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Abstract
The diffraction of a shock wave over a stationary body is a problem of interest associated with the starting of shock tubes
and expansion tubes which are well suited to studies of hypersonic flows. However, these facilities are characterized by very
short test times. The transient parameters during the establishment of the detached bow shock in such impulsive facilities
are important for both data processing and experimental design. In the present study, numerical simulations are conducted
to investigate the diffraction of a normal shock wave over a sphere and the subsequent transient phenomena in a viscous
perfect-gas flow field. The incident shock Mach number ranges from 3 to 5 with a specific heat ratio of 1.4. Based on the
theoretical description of the reflected shock position during bow shock formation, approximate solutions for the time histories
of the stagnation-point heat flux are also derived. The analytical and numerical results agree well. The results show that the
stagnation-point pressure and heat flux approach their steady-state values much more rapidly than the shock detachment
distance does.
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1 Introduction

The development of new aerospace vehicles calls for reli-
able aeroheating prediction methods for hypersonic flows.
In general, the local convective heat transfer rate is maximal
at the stagnation point (if the boundary layer remains lami-
nar),which is downstream from thenormal portionof the bow
shock wave. The same point is often used as the denominator
in non-dimensional correlations of convective heat transfer
distributions [1]. As a consequence, any uncertainty in this
value may propagate to the final quantities of interest and
contribute to a reduction of overall measurement accuracy.
Therefore, defining the flow field in the stagnation region and
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the heat transfer at the stagnation point is a problem of both
theoretical and practical interest [2].

Due to the high cost of flight tests, most aerodynamic-
heating experiments are performed in ground impulsive
facilities, which can simulate the required aerothermal envi-
ronment at low cost of operation. Hypersonic flow about a
model that is mounted in a shock tube or expansion tube is
initiated by causing a normal shock wave to travel down the
tube and past the model. When the shock strikes the model, it
diffracts over it and a shock layer forms ahead of the model.
This shock layer adjusts with time until a steady flow is estab-
lished. Several studies investigated the flow-establishment
time formodel experiments in hypersonic facilitieswith short
test times [3–8]. Most of them focused on evaluating the
length of flow-establishment time or using high-speed opti-
cal recorders to obtain the stand-off distance and the speed
of bow shock movement. Furthermore, approximate expres-
sions for the time history of the shock detachment distance
are utilized for blunt bodies that are washed by a normal
shock. Moreover, Moran and Moorhem [5] and Barnwell [6]
predicted the pressure distribution on smooth blunt bod-
ies for as long as possible after the arrival of the incident
shock. Unfortunately, the heat transfer distributions during
the establishment of the detached bow shock have rarely been
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reported so far. Li et al. [9] briefly described the jumps in the
heat flux at the stagnation point after the arrival of the incident
shock in a detonation shock tube and pointed out that it takes
a specific time for the heat flux to gradually decrease to a final
constant value. Collen et al. [10] presented themeasured heat
flux and reflected shock speed/position during shock estab-
lishment. They also discussed the overshoot of heat flux at the
initial stage after the shock arrival. During shock establish-
ment, significantly higher gas temperatures are present as the
incoming gas stagnates completely on the front surface of the
probe, resulting in a reflected shock traveling upstream. This
shock quickly weakens, causing a corresponding reduction
in the post-shock pressure and heat transfer. However, these
results were not discussed and quantified in detail. In addi-
tion, hypersonic facilities come at the expense of test time;
for example, the X2 expansion tube has a test time as short
as 50–500 µs [11,12]. Miller and Moore showed that the
time required for the stagnation-point heat flux to approach
an essentially constant value was about 80µs [7]. Therefore,
there is always a question as to whether or not the test times
are sufficient to allow the establishment of certain types of
steady flows over aerodynamicmodels. If available test times
are not sufficiently long to obtain a steady-state flow over
aerodynamicmodels, the experimental data of these facilities
are not reliable for an accurate representation of simulated
flow fields. To properly design heat transfer measurement
experiments in impulsive facilities and to interpret data from
such facilities, it remains necessary to understand how the
flow and heat transfer approaches the steady-state condition
by knowing the transient flow field. Moreover, although the
contributions of computational fluid dynamics (CFD) have
demonstrated significant progress over the past two decades,
the simulation of aerodynamic heating is still full of com-
plexities [13,14]. An analytical approachmay provide amore
intuitive and accessible prediction.

