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Characteristics of Band Gap and
Low-Frequency Wave
Propagation of Mechanically
Tunable Phononic Crystals With
Scatterers in Periodic Porous
Elastomeric Matrices
The characteristics of passive responses and fixed band gaps of phononic crystals (PnCs)
limit their possible applications. For overcoming this shortcoming, a class of tunable
PnCs comprised multiple scatterers and soft periodic porous elastomeric matrices are
designed to manipulate the band structures and directionality of wave propagation
through the applied deformation. During deformation, some tunable factors such as the
coupling effect of scatterer and hole in the matrix, geometric and material nonlinearities,
and the rearrangement of scatterer are activated by deformation to tune the dynamic
responses of PnCs. The roles of these tunable factors in the manipulation of dynamic
responses of PnCs are investigated in detail. The numerical results indicate that the tunabil-
ity of the dynamic characteristic of PnCs is the result of the comprehensive function of these
tunable factors mentioned earlier. The strong coupling effect between the hole in the matrix
and the scatterer contributes to the formation of band gaps. The geometric nonlinearity of
matrix and rearrangement of scatterer induced by deformation can simultaneously tune the
band gaps and the directionality of wave propagation. However, the matrix’s material non-
linearity only adjusts the band gaps of PnCs and does not affect the directionality of wave
propagation in them. The research extends our understanding of the formation mechanism
of band gaps of PnCs and provides an excellent opportunity for the design of the optimized
tunable PnCs and acoustic metamaterials (AMMs). [DOI: 10.1115/1.4049516]

Keywords: mechanically tunable phononic crystals, scatterer, periodic porous elastomeric
matrix, band structure, directionality of wave propagation, geometric and material
nonlinearities, wave propagation

1 Introduction
Phononic crystals (PnCs) and acoustic metamaterials (AMMs)

are periodic composite elastic media that have attracted a great
deal of interest because they may exhibit unusual acoustic proper-
ties that are unavailable in natural materials [1,2]. Their well-
defined architecture can filter, control, or guide the wave propaga-
tion in them [3–10]. Significantly, some PnCs and AMMs exhibit
the characteristics of the band gap, in which the wave propagation
is prohibited, and thus they can be used for vibration and noise
control [11–16]. However, most PnCs and AMMs proposed to
date are characterized by a passive response and operate at a
fixed frequency range, limiting the number of possible applications.
In recent years, various tunable PnCs and AMMs have been
designed and realized using external stimuli, such as the tempera-
ture [17–20], electromagnetic field [21–26], electromechanical

coupling [27], periodic shunted piezoelectric circuits [12,14–
16,28], and mechanical control strategies [29–38].
In gas–solid or liquid–solid (the matrix material is gas or liquid

and the scatterer is solid) PnCs, the scatterers of weak symmetry
can be rotated to change unit cells’ symmetry of PnCs so that
their band structures can be manipulated [39–43]. For example,
Goffaux and Vigneron [43] analyzed the manipulation performance
of band gaps of PnC consisting of parallel solid square-section
columns distributed in the air on a square lattice through the rotation
of the columns. Due to the geometric anisotropy of the elliptical
rids, Wu and Chen [41] investigated the dispersion characteristics
of the two-dimensional sonic crystals consisting of elliptic rods in
fluid and found that the refraction direction of the wave propagating
through the sonic crystal is tuned by rotating the elliptic rods.
However, this control strategy is not suitable for the manipulation
of the band structures of solid–solid PnCs.
Periodic porous materials possess novel and unique properties,

including lightweight, high energy absorption [44], and the ability
to control the elastic wave’s propagation, heat flow [45,46], and
so on. The deformation mechanisms of the ligaments determine
the properties and functionality of such materials. Especially, the
periodic porous materials can be regarded as a special kind of
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PnCs, and they can be designed as a variety of structural forms. For
example, Liu et al. [47] investigated the influence of the pore shapes
(triangular, square, or circular) and the porosity on the band struc-
tures of PnCs with periodically distributed void pores. Especially,
Bertoldi and coworkers [32,35,36] have initiated the exploration
of soft porous periodic structures that can undergo reversible
elastic deformations under the applied loads. Due to the post-
buckling deformation, the geometrical configuration and tangent
modulus of the soft periodic porous elastomeric structures can be
significantly changed during deformation. The band gaps of these
PnCs can be dramatically manipulated. Li et al. [37] proposed a
design of soft composite materials consisting of stiff inclusions
and voids periodically distributed in a soft matrix. The numerical
and experimental results show that the post-buckling deformation
could develop robustly by introducing the rigid inclusions into
the periodic porous elastomeric matrix. Its band gaps could also
be dramatically tuned during deformation. The introduction of
stiff inclusion into periodic porous elastomeric matrix can increase
the number and width of the phononic band gaps of the PnCs
[38,48]. Meanwhile, it can also suppress the sensitivity of the post-
buckling deformation to the geometrical imperfection so that their
post-buckling deformation and band structures can be controlled
in a robust way [37]. Differently, we pay attention to the sizeable
rotational deformation of the periodic porous elastomeric matrix
during deformation. Taking an example shown in Figs. 1(a)–1(c),
we can notice that the rigid inclusion marked green rotates from
an orthogonal state to a nonorthogonal state before and after defor-
mation. Taking advantage of this phenomenon, we have designed a
kind of PnCs consisting of multiple scatterers and soft periodic
porous elastomeric matrices [48]. The analysis results show that
introducing multiple scatterers into periodic porous elastomeric
matrix can significantly enhance their band structures’ tunability.
It is known that the arrangement of scatterers can alter the

