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•  High-accuracy numerical solutions of full Euler equations are obtained.
•  We used asymptotic expansions to obtain the classical Korteweg-de Vries equation, which provides a good quantitative description to the
original problem when wave amplitude is small.
•  We found two types of particle trajectories under solitary waves on a linear shear current, including periodic motions.
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This  paper  is  concerned  with  particle  trajectories  beneath  solitary  waves  when  a  linear  shear
current exists. The fluid is assumed to be incompressible and inviscid, lying on a flat bed. Classical
asymptotic  expansion  is  used  to  obtain  a  Korteweg-de  Vries  (KdV)  equation,  then  a  forth-order
Runge-Kutta method is applied to get the approximate particle trajectories. On the other hand, our
particular  attention  is  paid  to  the  direct  numerical  simulation  (DNS)  to  the  original  Euler
equations.  A  conformal  map  is  used  to  solve  the  nonlinear  boundary  value  problem.  High-
accuracy  numerical  solutions  are  then  obtained  through  the  fast  Fourier  transform  (FFT)  and
compared with the asymptotic solutions, which shows a good agreement when wave amplitude is
small. Further, it also yields that there are different types of particle trajectories. Most surprisingly,
periodic  motion  of  particles  could  exist  under  solitary  waves,  which  is  due  to  the  wave-current
interaction.
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Interactions  between  nonlinear  water  waves  and  currents
play  an  important  role  not  only  in  the  mathematical  theory  of
water  waves,  but  also  in  our  real  life  such as  coastal  and ocean
engineering  [1, 2 ]. In  many  cases  of  such  phenomenon,  for  ex-
ample, the motion of offshore platform in the ocean, it is neces-
sary to  study  particle  trajectories  for  some  practical  require-
ments, and this also helps us to better understand the flow struc-
ture beneath nonlinear waves.

When there  is  no  current,  it  is  well  known  that  particles  ex-
perience a backward-forward motion for periodic waves, follow-

ing  loops  with  a  mean  Stokes  drift  in  the  direction  of  wave
propagation  [3, 4 ].  On  the  other  hand,  all  particles  move  in  the
direction  of  wave  propagation  without  backward  motion  at  all
for  solitary  waves.  This  is  proved  by  Constantin  and  Escher  [5]
based on a rigorous mathematical argument. Approximate ana-
lytical  results  were  obtained  by  Borluk  and  Kalisch  [6]  and
Gagnon [7]  using the Korteweg-de Vries  (KdV) equation.  In the
case  of  waves  on  currents  with  a  uniform  or  sheared  profile,
mathematical properties  of  travelling  waves  have  been  estab-
lished,  including  symmetry  [8, 9 ],  existence  [10]  and  analyticity
of  streamlines [11].  The corresponding flow structure for  small-
amplitude  periodic  waves  were  also  studied  by  Constantin  and
Villari [12], Ehrnström & Villari [13], and Wahlén [14]. Except for

 

 
 

* Corresponding author.
E-mail address: 13307130293@fudan.edu.cn (X. Guan).

Theoretical & Applied Mechanics Letters 10 (2020) 125-131

 

Contents lists available at ScienceDirect

Theoretical & Applied Mechanics Letters

journal homepage: www.elsevier.com/locate/taml

 

http://dx.doi.org/10.1016/j.taml.2020.01.011
2095-0349/© 2020 The Authors. Published by Elsevier Ltd on behalf of The Chinese Society of Theoretical and Applied Mechanics. This is an open access article under the
CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:13307130293@fudan.edu.cn
http://dx.doi.org/10.1016/j.taml.2020.01.011
http://www.elsevier.com/locate/taml
http://www.elsevier.com/locate/taml
http://dx.doi.org/10.1016/j.taml.2020.01.011
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.taml.2020.01.011&domain=pdf


