L−L2

L1

[
m1

2

(
∂w1

∂t

)2
+

m2

2

(
∂w2

∂t

)2
]

dx +
∫ L

L−L2

m∗

2

(
∂w∗

∂t

)2
dx, (1)

where L is the length of the whole structure; m and m∗ are the mass per unit length of the
two overhangs; and m1 and m2 are the mass per unit length of Beams 1 and 2, respectively.
For the rectangular sections, m = ρbt, m∗ = ρ∗b∗t∗, m1 = ρ1b1t1 and m2 = ρ2b2t2 (ρ and ρ∗

and ρ1 and ρ2 are the densities of the two overhangs and two beams, respectively). The first
and third terms of Equation (1) are the kinetic energies of the two overhangs; the second
term is those of the two beams. The corresponding transverse displacements of overhangs
and beams are w and w∗ and w1 and w2, respectively.

The potential/bending energy (U) of the system is as follows:

U =
∫ L1

0

EI
2

(
∂2w
∂x2

)2

dx +
∫ L−L2

L1

[
E1 I1

2

(
∂2w1

∂x2

)2

+
E2 I2

2

(
∂2w2

∂x2

)2]
dx +

∫ L

L−L1

E∗ I∗

2

(
∂2w∗

∂x2

)2

dx, (2)

where E and E∗ and E1 and E2 are the Young’s moduli of the overhangs and beams,
respectively. I and I∗ and I1 and I2 are the second moments of area of the overhangs
and beams, respectively. For rectangular cross sections, I = bh3/12, I∗ = b∗h∗3/12,
I1 = b1h3

1/12 and I2 = b2h3
2/12. By applying Hamilton’s principle, i.e., δ

∫ t2
t1
(T −U)dt = 0,

the following governing equations are derived:


m ∂2w

∂t2 + EI ∂4w
∂x4 = 0, 0 ≤ x ≤ L1

m1
∂2w1
∂t2 + E1 I1

∂4w1
∂x4 = 0, L1 ≤ x ≤ L− L2

m2
∂2w2
∂t2 + E2 I2

∂4w2
∂x4 = 0, L1 ≤ x ≤ L− L2

m∗ ∂2w∗
∂t2 + E∗ I∗ ∂4w∗

∂x4 = 0, L− L2 ≤ x ≤ L.

(3)
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The following sixteen boundary conditions are also derived from Hamilton’s principle:

w(0) = 0, ∂w
∂x (0) = 0, w∗(L) = 0, ∂w∗

∂x (L) = 0,
w(L1) = w1(L1), ∂w

∂x (L1) =
∂w1
∂x (L1), w(L1) = w2(L1), ∂w

∂x (L1) =
∂w2
∂x (L1),

EI ∂2w
∂x2 (L1) = E1 I1

∂2w1
∂x2 (L1) + E2 I2

∂2w2
∂x2 (L1), EI ∂3w

∂x3 (L1) = E1 I1
∂3w1
∂x3 (L1) + E2 I2

∂3w2
∂x3 (L1),

w1(L− L2) = w∗(L− L2),
∂w1
∂x (L− L2) =

∂w∗
∂x (L− L2),

w2(L− L2) = w∗(L− L2),
∂w2
∂x (L− L2) =

∂w∗
∂x (L− L2),

E1 I1
∂2w1
∂x2 (L− L2) + E2 I2

∂2w2
∂x2 (L− L2) = E∗ I∗ ∂2w∗

∂x2 (L− L2),

E1 I1
∂3w1
∂x3 (L− L2) + E2 I2

∂3w2
∂x3 (L− L2) = E∗ I∗ ∂3w∗

∂x3 (L− L2).

(4)

The first four equations are the clamped boundary conditions for the two overhangs.
The other twelve are at the two connecting points at L1 and L− L2. Physically, these twelve
equations are to ensure the continuity of displacement, slope, moment and shear force at
the two connecting points [19]. The governing equation of the overhang–beams–overhang
structure is divided into four in three domains, as indicated by Equation (3). In the domain
of L1 ≤ x ≤ L − L2, the two beams can have two different vibrations of w1 and w2.
However, the two overhangs are the parts shared by the two beams and, therefore, for each
overhang, there is only one vibration, i.e., w for Overhang 1 and w∗ for Overhang 2. The
two overhangs couple the two beams as they share the same displacement in the overhang
sections. This coupling is also reflected in the boundary conditions at the two connecting
points, as given in Equation (4). It is also noteworthy that Equations (1)–(4) are derived by
a rather general method, which can be directly used to derive the governing equations of
other type of overhanging structure with a small modification [49].

The following dimensionless quantities are introduced [50]

ξ =
x
L

, ξ1 =
L1

L
, ξ2 =

L2

L
, W =

w
L

, W∗ =
w∗

L
, W1 =

w1

L
, W2 =

w2

L
, τ =

√
E1 I1

m1L4 t. (5)

The governing equations of Equation (3) are now non-dimensionalized as the following:

α ∂2W
∂τ2 + γ ∂4W

∂ξ4 = 0, 0 ≤ ξ ≤ ξ1
∂2W1
∂τ2 + ∂4W1

∂ξ4 = 0, ξ1 ≤ ξ ≤ 1− ξ2

(1 + ∆1)
∂2W2
∂τ2 + (1 + ∆2)

∂4W2
∂ξ4 = 0, ξ1 ≤ ξ ≤ 1− ξ2

α∗ ∂2W∗
∂τ2 + γ∗ ∂4W∗

∂ξ4 = 0, 1− ξ2 ≤ ξ ≤ 1.