dynamic characteristics of the liquid/solid or gas/solid PnCs
[39,40,43]. Meanwhile, the applied deformation can induce both
geometric and material nonlinearities of the periodic porous elasto-
meric matrix. The band gaps and the directionality of wave propa-
gation can be manipulated simultaneously [35]. For the PnC shown
in Fig. 1, due to introducing the multiple scatterers into the periodic
porous elastomeric matrix, the applied deformation can result in
scatterers’ rearrangements. It can change the coupling effect
between the scatterers and the deformed holes. Like the liquid/
solid or gas/solid PnCs, this design scheme can achieve the rotation
of scatterer in the PnCs during deformation so that their band gaps
can be significantly manipulated. However, it is not clear how these
tunable factors control the tunable dynamic responses (band struc-
ture and directionality of wave propagation) of the PnCs during
deformation. In this paper, we will focus on the influences of the
coupling effect of scatterers and holes, geometric and material non-
linearities, and the arrangement of scatterers on the band structures
of PnCs and directionality of wave propagation during deforma-
tion to reveal the roles of these tunable factors in the manipulation
of dynamic characteristic of PnCs. The paper is organized as

follows. The governing equations and material model, boundary
conditions are presented in Sec. 2. In Sec. 3, we will investigate
the roles of the above tunable factors in manipulating of band struc-
tures of PnCs and the directionality of wave propagation. Finally,
conclusions are drawn in Sec. 4.

2 Calculation Model and Band Structures of
Mechanically Tunable Phononic Crystals
2.1 Descriptions of Calculation Model, Material Models,

and Boundary Conditions. The unit cell comprises a soft periodic
porous elastomeric matrix with a void volume fraction of 50.27%
and multiple scatterers (cylinder or elliptical cylinders) with a
filling rate of 18.85%, as shown in Figs. 2(c)–2( f ). The elastomeric
material response is captured using a Neo-Hookean model. The
strain energy density function of a Neo-Hookean material modified
to include compressibility (with a high bulk modulus) is given by

W = C10(�I1 − 3) +
1
D1

(J − 1)2 (1)

where C10= μ/2, D1= 2/κ, μ = E/[2(1 + ν)], and κ=E/[3(1− 2ν)].
μ, κ, E, and ν denote the initial shear, bulk modulus, Young’s
modulus, and Poisson’s ratio, respectively. Here, we consider
an elastomeric material with μ = 1.08 × 106 Pa, κ = 2.0 × 109 Pa,
and ρ0 = 1050 kg/m3 for the matrix material [35]. In contrast, it
is assumed that the material of scatterer is elastic and they are fab-
ricated using aluminum with shear modulus μAl = 2.87 × 1010 Pa,
Poisson’s ration νAl = 0.352 and density ρAl = 2730 kg/m3. In
this paper, the commercial finite element code ABAQUS/Standard is
used for numerical analysis. Assuming plane strain conditions,
ABAQUS element type CPE6H is used to construct the finite
element models of PnCs.
Here, we hope to control the wave propagation through the defor-

mation of the matrix. It is well known that, under equibiaxial com-
pression, the geometric pattern of the soft periodic porous
elastomeric matrix can suddenly change due to mechanical instabil-
ity (microscopic instabilities or macroscopic instabilities) [49,50].
In the processes of buckling analysis and post-buckling analysis,
continuous periodic boundary conditions are imposed on all cell
boundaries such that

uB − uA = (�F − I)(XB − XA) (2)

where A and B are two points periodically located on the boundary
of the unit cell and �F is the macroscopic deformation gradient.
Under equibiaxial compression, the macroscopic deformation gra-
dient is given by �F = λ(e1 ⊗ e1 + e2 ⊗ e2). λ is the macroscopically
applied stretch and e1 and e2 are the basis vectors of two-
dimensional Cartesian coordinates. Obviously, it can be noted
that λ = 1, λ> 1, and λ < 1 represent the unstretched, extended,
and compressed configurations, respectively. The primitive unit
cells are shown in Figs. 2(c)–2(e). And the microscopic instability

Fig. 1 Schematic diagram of the designed tunable PnCs: (a) primitive configuration, (b,c) deformed configurations under
equibiaxial compression, and (d ) the first Brillouin zone (square, MBDF)
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leads to new unit cells shown in Figs. 2(d )–2( f ). Also, as a contrast,
the primitive and deformed unit cells of the pure periodic porous
elastomeric matrix are shown in Figs. 2(a) and 2(b), respectively.
For the primitive unit cells shown in Figs. 2(a)–2(c), the micro-
scopic instabilities lead to an enlarged representative volume
element of 2 × 2 primitive unit cells [48], as shown in Figs. 2(b)–
2(d ). In the post-buckling analysis, an imperfection in the form of
the lowest eigenmode scaled by the scale factor η (η = 0.0005) is
introduced into the initial geometry by perturbing the position of
each node.
Based on deformed configuration, the analysis of small amplitude

elastic wave propagation will be performed. Here, to obtain the dis-
persion relation and to evaluate the directionality of the propagation
waves in the PnCs, Bloch-type boundary conditions