The primary goal of the present study was to examine the
transient heat flux at the stagnation point during detached
bow shock establishment. Both CFD and theoretical anal-
ysis were conducted, and different incident shock Mach
numbers were considered. Heat convection or heat conduc-
tion was employed to represent the stagnation-point heat
transfer in the theoretical analysis, and approximate analyt-
ical solutions were obtained. The analytical solutions were
validated by numerical results, and the corresponding phe-
nomena were discussed in detail. The related mechanisms
were investigated accordingly in the effort to provide theo-
retical guidance for both data processing and experimental
design of aerodynamic-heating experiments in short-test-
time impulsive facilities, such as shock tubes or expansion
tubes.
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Fig. 1 Shock reflection at a sphere; numbers are used to identify flow
regions defined by the incident and reflected shock waves and the wall

2 Simulationmethodology

Theconsideredproblem is thediffractionof an incident shock
wave over a sphere, as illustrated in Fig. 1. A strong shock
moving in a gas at rest and sweeping over a blunt body is
reflected at the stagnation point x = 0. The reflected shock
running upstream is decelerated and, after a specific forma-
tion time, establishes as a steady bow shock wave at the
distance x = Δ, where Δ represents the steady bow shock
stand-off distance. The phenomenon under consideration is
the unsteady flow in the shock layer ahead of the body after
shock impingement and before the establishment of steady
flow.

Since high-accuracy heat transfer measurements remain
largely elusive due to their excessive complexity, numerical
simulationswere conducted to better understand the unsteady
evolutionary process during the movement of the shock
wave. The following governing equations were employed
(the axisymmetric, unsteady, compressible Navier–Stokes
equations assuming laminar flow):

∂U

∂t
+ ∂F

∂x
+ ∂G

∂ y
+ H = ∂Fv

∂x
+ ∂Gv

∂ y
+ Hv, (1)

U = (ρ, ρu, ρv, E)T,

F = (ρu, ρu2 + p, ρuv, u(E + p))T,

G = (ρv, ρuv, ρv2 + p, v(E + p))T,

Fv = (0, τxx , τxy, uτxx + vτxy + qx )
T,

Gv = (0, τxy, τyy, uτxy + vτyy + qy)
T,

H = 1

y
(ρv, ρuv, ρv2 + p, v(E + p))T,

Hv = 1

y
(0, τxy, τyy − τθθ , uτxy + vτyy + qy)

T, (2)
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where x and y are the axial and radial coordinates of the
physical space; t is time; U is the conservative variable vec-
tor; F , G, and H are the inviscid flux vectors; and Fv, Gv,
and Hv are the viscous flux vectors. The variables ρ, u, and
E are density, velocity, and the total energy per unit vol-
ume, respectively. The shear stresses, heat flux, and the state
equations are given by the following equations:

τxx = 2

3
μ

(
2
∂u

∂x
− ∂v

∂ y

)
, τyy = 2

3
μ

(
2
∂v

∂ y
− ∂u

∂x

)
,

τxy = μ

(
∂u

∂ y
+ ∂v

∂x

)
, (3)

qx = −k
∂T

∂x
, qy = −k

∂T

∂ y
, (4)

E = p

γ − 1
+ ρ

u2 + v2

2
, p = ρRT . (5)

The viscosity coefficient μ in (3) is computed by the Suther-
land formula, while the thermal conductivity coefficient k
in (4) is derived from the Prandtl number. The definition of
other variables can be found in the literature [15].

The governing equations were solved using a finite-
difference approach; convective terms were approximated
using the AUSMPW+ scheme [16,17], and a central differ-
ence method was applied to the viscous terms. Time inte-
gration was performed implicitly by applying the LU-SGS
algorithm [18]. No-slip and isothermal boundary conditions
were specified as the boundary conditions at the wall, and
the temperature was set to 293 K.

The validation of the procedure was previously reported
in [19]; thus, it is not discussed in detail here. A grid conver-
gence studywas conducted for three different grid resolutions
(400×320, 500×480, and 800×500 grid points,with the first
numbers representing the grid nodes along the axial coordi-
nate; the zones near thewallwere incorporatedwith clustered
points). There was a negligible difference in the stagnation-
point heat flux normalized by the stable heat flux qstable at
t → ∞ for all grids, as shown in Fig. 2. Thus, a mesh size
of 500 × 480 was employed for the present study.

3 Approximate analytical solutions

Although CFD results may provide complete information
about the flow field, the simulation of aerodynamic heating
still remains complex. This can be addressed via improve-
ment of physical models, numerical schemes, and mesh
resolution [14]. In the present paper, an approximate ana-
lytical approach was also developed, providing physical
insight and a more intuitive and accessible prediction of the
stagnation-point heat transfer during the detached bow shock
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Fig. 2 Stagnation-point heat transfer histories for three grid resolutions
with Ms = 5, p0 = 250 Pa, T0 = 250 K, Tw = 293 K, γ = 1.4, and
R = 20 mm

movement. The analytical solutions are compared and vali-
dated with the CFD results.