(6)

The dimensionless quantities in Equation (6) are defined as follows:

α =
m
m1

, γ =
EI

E1 I1
, α∗ =

m∗

m1
, γ∗ =

E∗ I∗

E1 I1
, ∆1 =

m2

m1
− 1, ∆2 =

E2 I2

E1 I1
− 1. (7)

Physically, α and γ are the dimensionless mass per unit length and bending stiffness
of Overhang 1 as compared with those of Beam 1. α∗ and γ∗ are those of Overhang 2. ∆1
and ∆2 are the Beam 2 (dimensionless) deviations of mass per unit length and bending
stiffness from those of Beam 1, respectively. By assuming W = U(ξ)eiωτ , W∗ = U∗(ξ)eiωτ ,
W1 = U1(ξ)eiωτ and W2 = U2(ξ)eiωτ (ω ia the dimensionless circular frequency) and
substituting them into Equation (6), the following solution forms are obtained

U = A1 sin(κβξ) + A2 cos(κβξ) + A3 sinh(κβξ) + A4 cosh(κβξ), 0 ≤ ξ ≤ ξ1
U1 = B1 sin(βξ) + B2 cos(βξ) + B3 sinh(βξ) + B4 cosh(βξ), ξ1 ≤ ξ ≤ 1− ξ2
U2 = C1 sin(κ2βξ) + C2 cos(κ2βξ) + C3 sinh(κ2βξ) + C4 cosh(κ2βξ), ξ1 ≤ ξ ≤ 1− ξ2
U∗ = D1 sin(κ∗βξ) + D2 cos(κ∗βξ) + D3 sinh(κ∗βξ) + D4 cosh(κ∗βξ), 1− ξ2 ≤ ξ ≤ 1,

(8)
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where Ai, Bi, Ci and Di (i = 1–4) are the sixteen unknown constants to be determined
by the sixteen boundary conditions. The dimensionless quantities of β, κ, κ2 and κ∗ are
defined as the following:

β =
√

ω, κ = 4

√
α

γ
, κ2 = 4

√
1 + ∆1

1 + ∆2
, κ∗ = 4

√
α∗

γ∗
. (9)

The sixteen boundary conditions of Equation (4) now become the dimensionless ones
as follows:

U(0) = 0, ∂U
∂ξ (0) = 0, U∗(1) = 0, ∂U∗

∂ξ (1) = 0,

U(ξ1) = (U1ξ1), ∂U
∂ξ (ξ1) =

∂U1
∂ξ (ξ1), U(ξ1) = U2(ξ1), ∂U

∂ξ (ξ1) =
∂U2
∂ξ (ξ1),

γ ∂2U
∂ξ2 (ξ1) =

∂2U1
∂ξ2 (ξ1) + (1 + ∆2)

∂2U2
∂ξ2 (ξ1), γ ∂3U

∂ξ3 (ξ1) =
∂3U1
∂ξ3 (ξ1) + (1 + ∆2)

∂3U2
∂ξ3 (ξ1),

U1(1− ξ2) = U∗(1− ξ2),
∂U1
∂ξ (1− ξ2) =

∂U∗
∂ξ (1− ξ2),

U2(1− ξ2) = U∗(1− ξ2),
∂U2
∂ξ (1− ξ2) =

∂U∗
∂ξ (1− ξ2),

∂2U1
∂ξ2 (1− ξ2) + (1 + ∆2)

∂2U2
∂ξ2 (1− ξ2) = γ∗ ∂2U∗

∂ξ2 (1− ξ2),
∂3U1
∂ξ3 (1− ξ2) + (1 + ∆2)

∂3U2
∂ξ3 (1− ξ2) = γ∗ ∂3U∗

∂ξ3 (1− ξ2).

(10)

By substituting the solution forms of Equation (8) into the boundary conditions of (10),
an eigenvalue problem is formulated by setting the determinant of a 16× 16 matrix zero,
which is a nonlinear transcendental equation to be solved. Significant computation effort
can be saved by utilizing the clamped boundary conditions of the two overhangs. By
substituting Equation (8) into the first four boundary conditions of Equation (10), the
following solution forms are obtained after some manipulations

U = A1[sin(κβξ)− sinh(κβξ)] + A2[cos(κβξ)− cosh(κβξ)], 0 ≤ ξ ≤ ξ1
U1 = B1 sin(βξ) + B2 cos(βξ) + B3 sinh(βξ) + B4 cosh(βξ), ξ1 ≤ ξ ≤ 1− ξ2
U2 = C1 sin(κ2βξ) + C2 cos(κ2βξ) + C3 sinh(κ2βξ) + C4 cosh(κ2βξ), ξ1 ≤ ξ ≤ 1− ξ2
U∗ = D1[sin(κ∗βξ) + d31 sinh(κ∗βξ) + d41 cosh(κ∗βξ)]

+D2[cos(κ∗βξ) + d32 sinh(κ∗βξ) + d42 cosh(κ∗βξ)], 1− ξ2 ≤ ξ ≤ 1.