�u(x + R) = �u(x) exp (ik · R) (3)

are applied to the edges of the unit cell, where �u and x denote the
displacement and position vector of a point. k and R are the prop-
agating Bloch-wave vector and the distance between each pair of
nodes periodically located on the boundaries. By varying the
value of k along the edges of the first irreducible Brillouin zone
and solving the eigenvalue problem generated by the finite
element method algorithm, the dispersion relations can be obtained.
Also, we must note that the transformation of the irreducible Bril-
louin zone before and after deformation (see Fig. 1(d )). For
example, for the undeformed unit cells shown in Figs. 2(a)–2(c),

their irreducible Brillouin zones are the triangle zone GXM. For
their deformed unit cells shown in Figs. 2(b)–2(d ), their irreducible
Brillouin zones are transformed to the rectangle zone MAGXM.
Differently, for unit cells shown in Figs. 2(e) and 2( f ), their irreduc-
ible Brillouin zones are the whole Brillouin zones MBDFM. It is not
easy to accurately calculate its band structure, and the calculation is
performed along the path MAGXMG. Meanwhile, to verify band
gap’s calculation accuracy, the transmittances of finite-sized PnC
structures are calculated. The finite-sized PnC structure model is
shown in Fig. 16 in Appendix A. The transmittance is defined as
T= 20log10(|uout|/uin), where uin and uout are the displacements of
the input and output positions. Also, the normalized frequency
�f = fl/ct , with f, l, and ct= 32.07 m/s denoting the frequency, the
characteristic size of the unit cell in the undeformed configuration,
and the elastic wave speeds for shear wave in the matrix material, is
adopted in this paper.

2.2 Band Structures of PnCs Before and After
Deformation. Figure 2 shows the unit cells of PnCs before and
after deformation and their band structures and transmittance spec-
trums. The scatterers have two forms of the cylindrical scatterer and
elliptic cylinder scatterer with the ratio 2.667 of the semi-major axis
and the semi-minor axis. They have the same cross-sectional area.
The above subfigures in Figs. 2(a), 2(c), and 2(e) show the primitive
unit cells of PnCs, and ones in Figs. 2(b), 2(d ), and 2( f ) show the
new unit cells after deformation. For the unit cells shown in Figs.

Fig. 2 Unit cells and their band structures and transmittance spectrums. (a,b) Primitive and deformed configurations (λ=0.85)
under equibiaxial compression, and band structures of only pure periodic porous elastomeric matrices. (c)–( f ) Primitive and
deformed (λ=0.85) configurations under equibiaxial compression, and band structures of PnCs with scatterers in periodic
porous elastomeric matrices. (c,d) Cylindrical scatterer. (e,f) Elliptic cylinder scatterer. A denotes the measuring position of
input, and B and C represent the measuring positions of output, respectively, as shown in Fig. 16 in Appendix A.
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2(a)–2(c), the microscopic instability leads to an enlarged unit cell
consisting of 2 × 2 primitive unit cells, as shown in Figs. 2(b)–2(d ).
Figures 2(a) and 2(b) show the band structures of the primitive

and deformed configurations of pure periodic porous elastomeric
matrix. Their band gaps are opened at 0.704–0.805 (12–13) and
1.729–1.78 (40–41) before deformation and at 0.731–0.859 (12–
13), 1.005–1.064 (16–17), and 1.906–1.945 (44–45) after deforma-
tion, respectively. These band gaps are narrow. However, after
embedding hard scatterers into the elastomeric matrix, the band
gap characteristics of the PnCs are significantly enhanced. Taking
the case of cylindrical scatterer shown in Figs. 2(c) and 2(d ) as
an example, the band gaps of PnCs are located at 0.691–0.983
(12–13), 1.420–1.692 (20–21), 2.152–2.594 (36–37), and 2.747–
2.992 (44–45) in the undeformed configuration. However, in the
deformed configuration (λ= 0.85), the pre-existing band gaps
0.691–0.983 (12–13) and 2.747–2.992 (44–45) are shifted and
widened to 0.670–1.385 (12–13) and 2.539–2.966 (44–45); and
the pre-existing band gaps 2.152–2.594 (36–37) is turned and nar-
rowed to 1.967–2.395 (36–37). Also, two new band gaps are
opened at 0.441–0.558 (8–9) and 1.606–1.665 (24–25). Differently,
the PnCs showed in Figs. 2(e) and 2( f ) take an elliptic cylinder as a
scatterer. Similar to Figs. 2(c) and 2(d ), it can be seen from Figs.
2(e) and 2( f ) that the deformation significantly alters the band struc-
tures. The results of Figs. 2(c)–2( f ) intuitively demonstrate that the
geometrical shapes and the arrangement of scatterer can signifi-
cantly affect the band structures of PnCs. Also, it can be seen
from Fig. 2 that the band regions in the transmittance spectrums
agree well with the predictions of band gaps in the band structures.
In the band regions, the transmittances are significantly reduced so
that the wave propagation in these frequency ranges are suppressed.
In short, we can manipulate the dynamic performances of PnCs

through the deformation of the matrix. What should be more
noticed is that the deformation can lead to the changes of geomet-
rical shapes and material parameters (tangent modulus) of the
matrix, the rearrangement of scatterers, the transformation of the
coupling effect of holes in the matrix and multiple scatterers, and
so on. In order to design new-style tunable PnCs, it is necessary
to investigate how these changing factors induced by deformation
affect the dynamic characteristics of PnCs.

3 Effect Factors of Manipulation of Dynamic Response
of Phononic Crystal
Here, we will investigate the effects of these changing factors

induced by deformation such as geometric and material nonlinear-
ities, the rearrangement of scatterers and the coupling effect of holes
and scatterers, on the dynamic characteristics of PnCs through cal-
culating the band gaps of PnCs and the directionality of low-
frequency wave propagation (group and phase velocities). Thus,

the investigations will involve the following four aspects: the
effect of coupling of holes and scatterers, the effect of geometric
nonlinearity, the effect of material nonlinearity, and the effect of
rearrangement of scatterers.