3.1 Bow shock establishment

To identify flow regions defined by the incident and reflected
shock waves and the wall, numbers are used as shown in
Fig. 1. In the following, subscript 1 represents the properties
of the undisturbed flow, subscript 2 represents the properties
behind the incident shock, subscript 3 represents the prop-
erties immediately after the reflected shock, and subscript st
represents the properties at the stagnation point. Furthermore,
Ms is the Mach number of the incident shock and x = x(t)
is the position of the reflected shock.

Patz [8] developed a single function of the distance–time
curve for the reflected shock using the mass-balance method:

dξ

dτ
= 1 − (1 − βξ)ξ

1 − β
, (6)

where β is a free constant. The variables ξ and τ are two
dimensionless coordinates defined as follows:

ξ = x

Δ
, τ = t · Vr0

Δ
, (7)

where Vr = dx
dt is the speed of the reflected shock and t

is the time after shock impingement. The approximation of
Billing [20] is used to calculate the steady shock stand-off
distance in the present study:

Δ

R
= 0.143 · e3.24/M2

2 , (8)

123



136 Q. Wang et al.

τ

ξ

V
r/V

r0

0 2 4 6 8 10 12 14
0

0.2

0.4

0.6

0.8

1

β = 0
β = 0.42
β = 0.5

ξ

Fig. 3 Shock wave trajectories given by (6)

where R is the radius of the sphere model and M is the flow
Mach number (in region 2). It is noted that (6) satisfies the
boundary conditions, which are: At τ = 0, ξ = 0, Vr = Vr0,
and as τ → ∞, ξ = 1, Vr = 0. Subscript 0 represents the
initial value at x = 0, which could be obtained from the
moving shock theory as

Vr0 = a1
γ + 1

(
2(γ − 1)Ms + 3 − γ

Ms

)
, (9)

where γ is the specific heat ratio (calorically perfect gas is
employed in the present study) and a is the sound speed.

In the dimensionless coordinates ξ and τ , as shown in
(6), a single function is found to represent the distance–time
curve of the reflected shock. It is worth noting that this func-
tion is independent from the flow conditions. Researchers
used different values of β to obtain the best agreement with
their experimental results. Figure 3 shows the variation of
the unsteady stand-off distance and reflected shock speed
with time calculated from (6), where different values of β

are considered.
TheMach number of the reflected shockmoving in the rel-

atively static region 2 was defined as Mr = Vr+u2
a2

. Thus, the
parameters in region 3 can be obtained from the parameters
in region 2:

p3
p2

= 1 + 2γ

γ + 1
(M2

r − 1),

T3
T2

= [2γ M2
r − (γ − 1)][(γ − 1)M2

r + 2]
(γ + 1)2M2

r
.

(10)

Subsequently, the parameters at the stagnation point can be
obtained with the relationships of isentropic compression. In
other words, all parameters at the stagnation point for the
time histories of the detached bow shock establishment can

be obtained by the development of a distance–time equation
of the shock, e.g., (6).

3.2 Heat transfer at the stagnation point during bow
shock establishment

The transient stagnation-point pressure canbe easily obtained
by the above equations. However, heat flux determination is
complicated since it is thought to be a result of a combination
of convective heat transfer and heat conduction. At τ → ∞,
a steady bow shock wave is established in front of the model.
The heat transfer at the stagnation point is convective and
can be obtained by the well-known Fay and Riddell equa-
tion [21]:

qFR = 0.763 · Pr−0.6(ρμ)0.4st (ρμ)0.1w (hst − hw)

√(
du

dy

)
st
.

(11)

Since the free stream parameters of region 2 in Fig. 1 are
known, it is easy to obtain the stagnation-point heat trans-
fer qstable at τ → ∞. The following results of the analysis
are displayed using the non-dimensional form q/qstable. The
results for q/qstable should approach 1 at τ → ∞.

Figure3 shows that the reflected shock moves fast at the
initial stage and changes slowly after a specific time, which
means that the parameters in the boundary layer at the stag-
nation point change slowly. It is generally accepted that the
convective heat transfer is dominant after a specific time of
the detached bow shock movement. The Fay and Riddell
equation becomes applicable after this moment. Since the
parameters at the stagnation line were obtained using the
equations in Sect. 3.1, the heat transfer at the stagnation point
can also be obtained using (11) for the time histories of the
detached bow shock establishment, see qFR in Fig. 4. It shows
that qFR/qstable quickly approaches 1.