(11)

Here, d31, d32, d41 and d42 are the four constants determined by the clamped boundary
conditions of the two overhangs at ξ = 0 and 1, which are given in Appendix A. By
substituting Equation (11) into the twelve boundary conditions of Equation (10) at the
connecting points of ξ1 and ξ2, the following equation is obtained:

KṼ = Z̃. (12)

Here, K = K(β) is a 12× 12 matrix and its elements are given in Appendix A. Ṽ is a
vector defined as ṼT= (A1, A1, B1, B2, B3, B4, C1, C2, C3, C4, D1, D2). Z̃ is the zero vector of
Z̃T= (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0). By setting the determinant of K to zero, i.e., det(K) = 0, the
eigenvalues (βs) are found numerically one by one from the lower order to the higher one
by the Newton–Raphson method [51]. For most structures, their two adjacent eigenvalues
are well-separated. In contrast, the two adjacent eigenvalues of an overhanging structure
are very close to each other at the veering loci. Therefore, extreme caution during the com-
putation should be taken when solving this nonlinear transcendental equation. Otherwise,
wrongful results can be easily generated during the eigenfrequency computation. After
an eigenvalue is found and substituted into the above equation, the constants of A1, A2,
A3, A4, B1, B2, B3, B4, C1, C2, C3, C4 and D1 can be found by setting D2 = 1. Once those
constants are found and substituted into Equation (11), the mode shape is also obtained.
As given in Appendix A, K contains both diagonal and off-diagonal terms. Mathematically,
those off-diagonal terms contain the coupling information [11,16,52]. Here, a noteworthy
point is that though the eigenfrequency is numerically computed by setting det(K) = 0,
there is no numerical discretization procedure involved.
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3. Results and Discussion

In the above derivations for a general case, the material properties of the two over-
hangs and beams are different. For simplicity, we assume that they are made of a same
material, i.e., E = E∗ = E1 = E2 and ρ = ρ∗ = ρ1 = ρ2, which is a common scenario of
many micro/nano-resonators [34–36].

In Figure 2, the case of b = b∗ = 6b1 = 6b2, h = h∗ = h1 = h2 and ∆1 = ∆2 = 0
is firstly examined. In this study, the two overhangs are with the same geometry except
the one in Figure 9. The above parameters also indicate that the two beams are identical.
In Figure 2, the variations of the first six βns (n = 1–6) as functions of the overhang
length (ξ1) are presented. Here, βn =

√
ωn is the square root of the nth dimensionless

eigenfrequency (ωn). In the vibration study, it is more common to use this β parameter
rather than ω [50]. For the comparison reason, the first six eigenfrequency square roots of a
uniform beam ( fis) are also marked in Figure 2 and their values are given in Table 1. For
the convenience of statement, instead of the eigenfrequency square root, we call βn and fi
eigenfrequency hereafter. In Figure 2, a distinct feature arises: β2i−1 and β2i (i = 1, 2 and
3) appear as a pair and then separate. When ξ1 = ξ2 = 0, there is no overhang and the
whole structure is two separate clamped–clamped beams without any coupling. Therefore,
β1 = β2 = f1, β3 = β4 = f2 and β5 = β4 = f3 are the first three eigenfrequencies of a
uniform beam. As the overhang length increases, β2i−1 and β2i begin to separate. When
ξ1 = ξ2 = 0.5, the two separate beams merge into one (uniform) beam. For a rectangular
beam, its eigenfrequency fi ∝

√
EI/(mL4) ∝ h/L2 [50], i.e., the beam width has no impact

on its eigenfrequency, which is also the mathematical reason in the two cases of ξ1 = ξ2 = 0
and ξ1 = ξ2 = 0.5, βis match fis. These two cases are also the benchmark tests to see if
the eigenfrequency computation is correctly carried out. When the overhang length (ξ1)
approaches 0.5, the beams are about to become one and the coupling is about to vanish,
β2i approaches f2i and β2i−1 approaches f2i−1. In summary, β2i−1 and β2i start with fi and
they separate; finally, β2i ends up with f2i, and β2i−1 with f2i−1. Physically, β2is are the
newly emerging eigenfrequencies due to the coupling of the two beams by the overhangs.
Similarly, new eigenfrequencies also arise in the acoustic and optical bands of a crystal due
to the introduction of an impurity [1,2]. In optomechanics, several important applications
are associated with this phenomenon of newly emerging eigenfrequency/mode shape and
their separations, which corresponds to the optomechanically induced transparency [14].

Table 1. The first six eigenfrequencies ( fis) of a uniform beam [50] and first six eigenfrequencies (βns)
of the overhanging structure in Figure 2 at ξ1 = 0.1, 0.2, 0.3, 0.4 and 0.5.

Uniform f1 f2 f3 f4 f5 f6
Beam 4.73 7.853 10.996 14.137 17.279 20.42

Overhanged β1 β2 β3 β4 β5 β6
ξ1 = 0.1 5.161 5.742 8.488 9.496 11.728 13.286
ξ1 = 0.2 5.458 7.228 8.309 10.83 12.171 13.902
ξ1 = 0.3 5.283 7.598 10.224 11.229 14.345 16.865
ξ1 = 0.4 4.845 7.639 11.144 13.631 17.455 20.059
ξ1 = 0.5 4.73 7.853 10.996 14.137 17.279 20.42