the  Eulerian formulation,  Zaman and Baddour  [15],  Chen et  al.
[16]  and  Hsu  [17]  used  a  Lagrangian  formulation  to  describe
wave-current  interactions  and  particle  trajectories.  Their  works
yield that the mean level of a particle orbit over its period is high-
er  than  in  the  Eulerian  formulation.  Such  inconsistency  of  two
apparently  equivalent  systems  has  already  been  indicated  by
Provenzale  et  al.  [18]  in  the  study  of  particle  trajectories  under
solitary  waves,  and  they  believed  this  difference  comes  from  a
mixing of perturbation order when using asymptotic expansions.
On the  other  hand,  periodic  waves  and  solitary  waves  on  a  lin-
ear  shear  current  has  been  widely  studied  based  on  the  direct
numerical simulation (DNS) (see [19–24] for example).  Da Silva
Teles  et  al.  [19]  used  a  boundary  integral  formulation  to  show
that  there  exist  closed  streamlines  or  so-called  cat's  eyes  in  the
frame of reference following waves. A similar result with respect
to solitary waves with a shear current was also obtained by John-
son [25] using the asymptotic method. Same results were found
analytically  by  Choi  [26]  using  his  strong  nonlinear  model,  and
by Ribeiro et al. [22] using a conformal map method. Kharif and
Abid  [27] proposed  a  new  model  derived  from  the  Euler  equa-
tions  for  fully  nonlinear  waves  in  the  presence  of  linear  shear
current.  From  this  model  they  derived  a  generalised  Whitham
equation which  simplifies  to  the  KdV  equation  previously  ob-
tained in Ref. [26]. At the same time, Hur [28] also derived shal-
low water wave models with constant vorticity and studied their
stability.  Curtis  et  al.  [29]  used  a  higher-order  nonlinear
schrödinger  equation  to  study  the  effects  of  background  shear
on  the  modulational  instability  and  particle  trajectories.  Most
refereces  cited  above  focused  on  the  calculation  of  solitary
waves, however,  particle  trajectories  for  solitary waves on a lin-
ear shear current through the direct numerical simulation (DNS)
has  rarely  been  studied  so  far,  and  this  is  what  we  focus  on  in
this paper.

h

−ω
z = 0

U =ωz
ϕ(t , x, z)

η(t , x)

Consider  an  incompressible  and  inviscid  fluid  layer  with
constant density on a flat bed. The depth of the layer is  when
the fluid is at rest. Inside the fluid there is a linear shear current
so  a  constant  vorticity  with  strength  exists  everywhere.  We
set the undisturbed free surface to the level , and the linear
shear  current  is  written  as . We  assume  that  a  disturb-
ance  which  has  potential  occurs  at  some  time  and  the
free surface has an elevation ,  then we have the following
governing equations:

−h < z < ηIn the domain :

ϕxx +ϕzz = 0. (1)

z =−hOn the rigid bottom :

ϕz = 0. (2)

z = ηOn the free surface :

ηt +ηx

(
ϕx +ωη

)
−ϕz = 0, (3)

ϕt + 1

2

[(
ϕx +ωη

)2

+ϕ2
z

]
+ gη−ω

(
ψ+ 1

2
ωη2

)
= 0, (4)

ψ ϕ g
η ϕ

where  is the complex conjugate of , and  is the gravitational
acceleration. Our purpose is to solve  and , then calculate the
particle trajectories.

λ

c0 =
√

g h

Under  the  long-wave  and  small-amplitude  assumption,  we
can derive the classical  KdV equation.  Assume the typical  hori-
zontal  length  scale  is  and  introduce  the  typical  velocity

, then the following Boussinesq scaling is chosen:
x =λx, z = hz, t = λ

c0

t , η= aη,

ϵ= a

h
, µ= h

λ
, ϕ= ϵc0λϕ, ψ= c0aψ.

(5)

The governing equations now become

µ2ϕxx +ϕzz = 0, −1 < z < ϵη,
ϕz = 0, z =−1,

ηt +ϵηx (ϕx +Ωη)− 1

µ2
ϕz = 0, z = ϵη,

ϕt + ϵ

2

(
ϕ2

x +2Ωηϕx + 1

µ2
ϕ2

z

)
+η −Ωψ= 0,, z = ϵη,

(6)

Ω= ωh

c0

ϵ≪ 1 µ≪ 1

ϵ=µ2

ϕ ψ

where , , .  In  the  subsequent  calculation,  the

relation  is  chosen  to  balance  nonlinearity  and  dispersion
and  the  following  asymptotic  expansions  of  and   are
assumed
ϕ=

∞∑
n=0

(−1)n ϵn

(2n)!

∂2n A

∂x2n
(z +1)2n ,

ψ=
∞∑

n=0

(−1)n ϵn

(2n +1)!

∂2n+1 A

∂x2n+1
(z +1)2n+1,

(7)

A =ϕ(t , x,−1)where  represents  the  pontential  function  on  the
bottom. Substitute Eq. (7) into the two boundary conditions and
we can obtain the following equation by neglecting the second-
order terms

At t − Axx −ΩAt x −ϵ
(
ηx Ax +Ωηηx +ηAxx

)
−ϵ

[1

2
At t xx − 1

2

(
A2

x

)
t
− Ω

6
At xxx − 1

6
Axxxx

]
= 0.