3.1 Role of Coupling Effect of Holes and Scatterers. Here,
in order to evaluate the influence of the coupling effect of holes
and scatterers on both the band structures, the geometric and mate-
rial nonlinearities and the rearrangement of scatterers induced by
deformation are not taken into consideration, and the primitive con-
figurations of PnC with cylindrical scatterers are used to compute
the dynamic response. It is assumed that the lattice length of the
unit cell is 10 mm. According to the void volume fraction of
50.27% of circular holes and the filling rate of 18.85% of scatterers,
the radius R of the circular hole is 4 mm, and the radius r of the
cylindrical scatterer is 2.449 mm.
Figure 3(a) shows the evolution of the band gaps as a function of

the radius R of the circular hole, and Figs. 3(b) and 3(c) display the
band structures of PnCs when the radiuses of the circular hole are
2.0 mm and 3.5 mm, respectively. It can be observed from
Fig. 3(a) that there is only one band gap (1) when R < 3.0 mm
and the position and width of the band gap remains nearly constant.
However, when R > 3.0 mm, new band gaps (2 and 3) are opened.
With the increase of the radius R of the circular hole, the coupling
effect of holes and scatterers is enhanced. The positions of new
band gaps alter, and especially their widths increase with the
increase of radius R of the circular hole.
Figure 4 shows the evolution of the band gaps as a function of the

radius r of the cylindrical scatterer. Figures 4(b) and 4(c) exhibit the
band structures of PnCs when the radiuses of the cylindrical scat-
terer are 1.225 mm and 2.143 mm, respectively. It can be observed
from Fig. 4 that the position and width of the first band gap (1) keep
constant when r < 1.5 mm. However, when r > 1.5 mm, other band
gaps (such as 2 and 3) are opened. With the increase of radius r of
the cylindrical scatterer, the coupling effect of holes and scatterers is
also enhanced, and the positions of new band gaps shift to high-
frequency, and their widths increase.
The relative size of the circular hole and cylindrical scatterer

determines the extent of the coupling effect. It can be gotten from
Figs. 3(a) and 4(a) that only when r > 1.5 mm (R = 4.0 mm) or R >
3.0 mm (r = 2.449 mm) new band gaps (such as 2 and 3) are
opened. Namely, the strong coupling effect of hole and scatterer
contributes to the formation of band gaps, and it is one of the key
design parameters of PnC. In addition, in Appendix B, the effects
of the cross-sectional size of the cylinder, the ratio semi-major
axis and semi-minor axis of elliptical cylinders, and the arrange-
ment of scatterer on the critical applied stretch of instability are
investigated, as shown in Fig. 17. These results indicate different
geometrical sizes and shapes of scatterers can alter the critical
applied stretch of the instability of unit cells of PnCs, and thus

Fig. 3 (a) The evolution of the band gaps as a function of the radiusR of the circular hole. (b,c)
The band structures when the radiuses of the circular hole are 2.0 mm and 3.5 mm, respec-
tively. The numbers denote the serial numbers of band gaps.
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they can also be used to design composites of different mechanical
properties.

3.2 Role of Geometric Nonlinearity of Matrix. Next, to eval-
uate the effect of geometric nonlinearity on the dynamic response of
the PnCs, the PnC with cylindrical scatterers is still designed to
exclude the effect of rearrangement of scatterers. And the deformed
geometrical shape of the structure determined by the post-buckling
is used to investigate the propagation of elastic waves. In addition,
to exclude the effect of stress, all the components of the stress are set
to zero before performing the wave propagation analysis.
Figure 5(a) shows the evolution of the band gaps as a function of

λ. Red dot-dash lines in Fig. 5(a) represent the band gaps of PnCs
with considering stress distribution. In this figure, the blue
numbers denote the serial numbers of band gaps. It can be observed
that during deformation, the second (2) and seventh (7) band gaps
shift and widen, but the third (3) and sixth (6) ones shift and
narrow, and the third (3) one even vanishes, and the first (1),
fourth (4), and fifth (5) ones are opened at λ= 0.94, λ= 0.89, and
λ= 0.98, respectively. Figure 5(b) shows the band structures of
PnCs in the deformed configurations (left figure: λ= 0.925 and
right figure: λ = 0.85). They intuitively exhibit the effect of geomet-
ric nonlinearity on band structures. These results demonstrate that
the geometric nonlinearity plays an important role in the manipula-
tion of dynamic characteristic of PnC through deformation. In addi-
tion, the differences between with (Fig. 2(c)) and without (Fig. 5(b))
considering stress distributions indicate that the material

nonlinearity can significantly alter the dynamic characteristic of
high-frequency range.
Unlike the calculation process of band structures along the

boundary paths of irreducible Brillouin zones, solving with
respect to frequency for all the combination k = (kx, ky) in the
whole Brillouin zones yields a series of functions ω= f (kx, ky),
denoted as phase constant surface (PCS), which identifies the fre-
quency of free wave motion for any given (kx, ky) pair [51]. For
example, Fig. 6 shows the first two PCSs of PnCs before and
after deformation (λ= 1.0 and λ= 0.85), respectively. They
provide the wavenumber-frequency information in the whole Bril-
louin zones. The PCS can provide rich information about the
wave propagation characteristics of interested frequency ranges
through PCS. Based on PCS, The phase and group velocities can
be defined as

cp =
ω

k
, cg =

∂ω
∂k

(4)

For the undamped structures, the group velocity reflects the propa-
gation velocity of the wave energy and the propagation direction of
the wave energy. Usually, the direction of wave propagation is per-
pendicular to a given iso-frequency plot of PCS [52]. In this way,
we can investigate the directionality of the wave propagation in
the PnCs before and after deformation at a specific frequency.
Further, in order to evaluate the degree of anisotropy of the unde-
formed and deformed configurations, the formulation of the

Fig. 4 (a) The evolution of the band gaps as a function of the radius r of the cylindrical scat-
terer. (b,c) The band structures when the radiuses of cylindrical scatterer are 1.225 mm and
2.143 mm, respectively. The numbers denote the serial numbers of band gaps.