The veering characteristics can be summarized from the results in Figure 2: higher
eigenvalues experience more veering loci. For example, there is no veering locus for β1;
only one for β2 marked as No. 1; two for β3 marked as Nos. 1 and 2; three for β4 marked as
Nos. 2–4; and four for β5 marked as Nos. 3–6. Because only up to six eigenfrequencies are
plotted, there are only two β6 veering loci marked as 5 and 6 shown in Figure 2. Actually
there are three more β6 veering loci as indicated by the arrows, which are formed by the
β6/β7 veering. Physically, the variation of the overhang length (ξ1) changes the mass and
stiffness distribution of the system and its impact on different mode is different [19], which
is clearly seen in the βi wavy variations in Figure 2. As the two overhangs here are identical,
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there is only one control parameter, i.e., ξ1. The eigenfrequency variation as the function
of ξ1 is a curve and the corresponding veering is thus called curve veering [42,44]. When
the number of the control parameter is two and the eigenvalue variation is a surface, the
corresponding veering is thus called surface veering [12]. Six eigenfrequency veering loci
are identified and marked with Arabic numbers in Figure 2. Locus No. 1 is the β2/β3
veering; No. 2 is the β2/β3 veering; Nos. 3 and 4 are the β4/β5 veering; and Nos. 4 and
5 are the β5/β6 veering. The smallest gap between two adjacent veering eigenvalues is
called veering neck [53] or veering width [54]. Clearly, the veering necks of veering loci
Nos. 1 and 3 are much smaller than the other three. Figure 3 presents a closer look at
these two veering loci. Figure 3a plots the β2/β3 veering around ξ1 = 0.235, at which the
veering width β3 − β2 ≈ 0.06 is achieved. Similarly, Figure 3b plots the β4/β5 veering
around ξ1 = 0.165, at which the veering width β5 − β4 ≈ 0.13 is achieved. Figure 3 shows
a distinctive feature of veering: The two adjacent eigenvalues rapidly converge and then
abruptly diverge; however, they do not cross each other. Therefore, instead of veering, a
more straightforward name of “avoided crossing” is used by physicists [14]. It is worth
mentioning that eigenvalue crossing rather than veering can occur for an overhanging
structure [49].
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Figure 2. The first six eigenfrequencies (βn, n = 1 to 6) as the functions of the overhang length (ξ1) for
two identical beams, i.e., m1 = m2 and E1 I1 = E2 I2. The dimensions of the two overhangs are also set
the same as L1 = L2, b = b∗ = 6b1 = 6b2 and h = h∗ = h1 = h2. The corresponding dimensionless
parameters are α = γ = 6, α∗ = γ∗ = 6 and ∆1 = ∆2 = 0, respectively. Here, fis (i = 1–6) are the
first six dimensionless eigenfrequencies of a uniform clamped–clamped beam. The veering loci are
marked by Arabic numbers.
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Figure 3. (a) A closer look at the veering of β2/β3 around ξ1 = 0.23, which is marked as the No. 1
veering locus in Figure 2; and (b) a closer look at the veering of β4/β5 around ξ1 = 0.17, which is
marked as the No. 2 veering locus in Figure 2.

An important issue here is how to extract the effective strength of coupling from
the the veering plots. In the modeling viewpoint, the coupling effect is incorporated
in those six parameters as defined in Equation (7) as well as the two parameters of the
overhang locations (ξ1 and ξ2). These parameters appear in both the governing equation
of Equation (6) and boundary conditions of Equation (10), and, therefore, it is extremely
difficult if not impossible to derive an analytical expression for the effective strength of
coupling for this simple overhanging structure. A similar problem is also encountered
in the model of internally coupled ears (ICE) [55,56], in which the two eardrums are
modeled as two membranes connected by a cavity. In the ICE model, the coupling effect
is determined by several parameters such as the tension, damping, radius, thickness and
density of the membranes, and the air density, pressure and length of the cavity [55]. The
vibration of the membrane poses a movable boundary problem for the propagation of
acoustic wave inside the cavity [55,56], which further complicates the problem and thus the
evaluation on the coupling effect. A major difficulty in the development of the overhanging
resonator sensor is to control/characterize the initial disorders [40], which influence the
coupling strength and result from the manufacturing error. However, those parameters
in essence change the eigenfrequencies of a coupled system and the effective strength of
coupling stiffness, kc, can be effectively evaluated by the following equation [57]

kc

k
=

ω2
2 −ω2

1
2ω2

1
, (13)

where ω2 and ω1 are the two (measured) adjacent eigenfrequencies and ω2 > ω1. k is
the (oscillator) stiffness and in our case k is the cantilever effective stiffness [57], which
is dependent on its mode(s) excited [52]. According to Equation (13), at the loci of the
veering neck/width [53,54], kc reaches its minimum and thus indicates the weakest physical
coupling. However, this minimum kc, i.e., the weakest physical coupling, signifies the
strongest mode coupling [15,17]. Generally speaking, large kc leads to the synchronization
and small kc leads to the (mode) localization [58].

Figure 4 examines the variations of the mode shapes of β2 and β3 before and after the
veering locus No. 1 around ξ1 = 0.235. Figure 4a,b plots the β2 mode shape variations
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at ξ1 = 0.21 and ξ1 = 0.25, respectively. Because two beams can vibrate differently, there
are two different deflections, which are normalized by being divided by the maximum
displacement of Beam 1. At ξ1 = 0.21, the peak of Beam 1 (approximately) corresponds
to the valley of Beam 2, which is called that the two beams are out-of-phase [38]. When
ξ1 = 0.25, a significant change occurs: Now, the peaks/valleys of Beam 1 (approximately)
matches those of Beam 2, which is called that the two beams are in-phase [38]. Similarly,
Figure 4c,d plots the β3 mode shape variations at ξ1 = 0.21 and ξ1 = 0.25, respectively.
Compared with those in Figure 4a,b, things are reversed: the β3 mode shape experiences the
transition of the in-phase mode to the out-of-phase mode. When Figure 4a,c is examined
together, physically, it means that, for a given overhanging structure with ξ1 = 0.21,
the lower β2 mode is out-of-phase and the higher β3 mode is in-phase. In the other
configuration of overhanging structure with ξ1 = 0.25, as shown in Figure 4b,d, things
are reversed again: the lower β2 mode is in-phase and the higher β3 mode is out-of-phase.
This in-phase and out-of-phase pattern shift in the mode shape is often accompanied by
significant amplitude variations [40,41].
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a) ξ1=0.21: Mode shape of β2 b) ξ1=0.25: Mode shape of β2

c) ξ1=0.21: Mode shape of β3 d) ξ1=0.25: Mode shape of β3

Figure 4. The changes of the mode shapes before and after a veering locus. (a) The β2 mode shape at
ξ1 = 0.21 and (b) the β2 mode shape at ξ1 = 0.25. (c) The β3 mode shape at ξ1 = 0.21 and (d) the β3

mode shape at ξ1 = 0.25.