(8)

η=−At +ΩAx +O(ϵ)To obtain the KdV equation, the relation 
is used and Eq. (8) is rewritten by introducing new variables:

X = x − ct , T = ϵt , (9)

cwhere  by the linear terms in Eq. (8) satisfies

c2 +Ωc −1 = 0. (10)

Ultimately we have

AT X + (Ω2 +3)(c +Ω)

2c +Ω
AX AX X + c2

3(2c +Ω)
AX X X X = 0, (11)

ηT + Ω2 +3

2c +Ω
ηηX + c2

3(2c +Ω)
ηX X X = 0, (12)

it is noted that Eq. (10) has been used to simplify the coefficients.
Equation (12)  is  consistent  with  the  equation  obtained  by  Choi
[26] after some variable transformation due to a different frame
of  reference.  The  travelling  wave  solutions  are  obtained
immediately
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{
AX = γδ2sech2(δ(X − vT )),

η= (c +Ω)γδ2sech2(δ(X − vT )),
(13)

or equivalently{
Ax = γδ2sech2(δ(x − (c +ϵv)t )),

η= (c +Ω)γδ2sech2(δ(x − (c +ϵv)t )),
(14)

δ γ= 4c2

(c +Ω)(Ω2 +3)
v = 4δ2c2

3(2c +Ω)
where  is a constant,  and .

Ω

It is noted that the solitary waves are always of the elevation
type, and for a fixed  there are two branches of solutions mov-
ing to right and left respectively.

To obtain particle trajectories, we need to solve the following
nonlinear differential equations,

u = dx

dt
≈ ϵAx +Ωz,

w = dz

dt
≈−ϵAxx (z +1),

(15)

and  the  forth-order  Runge-Kutta  method  is  used  for  the  time
integration. Here, to get some insights into the flow structure, it
is  convenient  to  choose  a  frame  of  reference  moving  with  the
wave, so we can approximate the stream function by

Ψ≈ ϵAx (z +1)+ Ω

2
z2 − (c +ϵv)z. (16)

z
It is interesting to note there exist closed streamlines. To see

this, take the derivative of Eq. (16) with respect to  yields

∂Ψ

∂z
≈ ϵAx +Ωz − c −ϵv. (17)

x = 0On the vertical line , we have

∂Ψ

∂z
≈ ϵγδ2 +Ωz − c −ϵv. (18)

Ω c
∂Ψ

∂z
= 0

ϵ

|c/Ω| > 1 z ≈ c +ϵv −ϵγδ2

Ω
w ≈ 0 u = 0

Note when  and  have different sighs,  would has a

root in the fluid domain, but this requires that  is not too small

since .  At ,  and   due  to  the

symmetry. So  there  exists  a  stagnation  point  and  it  is  surroun-
ded by a family of closed streamlines nearby.

ξ ζ

F (ξ,ζ) = x(ξ,ζ)+ iz(ξ,ζ)
ζ= 0 ζ=−1

To  perform  a  DNS  to  the  full  Euler  equations,  a  conformal
map technique  is  used  to  map  the  physical  domain  onto  a  ca-
nonical strip, see also [22, 23]. The new variables  and  are in-
troduced  and  the  conformal  map  is  defined  as

.  The  free  surface  and  the  bottom  are
mapped  to  and   respectively.  For  this  purpose  we
need to solve the following boundary value problems

zξξ+ zζζ = 0, −1 < ζ< 0,

z = η(ξ), ζ= 0,

z =−1, ζ=−1,

(19)

and
xξξ+xζζ = 0, −1 < ζ< 0,

x = X (ξ), ζ= 0,

xζ = 0, ζ=−1.

(20)

z ′ = z −ζ

ξ

These equations can be solved analytically. We take Eq. (19)
for example. If we introduce  which satisfies the corres-
ponding homogeneous  equation,  and  take  the  Fourier  trans-
form  with  respect  to ,  then  we  obtain  an  ordinary  differential
equation

−k2 ẑ ′+ ẑ ′
ζζ = 0, −1 < ζ< 0,

ẑ ′ = η̂, ζ= 0,

ẑ ′ = 0, ζ=−1,

(21)