Fig. 5 (a) The evolution of the band gaps as a function of λ under equibiaxial compression.
The numbers denote the serial numbers of band gaps. (b,c) The band structure for the
deformed configurations (left, λ=0.925; right, λ=0.85). Dot-dash lines in (a) represent the
band gaps of PnCs with considering stress distribution.
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anisotropy index (AI) is defined as [53]

AI =

���������������������∫2π
0

cg(θ) − �cg
�cg

[ ]2
dθ

√
(5)

where cg(θ) denotes the magnitude of the group velocity relative to a
certain mode as a function of the angular position θ, and �cg is the
average value of cg(θ) over the full 360 deg angular range, namely

�cg =
1
2π

∫2π
0
cg(θ)dθ (6)

From the formulation of AI, it can be noted that AI= 0 defines the
isotropic case, and a structure having AI≠ 0 is characterized by a
certain degree of anisotropy. From Fig. 6, the iso-frequency con-
tours can be gotten, as shown in Fig. 7. Figure 7 shows the iso-
frequency contours of the first two PCSs when the applied stretches
are λ= 1.0, λ= 0.925 and λ = 0.85 at �f = 0.078 (corresponds to the

real frequency 250 Hz). Correspondingly, Figs. 8(a) and 8(b)
display their group velocity profiles. It can be observed from
Figs. 6 and 7 that in the undeformed configuration, the iso-
frequency contours of the first two PCSs display significant anisot-
ropy, and with the decrease of the applied stretch λ (corresponds to
the increase of compressive deformation), the iso-frequency con-
tours tend to circle. Meanwhile, as shown in Figs. 8(a) and 8(b),
the directionalities of group velocity have significant changes
with the decrease of the applied stretch λ. For example, in the unde-
formed configuration, the group velocity exhibits two preferred
directions at about 5 deg and 85 deg for the first two PCSs at
�f = 0.078, and the corresponding AIs are 0.820 and 0.336. In the
deformed configuration (λ= 0.85), the preferred directions of
group velocity for the first PCS at �f = 0.078 changes to about
45 deg and the corresponding AI is 0.136. However, for the
second PCS, there is no significant preferential direction, and the
corresponding AI is 0.087. Figure 10(c) exhibits the evolution of
the AI as a function of applied stretch λ. It can be seen that with

Fig. 6 Phase constant surface. (a,b) The primitive configuration (λ=1.0) and (c,d) the deformed
configuration (λ=0.85). (a) and (c): mode 1; (b) and (d ): mode 2.

Fig. 7 Iso-frequency (�f = 0.078, which corresponds to the real frequency 250 Hz) contours of the
first two PCSs for the PnCs with different stretch as λ=1.0, λ=0.925, and λ=0.85: (a) the first
PCS and (b) the second PCS
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the decrease of applied stretch λ, the AI decreases and tends to zero,
which means that the deformed PnC behaves as a nearly isotropic
medium with a decrease of deformation. In summary, the geomet-
rical deformation of mechanically tunable PnC can realize the
manipulation of band gaps, while it makes the deformed PnC to
behave as a nearly isotropic medium so that the directionality of
wave propagation disappears.

3.3 Role of Material Nonlinearity of Matrix. During com-
pression, the stress distributions within the PnCs significantly
vary, and they can affect the dynamic response of PnCs. The
stress distributions are closely related to the material nonlinearity.
Here, in order to investigate the effect of material nonlinearity on
the band structures and wave directionality, an almost-incompress-
ible elastomeric material whose response is captured by a Gent
model is used to make the PnCs [35,54]. The Gent model is charac-
terized by the following strain energy density function:

W(I1, J) = −
μ

2
Jm log 1 −

I1 − 3
Jm

( )
− μ log (J) +

κ

2
−

μ

Jm

( )
(J − 1)2

(7)

where I1 = trace(FTF), J = det (F), F denotes the deformation gra-
dient and Jm denotes a material constant related to the strain at
saturation. The initial shear (μ) and bulk (κ) moduli use the same
the parameters as mentioned above. Note that as Jm→+∞ the
Gent model reduces to the Neo-Hookean model and the smaller
value of Jm introduces stronger nonlinearity in the material behavior
[35]. Similarly, to exclude the effect of the arrangement of the scat-
terer, the cylindrical scatterer is chosen to design the PnCs. Figure 9
shows the evolution of the band gaps as a function of the applied

stretch λ for the PnCs with Jm = 1.0, 5.0 and ∞, respectively.
Red dot-dash lines represent the band gaps of PnCs with the Neo-
Hookean model. It can be seen from Fig. 9 that the stronger nonlin-
earity of matrix material can enhance the tenability of the band gap.
In order to clearly display the effect of the material parameter Jm on
the band gaps, the relative size δ of the band gap as the ratio
between gap width and the midgap position is defined as [35]