Figure 5 examines the variations of the mode shapes of β4 and β5 before and after the
veering locus No. 3 around ξ1 = 0.165. Similar to the β2 mode shape variation before and
after a veering locus in Figure 4, the β4 mode shape in Figure 5 experiences the transition
of the out-of-phase mode to the in-phase mode. Meanwhile, the β5 mode shape in Figure 5
experiences the transition of the in-phase mode to the out-of-phase mode, which is similar
to the β3 mode in Figure 4. In summary, before and after a veering locus, not only the
two veering eigenvalues but also their mode shapes experience rapid changes. Because
a small change of ξ1 results in large changes of eigenvalue and mode shape, eigenvalue
veering is a catastrophic type phenomenon [11]. Furthermore, the mode shape change
from the in-phase mode to out-of-phase mode or vice versa is a qualitative one, which is
expected to be of important use in the mass resonator sensors based on the mode shape
variation [35,54].
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Figure 5. The changes of the mode shapes before and after a veering locus. (a) The β4 mode shape at
ξ1 = 0.145 and (b) the β4 mode shape at ξ1 = 0.195. (c) The β5 mode shape at ξ1 = 0.145 and (d) the
β5 mode shape at ξ1 = 0.195.

Instead of just focusing the mode shape variations in a narrow area before and after
a veering locus, Figures 6 and 7 provide an overall and more comprehensive study on
the mode shape variations. In Figures 6 and 7, each row is the mode shapes of a βi with
different ξ1s of 0.1, 0.2, 0.3, 0.4 and 0.5. The values of βis are given in Table 1. For each
row of a βi mode shape, the mode shapes with different ξ1s are plotted in the same scale
for the comparison reason. Figure 6 presents the mode shapes of the first three βis and
Figure 7 presents those of the last three. Two patterns can be summarized from the results
in these two figures. The first is that the odd mode of β2i−1 except β1 experiences the in-
phase/out-of-phase mode transition around the first veering locus and the out-of-phase/in-
phase transition around the second veering locus, and then the mode transitions of the
in-phase/out-of-phase and out-of-phase/in-phase alternate. In contrast, the even mode
of β2i reverses the transition patterns: β2i mode experiences the out-of-phase/in-phase
mode transition around the first veering locus and the in-phase/out-of-phase transition
around the second veering locus, and then the mode transitions of the out-of-phase/in-
phase and in-phase/out-of-phase alternate. As discussed above, Figure 4a,b shows the β2
out-of-phase/in-phase mode transition around its first and only veering locus marked as
No. 1, which is around ξ1 = 0.235. This β2 out-of-phase/in-phase mode transition around
ξ1 = 0.235 is also captured in the β2 mode at ξ1 = 0.2 and that at ξ1 = 0.3 as presented in
the second row of Figure 6. However, as discussed in Figure 2, a higher eigenvalue/mode
experiences more than one veering locus. For example, β3 experiences two veering loci
around ξ1 = 0.235 marked as No. 1 and around ξ1 = 0.32 marked as No. 2, as shown in
Figure 2. Again, the β3 mode in-phase/out-of-phase transition around the first veering
locus of ξ1 = 0.235 is captured both by Figure 4c,d and the β3 modes at ξ1 = 0.2 and
0.3, as presented in Figure 6. Around the second veering locus of ξ1 = 0.32, the β3 mode
out-of-phase/in-phase transition is captured in the β3 modes at ξ1 = 0.3 and ξ1 = 0.4 in
Figure 6.

The second one is that the wave numbers of all the βn (n=1–6) modes except the β1
mode increase as ξ1 varies from 0 to 0.5. The mechanism for this wave number increase
can explained as follows: As shown in Figure 2, the β2 value starts with f1 when ξ1 = 0
and ends up with f2 when ξ1 = 0.5. Correspondingly, the β2 mode starts with the first
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mode of a uniform beam (the f1 mode) when ξ1 = 0 and ends up with the second mode
of a uniform beam (the f2 mode) when ξ1 = 0.5. Similarly, the β3 mode starts with the f2
mode and ends as the f3 mode, the β4 mode starts with the f2 mode and ends up with
the f4 mode, and so on. The exception case of the β1 mode as shown in the first row of
Figure 6 always keep the f1 or f1-like mode and the in-phase configuration. Again, it is
explained by Figure 2: β1 starts with f1 and ends up with the same f1.
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Figure 6. The mode shape variations of the first three eigenfrequencies (β1, β2 and β3) as the functions
of the overhang length ξ1. The first, second and third rows correspond to the mode shapes of β1, β2

and β3, respectively.
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In Figures 6 and 7, there are two benchmark characteristics of the mode shapes
worth pointing out. The first one is that, at ξ1 = 0.5, the deflection difference of two
beams vanishes. The reason is simple: the two beams with two overhangs merge into one
uniform beam and, therefore, there is only one beam deflection. At ξ = 0, the structure
configuration is two separate and independent beams. Therefore, the mode shape can
be in two scenarios: The first one is the in-phase configurations of ξ1 = 0.5, as shown in
Figures 6 and 7, in which the two-beam deflections overlap. The second one is the out-
of-phase configuration, in which the two-beam deflections are in the exactly opposite
phases. The second characteristic is that except the value of ξ1 = 0.5 where the two-beam
deflections overlaps, the two-beam deflections are more or less different from other values
of ξ1. For example, in the first row of Figure 7, there is a huge difference between the
two-beam deflections of the β4 at ξ1 = 0.3; in comparison, the difference is much smaller
at ξ1 = 0.4. This deflection difference of the two-beam in an eigenmode is called mode
localization [35] or confinement of vibration [59]. Mode localization physically means that
motion/energy is not equally distributed in each part of a system; the motion/energy
concentration on one or some parts of a system can be harmful to cause an unexpected
fatigue failure [9].