ẑ ′ = sinh(k(ζ+1))

sinh(k)
η̂which  has  solution .  By  taking  the  inverse

Fourier transform, we get the solution of Eq. (19)

z = 1

2π

∫ ∞

−∞

sinh(k(ζ+1))

sinh(k)
η̂eikξ dk +ζ, (22)

similarly the solutioin of Eq. (20) is

x = 1

2π

∫ ∞

−∞

cosh(k(ζ+1))

cosh(k)
X̂ eikξ dk, (23)

ẑ ′ η̂ X̂
z ′ η X ξ

ϕ ψ

where the notation ,  and  denote the Fourier  transform of
,  and  with respect to variable  in the sense of distribution

(see Ref. [30, § 8]). Similarly, for  and  we have
ϕξξ+ϕζζ = 0, −1 < ζ< 0,

ϕ=Φ(ξ), ζ= 0,

ϕζ = 0, ζ=−1,

(24)

and
ψξξ+ψζζ = 0, −1 < ζ< 0,

ψ=Ψ(ξ), ζ= 0,

ψ= 0, ζ=−1,

(25)

the solutions are given by

ϕ= 1

2π

∫ ∞

−∞

cosh(k(ζ+1))

cosh(k)
Φ̂eikξ dk, (26)

ψ= 1

2π

∫ ∞

−∞

sinh(k(ζ+1))

sinh(k)
Ψ̂eikξ dk. (27)

xξ = zζ

ϕξ =ψζ ζ= 0
According  to  the  Cauchy-Riemann  equation  and

, we have the following identities on the free surface 

X̂ξ =−icoth(k)η̂ξ+2πδ(k), (28)

Φ̂ξ =−icoth(k)Ψ̂ξ, (29)

δ(k)

√
g h

where  is  the  Dirac  delta  function.  Since  we  are  seeking
travelling-wave  solutions,  it  is  convenient  to  choose  a  moving
frame  of  reference  so  that  waves  become  steady.  Again  we
choose  as  the  typical  speed  and  other  quantities  are  non-
dimensionalised by x = hx, z = hz, t = h

c0

t ,

η= hη, ϕ= c0hϕ, ψ= c0hψ.
(30)

Then  the  kinematic  boundary  condition  and  the  Bernoulli
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equation are

ηx (ϕx +Ωη− c)−ϕz = 0, (31)

(ϕx +Ωη− c)2 +ϕ2
z +2η− c2 = 0, (32)

Ω ξ ζwhere  is  defined  as  before.  Using  the  new  variables  and  ,
two boundary conditions can be recast to

Ψ+ 1

2
Ωη2 − cη= const, (33)

Φ2
ξ+Ψ2

ξ

J
+ 2

J
(ΦξXξ+Ψξηξ)(Ωη− c)+2η

+Ω2η2 −2cΩη= 0, (34)

J = x2
ξ + z2

ξ

Xξ Φξ Ψξ η

where .  Equation (33)  simply  yields  that  the  free
surface is  a  streamline in  the moving reference and it  has  been
used  to  derive  Eq. (32) .  So  there  is  now  only  one  independent
equation,  Eq. (34) ,  in  which ,  and   are  connected  to 
through Eqs. (28), (29) and (33).

ξ ζ= 0

To  solve  the  nonlinear  Eq. (34)  numerically  and  obtain  a
travelling  solitary  wave  solution,  we  take  a  long  equally  spaced
grid points of  at :

ξn =−L+ (n −1)△ξ, n = 1,2, · · · ,2N , (35)

△ξ= L/N N
η ξ= 0 N +1

ηi = η(ξi ) i = 1,2, · · · , N +1 c

where ,  and  is  a  large  number.  With  an  even
symmetry  of  about  ,  we  actually  have  unknowns

, . Together with the wave speed  under

H N +1
N +2 (η1, · · · ,ηN+1,c)

a given wave height , this gives rise to a set of  equations
for  unknowns  .  The  system  is  closed  by
adding the restriction about the wave height,

ηN+1 −η1 = H . (36)

10−10

Equations (34) and (36) are solved by Newton's method, with
a  small-amplitude  solitary  wave  profile  as  initial  guess.  All  the
derivatives and integrals are calculated by their discrete Fourier
representations  using  FFT.  The  Jacobian  of  the  system  for  the
Newton iteration  is  constructed  by  finite  variations  in  the  un-
knowns.  The  computation  is  stopped  under  the  condition  that
the infinite norm of the system's deviation from zero is less than

.
Ω

Ω −Ω
c −c

c

There  are  two  branches  of  solutions  for  a  fixed  value  of ,
corresponding to right-going waves and left-going waves. When

 is replaced by , the solutions are simply changed by revers-
ing  to . So in our calculation, we always choose the branches
with positive .