At τ → 0, the reflection is regular: It is a moving shock
reflection from a rigid wall. It generates an approximate sta-
tionary high-temperature gas source, and the heat transfer
mechanism at the stagnation point can be assumed to be heat
conduction with two materials maintained at a specified ini-
tial temperature Ti at the interface (x = 0). Therefore, heat
conduction is dominant at the initial stage of the detached
bow shockmovement. The left side is a high-temperature gas
and the right side is the solid model, as shown in Fig. 5. If the
time period is short, this is similar to two semi-infinite bod-
ies. Then, the heat transfer at the interface can be calculated
by solving one-dimensional transient conduction equations
for both regions [22], i.e.,

qg =
√

(ρck)g√
π

(Tst − Ti)√
t

, (12)
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Fig. 4 Stagnation-point heat transfer histories; Ms = 5, p0 = 250 Pa,
T0 = 250 K, Tw = 293 K, γ = 1.4, and R = 20 mm

ρs  cs  ks

Ti

Solid modelGas

Tg ρg  pg

Fig. 5 Schematic diagram of the heat conduction at the initial stage of
shock reflection

qs =
√

(ρck)s√
π

(Ti − Tw)√
t

, (13)

where ρ, c, and k are the density, heat capacity, and heat con-
ductivity of the material, respectively. Subscript g represents
the properties of high-temperature gas, and subscript s rep-
resents the solid sphere model. Since the energy dissipated
by the gas is completely absorbed by the sphere model, the
heat flux should be the same for them: qg = qs. Thus, the
temperature of the interface can be obtained by:

Ti = Tg
√

(ρck)g + Ts
√

(ρck)s√
(ρck)g + √

(ρck)s
. (14)

The solidmaterial is treated as stainless steel in the present
study since this material is used frequently for test models in
impulsive facilities [23]; the corresponding parameters are
ρs = 7930 kg/m3, cs = 500 J/(kg · K), and ks = 17 W/

(m · K). Hence, the heat transfer at the interface can be
obtained by (12) and (14) as:

qc =
√

(ρck)s√
π

(Tr0 − Ti)√
t

(15)

where Tr0 is the gas temperature right after the reflection
of the incident shock (τ = 0). For the gas, the parameters

immediately after the reflected shock given by (9) are used.
The results using the above equations are shown in Fig. 4 as
qc/qstable.

The heat transfer at the stagnation point has been obtained
when τ is either relatively large or small. The intermediate
values between the two extremes are unknown and compli-
cated. They result from a combined effect of conduction and
convection heat transfer between the fluid and the model. A
fitting curve or bridge function is used to predict the heat
transfer in this case as follows:

qtheory =

⎧⎪⎨
⎪⎩
qc, τ ≤ 0.5τc
1 + ω1eω2τ , 0.5τc < τ ≤ 2τc
qFR, τ > 2τc

(16)

where τc is defined as the moment when qc = qFR, as shown
in Fig. 4. During the period of τ ≤ 0.5τc, it is heat conduction
that plays a leading role in the stagnation-point heat transfer
andqc from (15) is used. For τ > 2τc, convective heat transfer
is dominant and qFR from (11) is employed. Within the time
period of 0.5τc < τ ≤ 2τc, a simple exponential function is
constructed and the constant values of ω1 and ω2 are related
to the heat transfer values at the moments of 0.5τc and 2τc.
The approximate analytical result of (16) is plotted in Fig. 4.
Numerical simulations were employed to validate the above
analysis. The results shown in Fig. 4 are calculated under
the conditions of Ms = 5, p0 = 250 Pa, T0 = 250 K,
Tw = 293 K, γ = 1.4, and R = 20 mm, where τc = 1.12
and the corresponding dimensional time is t = 16.7 µs.

4 Results and discussion

The diffraction of the incident shock wave by the sphere
and the subsequent motion of the reflected shock wave
for Ms = 5 are shown in Fig. 6. Other parameters are:
p0 = 250 Pa, T0 = 250 K, Tw = 293 K, γ = 1.4, and
R = 20 mm. The shock wave moves downstream, strikes
the sphere, and is reflected. Initially, this reflection is reg-
ular. When the angle of inclination of the incident shock
to the surface has increased, Mach reflection occurs. Exam-
ples of regular and Mach reflection are shown in Fig. 6a
for τ = 0.068 (the dimensional time is t = 1 µs) and for
τ = 0.4 (t = 5.9 µs), respectively. However, this study did
not particularly focus on the shock shape or shock position
in detail; instead, transient pressure and heat flux at the stag-
nation point obtained by the above approximate solution and
CFD are compared below.