It is worth explaining briefly how the mode localization is induced in the overhanging
structure. As mentioned above, the localized modes in locally resonant materials are
realized in a structure consisting of two materials with huge difference [6]. In contrast, the
two overhangs here are identical and two beams are also identical, a natural question arises:
Why do the two beams vibrate differently? Many theories have been firmly established
to show that the mode localization can also be caused by mistuning, i.e., irregularity of a
periodic structure [9,11,16,59]. At the two connecting points of ξ = ξ1 and 1− ξ2, there
are discontinuities of the mass and bending stiffness, which leads to a sudden change of
the governing equations as indicated by Equation (6). These discontinuities in essence
are irregularities. When ξ1 = 0 and 0.5, those irregularities are gone. When ξ1 = 0,
the two beams vibrate independently with the same shape; there is no coupling and
thus no mode localization. When ξ1 = 0.5, physically the two beams merge into one
and mathematically the deflections of two beams overlap. Therefore, there is no mode
localization, either. Overhang provides both the coupling mechanism and irregularity,
which are responsible for the mode localization. The other worthy point is about the relation
between the eigenfrequency veering and mode localization. Pierre presented the following
statement: “Curve veering and strong mode localization are two manifestations of a single
phenomenon.” [11]. In many structures, the curve veering and (strong) mode localization
indeed occur together. In this overhanging structure, the simultaneous occurrence of
eigenfrequency veering and mode location is also seen. For example, in the first row of
Figure 7, there is a strong mode localization of the β4 mode at ξ1 = 0.3, which is near
the veering locus No. 2 around ξ2 = 0.32. A strong mode localization of the β1 mode at
ξ1 = 0.1 is also seen. However, there is no eigenfrequency veering for β1 at all, as shown in
Figure 2. In contrast to Pierre’s viewpoint, Natsiavas [10] argued that the eigenfrequency
veering and mode localization are not a same thing. In his analysis of a two-degree-freedom
linear oscillator, Natsiavas [10] found that the mode localization occurs for the majority
of the combinations of the system parameters and in contrast, the eigenfrequency veering
only occurs within a very narrow range of the system parameters. In conjunction with the
eigenfrequency veering loci in Figure 2 and mode shape variations in Figures 6 and 7, we
agree with Natsiavas on that in this particular overhanging structure, the eigenfrequency
veering and mode localization are two different things; (strong) mode localization can
occur without an eigenfrequency veering.

Figure 8 examines the impact of the overhang thickness on the eigenfrequency veering.
Compared with the dimensions of the structure in Figure 2, all the geometric parameters
are kept the same except that the overhang thickness is doubled as h = h∗ = 2h1 = 2h2.
A distinctive difference between Figures 2 and 8 is that βi now ends up with βi =

√
2 fi

at ξ1 = 0.5, although β2i−1 and β2i still start with fi. Again, at ξ1 = 0.5, the overhanging
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structure becomes a uniform beam and its corresponding frequency is κβi = fi. As defined

in Equation (9), κ = 4
√

α/γ = 4
√

h2
1/h2 =

√
1/2. Therefore, βi = fi/κ =

√
2 fi. Another

distinctive difference is that the number of the eigenfrequency veering is significantly
reduced. In Figure 8, only three veering loci are identified. Figure 9 examines the asym-
metry of the two overhang lengths on the eigenfrequency veering. Compared with the
dimensions in Figure 8, all the geometric parameters are the same except that ξ1 = 1.5ξ2
is set in Figure 9. In all other figures, ξ1 = ξ2 is set, which is a symmetric configuration.
Now, with the asymmetric configuration, more veering loci arise in Figure 9. In conjunction
with Figures 2, 8 and 9, it is clear that the geometry of the overhangs play the paramount
role in the eigenfrequency veering, which determines the number of veering, veering loci
and neck.

Figures 10 and 11 study the influences of ∆1 and ∆2, respectively. In Figures 10 and 11,
h = h∗ = 2h1 = 2h2 and ξ1 = 0.265 are set. In Figure 10, ∆2 = 0 is fixed and ∆1 varies
from −0.2 to 0.2. Physically, ∆1 defined in Equation (7) is the difference of the mass per
unit length between the two beams. Larger ∆1 means more mass of the system. Therefore,
all βis in Figure 10 decrease monotonically with the increase of ∆1. In Figure 11, ∆1 = 0
is fixed and ∆2 varies from −0.2 to 0.2. ∆2 is also defined in Equation (7) and physically
it is the difference of the bending stiffness between the two beams. Larger ∆2 means
larger system stiffness. Therefore, all βis in Figure 11 increase monotonically with the
increase of ∆2. From the results in Figures 10 and 11, it is concluded that ∆1 and ∆2
can have significant impact on some eigenfrequencies of βis. The dramatic decrease and
increase of β5 in Figures 10 and 11 are seen. However, there is no veering behavior of
abrupt converging and then diverging. The variations of ∆1 and ∆2 only change the gap
distance of two (adjacent) veering eigenfrequencies, i.e., βi+1 − βi, and thus their veering
neck. For example, the gap distance between β2 and β3 in Figure 10 decreases with the ∆1
increase. In contrast, the gap distance between β2 and β3 increases with the ∆2 increase in
Figure 11. The setting of ξ1 = 0.265 in Figures 10 and 11 is close to the veering locus of
ξ1 = 0.28 marked as No. 1 in Figure 8, which is the β2/β3 veering. It is also noticed that,
as ∆1 or ∆2 varies, the gap distance between β3 and β2 is always kept the smallest among
all the gap distances.
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Figure 8. The first six eigenfrequencies (βn, n = 1–6) as the functions of the overhang length (ξ1) for
two identical beams, i.e., m1 = m2 and E1 I1 = E2 I2. The dimensions of the two overhangs are also set
the same as L1 = L2, b = b∗ = 6b1 = 6b2 and h = h∗ = 2h1 = 2h2. Compared with the dimensions
of Figure 2, the overhang thickness is doubled. The corresponding dimensionless parameters are
α = α∗ = 12, γ = γ∗ = 48 and ∆1 = ∆2 = 0, respectively.