δ =
fup − flow

( fup + flow)/2
(8)

where fup and flow are the frequencies of upper and lower edge limits
of a band gap, respectively. The evolution of δ as a function of the
applied stretch λ is exhibited in Fig. 10 for the band gaps shown in
Fig. 9. Note that the relative size δ of the band gaps marked by the
blue dashed rectangle in Fig. 9 is not shown in Fig. 10. In addition,
the solid purple lines (Jm=∞, Geom.) in Fig. 10 indicate the rela-
tive size δ of the band gaps shown in Fig. 5(a), whose stress distri-
bution is not considered. The differences between them indicate the
stress distributions can significantly affect the dynamic responses of
PnCs.
Here, the PnCs with Gent material models of Jm= 1.0, 5.0, 10.0,

and ∞ (corresponds to Neo-Hookean model) are considered. It can
be observed from Fig. 10 that the relative sizes δ of the band gaps
significantly vary with the decrease of the applied stretch λ. The var-
iation of the relative size δ reflects the relative variation of the posi-
tion and width of the band gap during deformation. For example, in
Fig. 9, the positions and widths of the first (1, 8–9) and second (2,
12–13) band gaps increase with the decrease of the applied stretch λ,
and their relative sizes δ shown in Figs. 10(a) and 10(b) monoton-
ically increase, which indicates the widening value is stronger than
the position shifting value. For another example, Fig. 10(e) exhibits

Fig. 8 Effects of deformation (λ=1.0, λ=0.925, and λ=0.85) on the directionality of group velocities: (a) mode 1, (b) mode 2, and
(c) variations of anisptropy index of the first two modes of tunable PnCs with respect to the applied stretch λ at �f = 0.078 with
corresponding to the real frequency 250 Hz.

Fig. 9 The evolution of the band gaps as a function of λ for the different material parameter Jm: (a) Jm=
1.0, (b) Jm=5.0, and (c) Jm=∞ (or Neo-Hookean model). Dot-dash lines represent the band gaps of PnCs
with Neo-Hookean model. The blue numbers denote the serial numbers of band gaps.
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Fig. 10 Comparison of the relative parameter δ of the band gaps during deformation. ni∼nj denotes the numbers of the
upper and lower edge modes of a band gap. Except the band gap (4, 24–25) indicated by the red dashed rectangle in
Fig. 9, the relative parameters δ for other band gaps from bottom up are shown in (a)–(f ), respectively. The numbers
denote the serial numbers of band gaps.

Fig. 11 Iso-frequency (�f = 0.078, which corresponds to the real frequency 250 Hz) contours of
the first two PCSs of the PnCs with different material parameters Jm = 1.0, 5.0, and ∞, and
effects of material parameters on the directionality of group velocities before and after (λ=
0.85) deformation. (a,b) The iso-frequency contours of the first two PCSs at �f = 0.078; (c,d) the
corresponding directionality of group velocities; (a,c) for the first PCS; (b,d) for the second PCS.
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Fig. 12 Band structures of the PnCs with scatterers of different arrangement in the deformed configurations (λ=
0.85). (a,b) Primitive configurations and (c,d) deformed configurations. (c) The deformed configuration of (a), and
(d ) the deformed configuration of (b). The PnCs in (a,c) and (b,d) are marked as Ellipse-A and Ellipse-B, respec-
tively. The points denote the mode frequencies of choice and their Bolch mode shapes are shown in Fig. 18 in
Appendix C. These points from low to high are marked as i, ii, iii, and iv, respectively. Points i, ii, iii, and iv corre-
spond to modes 12, 13, 20, and 21, respectively.

Fig. 13 Iso-frequency (�f = 0.078 with corresponding to the real frequency 250 Hz) contours of
the first two PCSs of the PnCs with scatterers of different geometry and arrangement before
and after deformation. (a,b) The first PCS, (c,d) the second PCS, (a,c) before deformation, and
(b,d) after deformation (λ=0.85).
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that the relative size δ of the sixth band gap (6) shown in Fig. 9 first
decreases and reaches a minimum at about λ= 0.975, and then
increases and reaches a maximum and finally decreases, which
reflects the complex change process of the sixth band gap. It can
be clearly observed from Figs. 9 and 10 that the band gaps of
PnCs with different material parameter Jm and their relative sizes
δ have notable differences. Especially, the PnC with stronger mate-
rial nonlinearity (for example Jm= 1.0) has much stronger tunability
of band gap.
In order to investigate the effect of material nonlinearity on the

directionality of wave propagation, Fig. 11 shows the iso-frequency
contours of the first two PCSs and the corresponding group velocity
profiles at �f = 0.078 (corresponds to the real frequency 250 Hz)
before and after deformation. Here the PCSs are similar to those
shown in Fig. 6 and are not repeated here. First, it can be seen
from Fig. 11(a) that although the matrix of PnCs is made of elasto-
meric material with different parameters Jm= 1.0, 5.0, and ∞, the
iso-frequency contours of the first two PCSs and their group velo-
city profiles almost have the same shapes. The anisotropy indexes
of the first PCS are 0.195, 0.176, and 0.187, and those of the
second PCS are 0.069, 0.061, and 0.062 at �f = 0.078 for the
matrix material with Jm= 1.0, 5.0, and ∞, respectively. These
results indicate the material nonlinearities do not affect the direc-
tionality of the wave propagation. In short, the stronger nonlinearity
of material can enhance the tunability of the band gap, but it cannot
affect the directionality of wave propagation in the PnCs.