η cWhen  and   are  obtained,  the  whole  velocity  field  can  be
calculated  via  Eqs. (22),  (23) ,  and (26)–(29) . So  the  particle  tra-
jectories can be found by a time integral and we use the forth-or-
der Runge-Kutta method.

c
Ω= 1(−10) L = 100(300)

N = 2048

To  confirm  the  accuracy  of  DNS,  we  compare  the  values  of
wave  speed  when different  numbers  of  mesh  points  are  con-
sidered  in Table  1 firstly.  For ,  is  chosen
respectively.  Excellent  agreements  are  found,  which  shows  the
evidence  of  grid  independence  and  high  accuracy.  Therefore,
the results  shown below are calculated with .  In Fig.  1,
we disply three branches of speed-amplitude bifurcation curves

Table 1   A quantitative comparsion of the numerical simulations with different numeber of spacial mesh points.

 = 1  = ¡10

H c(N = 1024) c(N = 2048) H c(N = 1024) c(N = 2048)

0.06 0.65184 0.65184 0.10 10.38856 10.38856

0.10 0.67377 0.67377 0.20 10.69546 10.69546

0.15 0.69963 0.69963 0.30 11.00048 11.00048

0.20 0.72271 0.72262 0.40 11.30254 11.30254

0.25 0.74247 0.73954 0.50 11.60154 11.60154

 

0.62 0.64 0.66 0.68 0.7 0.72 0.74 0.76 0.78
c

0

0.05
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H

10.0 10.5 11.0

a b

11.5 12.0
c

0

0.1

0.2

0.3

0.4

0.5

H

 

 = 1  = ¡10
Fig. 1.   A comparsion of three speed-amplitude bifurcation curves of solitary waves. Black: Euler model. Blue: KdV model. Red: Strong nonlin-
ear model. In a: . In b: .
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H

which  comes  from  Euler  model,  KdV  model  and  Choi's  strong
nonlinear model [26]. As expected, the difference between them
becomes considerable when  becomes large. But the great co-
incidence of weakly nonlinear case proves their validity.

ϕx → 0
|x|→∞

In  the  following  part  we  briefly  display  some  of  the  results
from  the  KdV  model  and  DNS.  In  all  the  examples,  we  exhibit
our  results  in  two  special  frames  of  reference.  One  is  the  frame
moving  with  solitary  waves  so  that  trajectories  coincide  with
streamlines,  the  other  is  the  still  frame  in  which  when

.

Ω c

When a constant vorticity exists, it is found that there are two
types of streamlines in the moving frame of reference, which are
open profile-shaped streamlines and closed streamlines respect-
ively. The closed streamlines only exist under the condition that

 and  have different signs. This coincides with our analysis of
the stream function (16).

Ω=−10

H

H = 0.1

c ≈ 10.43 c ≈ 10.39
[0,3]

[0,3] [0,23] H
0.3

A typical result is shown in Fig. 2 with  and different
values of . We compare the wave profiles and particle traject-
ories based on the KdV model and DNS respectively.  In Fig.  2a,

 and the KdV model provides a good quantitative descrip-
tion to  the  profiles  and particle  trajectories.  The values  of  wave
speeds  are (KdV)  and (DNS)  respectively  and
the computing time periods  of  the  particle  trajectories  are ,

 and  from top to bottom. With  gradually increasing
to , the difference between the model and DNS cannot be ig-

c ≈ 11.1 c ≈ 11.0
[0,3] [0,3]

[0,10.5]

nored in Fig. 2b. The wave speeds are (KdV) and 
(DNS)  with  computing  time  periods  are  chosen ,  and

 from top to bottom.

Ω= 1 c ≈ 0.73
Ω=−10 c ≈ 11.6 Ω

c

z ≈ 0.673
z ≈ 0.7

To see the different flow structure clearly, we choose two typ-
ical results and exhibit their streamlines in the moving frame of
reference  in Fig.  3.  In Fig.  3a, , .  In  this  case,  there
are only open streamlines. In Fig. 3b, , . When 
and  have  different  signs,  there  could  be  a  family  of  closed
streamlines  with  a  stagnation  point  inside.  Calculation  via  Eq.
(18) predicts the stagnation point is located at , which is
quite close to the DNS result . Similar numerical result for
periodic  waves  can  be  found  in  Refs.  [19, 22 ].  This  yields  that
there is a domain where particles are trapped, so they will move
with the crest periodically. The corresponding particle trajector-
ies  in  the  still  frame  are  shown  in Fig.  4.  In Fig.  4a,  the  linear
shear current and solitary wave induce two flows in opposite dir-
ections. So the particles near the bottom are swept to the left by
strong  current.  In Fig.  4b,  the  current  near  the  bottom  sweeps
particles in front of  solitary wave,  where they have positive ver-
tical  velocity.  After  that  they  are  exceeded  by  wave  and  then
move downward, so periodic movements appear in this case.