Micromachines 2021, 12, 324 15 of 19

0 0.1 0.2 0.3 0.4 0.5 0.6
0

5

10

15

20

25

30

E
ig

e
n

fr
e

q
u

e
n

c
ie

s

β2

β1

β6

β5

β4

β3

ξ1

f1

f2

f5

f4

f3

f6

3

1

2

4

5

f1

f2

f3

Figure 9. The impact of the overhang asymmetry on the eigenfrequencies. Compared with the
dimensions in Figure 8, all the dimensions are kept the same except the overhang lengths. The
asymmetric configuration of ξ1 = 1.5ξ2 is set.
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Figure 10. The first six eigenfrequencies as the functions of ∆1. The overhang length is fixed as
ξ1 = ξ2 = 0.265, which is around the veering locus No. 1 in Figure 8. Except ∆1, ξ1 and ξ2, all other
parameters are the same as those in Figure 8.
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Figure 11. The first six eigenfrequencies as the functions of ∆2 with the overhang length being set as
ξ1 = ξ2 = 0.265.

4. Conclusions

The governing equations of the doubly clamped overhang-two beams-overhang
structure are derived and the corresponding eigenvalue problem is formulated, whose
computation requires no numerical discretization. The variations of the eigenfrequency
and mode shape are studied. The phenomena of the eigenfrequency curve veering, mode
splitting and mode localization are shown. Besides coupling two beams, the presence of
overhang also changes the spatial distribution of mass and stiffness of the system, which
has different impact on the eigenfrequency of different mode. The eigenfrequencies of
different modes vary differently with the varying length of the overhang, which leads
to eigenfrequency curving veerings at some given overhang lengths. Before and after a
veering locus, both the eigenfrequencies and mode shapes of the two adjacent veering
modes experience catastrophic changes. The out-of-phase/in-phase transition and in-
phase/out-of-phase transition of the mode shapes of two veering modes before and after
a veering locus are shown. In many structures, the phenomena of eigenfrequency curve
veering and mode localization occur simultaneously. In our structure, they can occur
simultaneously or the mode localization can occur alone without any eigenfrequency
curve veering. The geometric parameters of overhang are the paramount parameters of
determining the eigenfrequency veering; the mass and stiffness differences between the
two beams are the tuning parameters, which vary the veering neck.
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Appendix A

The four constants of d31, d32, d41 and d42 in Equation (11) are defined as follows:

d31 = sin(κ∗β) sinh(κ∗β)− cos(κ∗β) cosh(κ∗β), d32 = cos(κ∗β) sinh(κ∗β) + sin(κ∗β) cosh(κ∗β),
d41 = cos(κ∗β) sinh(κ∗β)− sin(κ∗β) cosh(κ∗β), d42 = − sin(κ∗β) sinh(κ∗β)− cos(κ∗β) cosh(κ∗β).

The 12× 12 matrix of K in Equation (12) has the following form:

K =



k1,1 k1,2 k1,3 k1,4 k1,5 k1,6 0 0 0 0 0 0
k2,1 k2,2 k2,3 k2,4 k2,5 k2,6 0 0 0 0 0 0
k3,1 k3,2 0 0 0 0 k3,7 k3,8 k3,9 k3,10 0 0
k4,1 k4,2 0 0 0 0 k4,7 k4,8 k4,9 k4,10 0 0
k5,1 k5,2 k5,3 k5,4 k5,5 k5,6 k5,7 k5,8 k5,9 k5,10 0 0
k6,1 k6,2 k6,3 k6,4 k6,5 k6,6 k6,7 k6,8 k6,9 k6,10 0 0
0 0 k7,3 k7,4 k7,5 k7,6 0 0 0 0 k7,11 k7,12
0 0 k8,3 k8,4 k8,5 k8,6 0 0 0 0 k8,11 k8,12
0 0 0 0 0 0 k9,7 k9,8 k9,9 k9,10 k9,11 k9,12
0 0 0 0 0 0 k10,7 k10,8 k10,9 k10,10 k10,11 k10,12
0 0 k11,3 k11,4 k11,5 k11,6 k11,7 k11,8 k11,9 k11,10 k11,11 k11,12
0 0 k12,3 k12,4 k12,5 k12,6 k12,7 k12,8 k12,9 k12,10 k12,11 k12,12