3.4 Role of Rearrangement of Scatterers During
Deformation. We have known that rotating the scatterers with

geometric anisotropy can be used to tune the dynamic response of
PnCs [43]. However, this strategy is feasible only when the
matrix material is gas or liquid. In this paper, we propose that the
rearrangement of scatterers of solid-solid PnCs can be controlled
through the deformation of the matrix structure. During deforma-
tion, the effect of the rearrangement of scatterers on the dynamic
response of PnCs couples with the geometric and material nonline-
arities. Here, to evaluate the impact of rearrangement of scatterers,
all the stress components are set to zero before performing the wave
propagation analysis. Here, the PnCs with scatterers of two kinds of
arrangement are designed to investigate the elastic waves’ propaga-
tion, as shown in Fig. 12. The scatterers are arranged according to
Figs. 12(a) and 12(b), which are, respectively, marked as Ellipse-A
and Ellipse-B, and Figs. 12(c) and 12(d ) show their deformed con-
figurations (λ= 0.85).
Figures 12(a) and 12(b) shows the band structures of PnCs in the

primitive configurations. The result in Fig. 12(b) is the same in
Fig. 2(e). For comparison, it is repeated here. The differences
between Figs. 12(a) and 12(b) demonstrate that the rearrangement
of scatterers significantly alters the band structures of PnCs.
Figures 12(c) and 12(d ) display the band structures of PnCs in
the deformed configurations (λ= 0.85). In comparison with Figs.
12(a) and 12(b), it can be seen from Figs. 12(c) and 12(d ) that
the band structures of PnCs in the deformed configuration are differ-
ent from those in the undeformed configuration. For example, there
are eight and four band gaps in the undeformed configuration in
Figs. 12(a) and 12(b), respectively. And there is no band gap
between the 36th and 37th modes in Fig. 12(a), but in Fig. 12(b),
the band gap between the 36th and 37th modes is opened at
2.271–2.911. In the deformed configuration (λ= 0.85), the band

Fig. 14 Effects of geometry and arrangement of scatterers on the directionality of phase veloci-
ties at �f = 0.078 (corresponds to the real frequency 250 Hz) for primitive ((a) and (c), λ=1.0) and
deformed ((b) and (d ), λ=0.85) configurations. (a,b) the first PCS and (c,d) the second PCS.
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gap between the 12th and 13th modes is opened at 0.783–1.236 in
Fig. 12(c), but in Fig. 12(d ), the corresponding band gap is opened
at 0.719–1.377. Further, the mode shapes at these points marked by
red points in Fig. 12 are shown in Fig. 18. Their mode shapes have
significant differences in the same modes. These differences are
caused by the difference in the scatterers’ arrangement, which
leads to the difference in band structures and band gaps of PnCs.
In summary, the results of Fig. 12 demonstrate the rearrangement
of scatterers plays an essential role in forming of band gaps.
Because the band structure of PnC in Fig. 2( f ) considers the
effect of stress distribution, the differences between Figs. 12(d )–
2( f ) also reflect the impact of material nonlinearity on the band
structures of PnCs.
Next, the effects of the rearrangement of scatterers on the direc-

tionality of wave propagation will be investigated. Figure 13 shows
the iso-frequency contours of the first two PCSs of the PnCs before
and after deformation. Their PCSs are similar to those shown in

Fig. 6. It can be observed from Fig. 13 that the iso-frequency con-
tours of the PnCs marked as circle and Ellipse-B have identical
shapes, and they are different from that of the PnC marked as
Ellipse-A at �f = 0.078. Figures 14 and 15 exhibit the corresponding
phase and group velocity profiles in the undeformed and deformed
configurations (λ= 0.85), respectively. It can be observed that that
the phase and group velocities of the PnCs marked as circle and
Ellipse-B have almost the same profiles, and they are different
from those of the PnC marked as Ellipse-A.
For the PnCs marked as circle and Ellipse-B, it can be observed

from Figs. 14(a), 14(c), 15(a), and 15(c) that they exhibit some pre-
ferred directions of wave propagation before deformation. After
deformation, the preferred directions of wave propagation vanish,
as shown in Figs. 14(b), 14(d ), 15(b), and 15(d ). To quantify the
changes of direction of wave propagation, Table 1 lists the anisot-
ropy indexes based on phase and group velocities before and after
deformation at �f = 0.078, respectively. The anisotropy index

Table 1 Anisotropy indexes based on phase and group velocities of PnCs with scatterers of different geometry and arrangement

Anisotropy index based on phase velocity Anisotropy index based on group velocity

Mode 1 Mode 2 Mode 1 Mode 2

Fig. 14(a) Fig. 14(b) Fig. 14(c) Figure 14(d) Fig. 15(a) Figure 15(b) Fig. 15(c) Figure 15(d)

Circle 0.760 0.153 0.209 0.063 0.820 0.136 0.336 0.087
Ellipse-A 0.748 0.140 0.446 0.103 0.872 0.166 0.328 0.132
Ellipse-B 0.751 0.158 0.214 0.055 0.844 0.115 0.264 0.075

Fig. 15 Effects of geometry and arrangement of scatterers on the directionality of group veloci-
ties at �f = 0.078 (corresponds to the real frequency 250 Hz) for primitive ((a,c), λ=1.0) and
deformed (b,d), λ=0.85) configurations. (a,b) The first PCS and (c,d) the second PCS.
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based on phase velocity can be calculated by Eqs. (6) and (7), where
cg need to be replaced by cp [52,53]. It can be noted from Table 1
that the anisotropy indexes based on phase and group velocities
for the PnCs marked as Circle and Ellipse-B are in good agreement.
After deformation, the anisotropy indexes tend to zero, which indi-
cates that the PnCs tend to be a nearly isotropic medium after
deformation.
For the PnC marked as Ellipse-A, it can be seen from Figs. 14(a),

14(c), 15(a), and 15(c) that before deformation, the maximum of
phase and group velocities in X-direction are different from those
in Y-direction. Thus, the directional characteristic of the wave prop-
agation in the X-direction is different from that in Y-direction. After
deformation, the differences between the directional characteristics
in X- and Y-directions decrease, as shown in Figs. 14(b), 14(d ),
15(b), and 15(d ). The deformed PnCs tend to be a nearly
isotropic medium, verified by its anisotropy indexes listed in
Table 1. However, it can still be observed that its phase and
group velocities have obvious differences from those of the PnCs
marked as Circle and Ellipse-B. The differences are due to the
effect of the rearrangement of scatterer on the directionality of
wave propagation.
In short, the PnCs with scatterers of different arrangement can

realize various dynamic characteristics. Significantly, the rearrange-
ment of scatterers induced by deformation can simultaneously
manipulate the band gaps of PnCs and the directionality of wave
propagation in them.