Numerical simulations for the transient behavior of the
shock detachment distance together with the theoretical
results obtained by (6) are presented in Fig. 6b. The non-
dimensional quantity ξ is plotted against the non-dimensional

123



138 Q. Wang et al.

(a) Transient motion of the reflected
shock by CFD
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Fig. 6 Results for the diffraction of a normal shock wave over the
sphere; Ms = 5, p0 = 250 Pa, T0 = 250 K, Tw = 293 K, γ = 1.4, and
R = 20 mm
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Fig. 7 Results of the diffraction of a normal shock wave over a
sphere for different incident shock speeds; p0 = 250 Pa, T0 = 250 K,
Tw = 293 K, γ = 1.4, and R = 20 mm

quantity τ , see (7). The analytical solution with β = 0.42
matches the numerical simulation well. Once the motion of
the reflected shock is accurately obtained as a function of
time, the transient parameters in region 3 and at the stagnation
point (Fig. 1) can also be obtained; then, the transient pressure
and heat flux during the detached bow shock establishment
can be derived by the equations in Sect. 3. Their comparisons
with the numerical results are shown in Fig. 6c. The theoret-
ical pressure agrees well with the numerical pressure, which
is not surprising since pressure is always relatively simple
to simulate. As for the heat flux theoretical and numerical
predictions, both also agree well for τ > 1. However, con-
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sidering the complexity of the prediction of aerodynamic
heating [12], the difference between the theoretical and CFD
simulation values for τ < 1 may be also considered accept-
able: The deviation is less than 15% most of the time. Thus,
it may be concluded that the analytical equation (16) repre-
sents adequately the transient heat flux at the stagnation point
during the establishment of the detached bow shock.

Moreover, pressure and heat flux at the stagnation point
exceed considerably their steady-state values at the initial
stage of reflection. Then, the pressure and heat flux drop
rapidly and approach their steady-state values monotoni-
cally. A comparison of the results in Fig. 6b, c shows that
the stagnation-point pressure and heat flux approach their
steady values much more rapidly than the shock detachment
distance does. The pressure is within about 5% of its final
stable value at τ = 2 (t = 30 µs), while the heat flux is
within about 11% of its final value at this moment; how-
ever, at the same time the shock detachment distance has
reached only about 70% of its final value. The shock detach-
ment distance approaches 95% of its final value at τ ≈ 6.5
(t ≈ 96 µs). Therefore, an estimate of the time required to
establish steady or nearly steady values can be obtained from
the above analysis.

To further validate the theoretical analyses of the present
paper, different incident shock speeds were also investigated.
The transient shock detachment and heat flux histories are
shown in Fig. 7 for the incident shock Mach numbers vary-
ing from 3 to 5. A lower incident shock speed results in
a larger difference between the theoretical and numerical
results for shock detachment. However, the maximum dif-
ference is about 5% for Ms = 3 and less than 3% for Ms = 4
and 5. For the heat flux prediction, the analytical solutions
show almost the same order of magnitude of the difference
with the numerical values for all three cases. This suggests
that they all match the numerical simulations well.

5 Conclusions

In the present study, numerical results are presented for the
time histories of the shock detachment distance and the
stagnation-point pressure and heat flux for a sphere which
is washed by a normal shock wave. An analytical approach
for the transient heat flux is also developed for an improved
intuitive and accessible prediction; based on the theoreti-
cal description of the reflected shock position during bow
shock formation, convective heat transfer is employed for a
relatively long time after shock impingement by using the
Fay and Riddell equation. The heat conduction between the
stationary high-temperature gas and the cold wall is domi-
nant at the initial stage, and a bridge function is constructed
between the heat-conduction and convective-heat-transfer
dominating periods. The approximate analytical solutions

are validated by numerical simulations, and good agreement
was obtained for the considered cases. The results provide
an estimate of the necessary time to establish steady val-
ues. Furthermore, the stagnation-point pressure and heat flux
approach their steady values much more rapidly than the
shock detachment distance does. In summary, the present
study is significant for understanding the heat transfer dis-
tributions during the detached bow shock establishment and
helpful to provide guidance for the experimental design of
aerodynamic-heating experiments in short-test-time impul-
sive facilities, such as shock tubes or expansion tubes.
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