The definitions of the elements are as follows:

k1,1 = sin(κβξ1)− sinh(κβξ1), k1,2 = cos(κβξ1)− cosh(κβξ1), k1,3 = − sin(βξ1), k1,4 = − cos(βξ1),
k1,5 = − sinh(βξ1), k1,6 = − cosh(βξ1), k2,1 = κ[cos(κβξ1)− cosh(κβξ1)],
k2,2 = −κ[sin(κβξ1) + sinh(κβξ1)], k2,3 = − cos(βξ1), k2,4 = sin(βξ1), k2,5 = − cosh(βξ1),
k2,6 = − sinh(βξ1), k3,1 = k1,1, k3,2 = k1,2, k3,7 = − sin(κ2βξ1), k3,8 = − cos(κ2βξ1),
k3,9 = − sinh(κ2βξ1), k3,10 = − cosh(κ2βξ1), k4,1 = k2,1, k4,2 = k2,2, k4,7 = −κ2 cos(κ2βξ1),
k4,8 = κ2 sin(κ2βξ1), k4,9 = −κ2 cosh(κ2βξ1), k4,10 = −κ2 sinh(κ2βξ1),
k5,1 = −γκ2[sin(κβξ1) + sinh(κβξ1)], k5,2 = −γκ2[cos(κβξ1) + cosh(κβξ1)], k5,3 = sin(βξ1),
k5,4 = cos(βξ1), k5,5 = − sinh(βξ1), k5,6 = − cosh(βξ1), k5,7 = (1 + ∆2)κ

2
2 sin(κ2βξ1),

k5,8 = (1 + ∆2)κ
2
2 cos(κ2βξ1), k5,9 = −(1 + ∆2)κ

2
2 sinh(κ2βξ1), k5,10 = −(1 + ∆2)κ

2
2 cosh(κ2βξ1),

k6,1 = −γκ3[cos(κβξ1) + cosh(κβξ1)], k6,2 = −γκ3[− sin(κβξ1) + sinh(κβξ1)], k6,3 = cos(βξ1),
k6,4 = − sin(βξ1), k6,5 = − cosh(βξ1), k6,6 = − sinh(βξ1), k6,7 = (1 + ∆2)κ

3
2 cos(κ2βξ1),

k6,8 = −(1 + ∆2)κ
3
2 sin(κ2βξ1), k6,9 = −(1 + ∆2)κ

3
2 cosh(κ2βξ1), k6,10 = −(1 + ∆2)κ

3
2 sinh(κ2βξ1),

k7,3 = sin[β(1− ξ2)], k7,4 = cos[β(1− ξ2)], k7,5 = sinh[β(1− ξ2)], k7,6 = cosh[β(1− ξ2)],
k7,11 = − sin[κ∗β(1− ξ2)]− d31 sinh[κ∗β(1− ξ2)]− d41 cosh[κ∗β(1− ξ2)],
k7,12 = − cos[κ∗β(1− ξ2)]− d32 sinh[κ∗β(1− ξ2)]− d42 cosh[κ∗β(1− ξ2)],
k8,3 = cos[β(1− ξ2)], k8,4 = − sin[β(1− ξ2)], k8,5 = cosh[β(1− ξ2)], k8,6 = sinh[β(1− ξ2)],
k8,11 = − cos[κ∗β(1− ξ2)]− d31 cosh[κ∗β(1− ξ2)]− d41 sinh[κ∗β(1− ξ2)],
k8,12 = sin[κ∗β(1− ξ2)]− d32 cosh[κ∗β(1− ξ2)]− d42 sinh[κ∗β(1− ξ2)],
k9,7 = sin[κ2β(1− ξ2)], k9,8 = cos[κ2β(1− ξ2)], k9,9 = sinh[κ2β(1− ξ2)],
k9,10 = cosh[κ2β(1− ξ2)], k9,11 = k7,11, k9,12 = k7,12, k10,7 = κ2 cos[κ2β(1− ξ2)],
k10,8 = −κ2 sin[κ2β(1− ξ2)], k10,9 = κ2 sinh[κ2β(1− ξ2)], k10,10 = κ2 cosh[κ2β(1− ξ2)],
k10,11 = k8,11, k10,12 = k8,12, k11,3 = − sin[β(1− ξ2)], k11,4 = − cos[β(1− ξ2)],
k11,5 = sinh[β(1− ξ2)], k11,6 = cosh[β(1− ξ2)], k11,7 = −(1 + ∆2)κ

2
2 sin[κ2β(1− ξ2)],

k11,8 = −(1 + ∆2)κ
2
2 cos[κ2β(1− ξ2)], k11,9 = (1 + ∆2)κ

2
2 sinh[κ2β(1− ξ2)],

k11,10 = (1 + ∆2)κ
2
2 cosh[κ2β(1− ξ2)],

k11,11 = γ∗κ∗2{sin[κ∗β(1− ξ2)]− d31 sinh[κ∗β(1− ξ2)]− d41 cosh[κ∗β(1− ξ2)]},
k11,12 = γ∗κ∗2{cos[κ∗β(1− ξ2)]− d32 sin[κ∗β(1− ξ2)]− d42 cosh[κ∗β(1− ξ2)]},
k12,3 = − cos[β(1− ξ2)], k12,4 = sin[β(1− ξ2)], k12,5 = cosh[β(1− ξ2)], k12,6 = sinh[β(1− ξ2)],
k12,7 = −(1 + ∆2)κ

3
2 cos[κ2β(1− ξ2)], k12,8 = (1 + ∆2)κ

3
2 sin[κ2β(1− ξ2)],

k12,9 = (1 + ∆2)κ
3
2 cosh[κ2β(1− ξ2)], k12,10 = (1 + ∆2)κ

3
2 sinh[κ2β(1− ξ2)],

k12,11 = γ∗κ∗3{cos[κ∗β(1− ξ2)]− d31 cosh[κ∗β(1− ξ2)]− d41 sinh[κ∗β(1− ξ2)]},
k12,12 = γ∗κ∗3{− sin[κ∗β(1− ξ2)]− d32 cos[κ∗β(1− ξ2)]− d42 sinh[κ∗β(1− ξ2)]},
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