4 Discussion and Conclusions
The solid–solid PnCs comprised multiple scatterers and periodic

porous elastomeric matrix can realize the band gaps’ manipulation
and the directionality of wave propagation in them through defor-
mation. In this paper, the impacts of some tunable factors induced
by deformation, such as the coupling effect of scatterers and
holes, geometric and material nonlinearities, and the rearrangement
of scatterers, on the formation of the band gap and the directionality
of wave propagation in the PnCs are investigated. The following
conclusions have been obtained:
The relative sizes of scatterer and hole in the matrix determine

their coupling effect. The formation of band gaps needs their rela-
tive sizes to reach a certain extent. The strong coupling effect
between them more contributes to the formation of band gaps.
The geometric and material nonlinearities of the matrix induced
by deformation can achieve the manipulation of band gaps.
However, the directionality of wave propagation is only sensitive
to the changes in geometry. The rearrangement of scatterers in the
PnCs induced by deformation can simultaneously manipulate the
band gaps of PnCs and the directionality of wave propagation in
them. Significantly, the geometry deformation of the matrix
makes the wave propagation more isotropic in the low-frequency
range. In short, the tunability of the dynamic characteristic of
PnC is the result of the comprehensive function of these tunable
factors mentioned above.
In fact, besides the effect factors mentioned above, other issues

are considered in the application, such as viscous/damping effects
and manufacturing feasibility. The soft material is usually selected
as the matrix material to enhance the tunability and reusability, but
its intrinsic damping characteristic significantly influences the wave
propagation into the PnCs. Recently, some research works have
been considered the influence of viscous/damping effect on the
dynamic responses of PnCs [37,55–57]. The impact of the
viscous/damping effect on PnCs and acoustic metamaterials is
crucial for exact predictions of the wave propagation performances,
which should be considered in the application.
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Appendix A
Figure 16 shows the finite-size PnC structures. The scatterer can

be replaced by those shown in Fig. 2. Letter A denotes the measur-
ing position of input, and letters B and C represent the measuring
output positions, respectively. The in-plane load is applied at
position A.

Appendix B
Figure 17 shows the evolution of the first two critical applied

stretches λ versus the geometrical parameters of hard scatterers. In
this figure, R0 is the radius of a cylinder with a filling rate of
18.85% and αi is a proportionality coefficient. Here, we investigate
the effects of the cross-sectional dimensions of the cylinder and
elliptical cylinder on the first two critical applied stretches λ. For
the cylinder, the cylinder’s radius is controlled by R=R0αi. The sec-
tional area of the cylinder increases with the increase of proportion-
ality coefficient αi. For the elliptical cylinder, its sectional area
keeps constant, and its sectional geometric is controlled by the

Fig. 16 Finite-size PnC structure model. Letter A denotes the
measuring position of input, and letters B and C denote the mea-
suring positions of output, respectively. The scatterer can be
replaced by those shown in Fig. 2.
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ratio of semi-major axis and semi-minor axis. The lengths of the
semi-major and semi-minor axes are rmaj=R0/αi and rmin=R0αi,
respectively. Two arrangements of the elliptical cylinder, as
shown in Figs. 12(a) and 12(b), are considered. As the proportion-
ality coefficient αi approaches 1, the cross section of an elliptical

cylinder tends to circle. It can be seen from Fig. 17 that the critical
applied stretches are closely related to the geometrical parameters
of hard scatterers. First, the first two critical applied stretches
increase with the increase of the cylinder’s radius, which means
a unit cell of PnC is more prone to instability with the addition
of the radius of the cylinder. Second, with the parameter αi
tending to 1, the first two critical applied stretches decrease,
which means a unit cell of PnC is more stable. On the contrary,
the bigger the ratio of the semi-major axis and semi-minor axis
is, the unit cell of PnC is more prone to instability. Third, the crit-
ical applied stretches are closely related to the arrangement of hard
scatterers. It can be seen from Fig. 17 that the critical applied
stretches of the unit cell shown in Fig. 12(a) is greater than
those of the unit cell shown in Fig. 12(b), which means the unit
cell shown in Fig. 12(b) is more stable in comparison with the
unit cell shown in Fig. 12(a). In short, the unit cells presented
in this paper can achieve the manipulation of elastic wave propa-
gation while they can be used to design composites of different
mechanical properties.

Appendix C
Figure 18 shows the Bloch mode shapes at the frequency points

of choice shown in Figs. 12(a), 12(b), 12(c), and 12(d ) correspond
to those in Fig. 12. Points i, ii, iii, and iv correspond to modes 12,
13, 20, and 21, respectively. It can be seen that their mode shapes
have significant differences in the same modes. The results in
columns (a) and (b) have been verified in Comsol Multiphysics
5.2a. These differences lead to the differences in the band structures
and band gaps of PnCs.

Fig. 17 Evolution of the first two critical applied stretches λ
versus the geometrical parameters of hard scatterers. R0 is the
radius of cylinder with a filling rate 18.85% and αi is a proportion-
ality coefficient.

Fig. 18 The Bloch mode shapes at the frequency points of choice shown in Figs. 12(a), 12(b),
12(c), and 12(d ) corresponding to those in Fig. 12. Points i, ii, iii, and iv correspond to modes
12, 13, 20, and 21, respectively.
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