In this paper, we focused on particle trajectories beneath sol-
itary  waves  interacting  with  a  linear  shear  current.  Using  the
asymptotic  expansion,  we  obtained  the  KdV  equation  and  the
travelling wave solutions of the velocity field. On the other hand,
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 = ¡10Fig. 2.   Comparison of wave profiles and particle trajectories from the KdV model (red line) and DNS (black line). In both figures, . The
blue dots represent the start positions of the particles..
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Fig. 3.   Streamlines under the solitary waves in the moving frame. a . b . Different flow structures would appear depending on
whether  and  have same or different signs.
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Ω c

Ω c

we performed  a  DNS  to  the  original  Euler  equations  via  con-
formal  map  to  obtain  the  high-accuracy  numerical  solutions.
When  wave  amplitude  is  small,  asymptotic  solutions  coincide
well with numerical solutions. We also found that there are two
types of particle trajectories. When  and  have same signs, the
streamlines  in  the  moving  frame  are  quite  similar  to  the  case
without  current.  When  and   are  of  opposite  signs,  closed
streamlines can be found in the moving frame which yields peri-
odic motions in the still frame.

Acknowledgement

This  work  was  supported  by  the  Key  Research  Program  of
Frontier Sciences, Chinese Academy of Sciences (No. QYZDBSS-
WSYS015)  and  the  Strategic  Priority  Research  Program  of  the
Chinese  Academy  of  Sciences  (No.  XDB22040203).  The  author
would  also  like  to  acknowledge  the  support  from  Chinese
Academy  of  Sciences  Center  for  Excellence  in  Complex  System
Mechanics.

References

D.H.  Peregrine, Interaction  of  water  waves  and  currents,  Adv.

Appl. Mech. 16 (1976) 9–117.

[1]

A.  Constantin,  E.  Vărvărucă, Steady  periodic  water  waves  with

constant vorticity: regularity and local bifurcation, Arch. Ration.

Mech. Anal. 199 (2011) 33–67.

[2]

G.G.  Stokes, On  the  theory  of  oscillatory  waves,  Trans.  Camb.

Phil. Soc. 8 (1847) 533–583.

[3]

A. Constantin, The trajectories of  particles in stokes waves,  In-

vent. Math. 166 (2006) 523–535.

[4]

A.  Constantin,  J.  Escher, Particle  trajectories  in  solitary  water

waves, Bull. Amer. Math. Soc. 44 (2007) 42–431.

[5]

H. Borluk, H. Kalisch, Particle dynamics in the kdv approxima-

tion, Wave Motion 49 (2012) 691–709.

[6]

L.  Gagnon, Qualitative  description  of  the  particle  trajectories

for  the  n-solitons  solution  of  the  korteweg-de  vries  equation,

Discrete Contin. Dyn. Syst 37 (2017) 1489–1507.

[7]

J.F.  Toland,  On  the  symmetry  theory  for  stokes  waves  of  finite

and infinite depth, In Trends in Applications of Mathematics to

Mechanics (Nice, 1998), Surv. Pure Appl. Math., 106 (2000) 207-

[8]

217.

A. Constantin, J. Escher, Symmetry of steady deep-water waves

with vorticity, Eur. J. Appl. Math. 15 (2004) 755–768.

[9]

A.  Constantin,  W.  Strauss,  E.  Vărvărucă,  et  al, Global bifurca-

tion  of  steady  gravity  water  waves  with  critical  layers,  Acta

Math. 217 (2016) 195–262.

[10]

H. Lewy, A note on harmonic functions and a hydrodynamical

application, Proc. Amer. Math. Soc. 3 (1952) 111–113.

[11]

A.  Constantin,  G.  Villari, Particle  trajectories  in  linear  water

waves, J. Math. Fluid Mech. 10 (2008) 1–18.

[12]

M. Ehrnström, G. Villari, Linear water waves with vorticity: rota-

tional  features  and  particle  paths,  J.  Differ.  Equ.  244  (2008)

1888–1909.

[13]

E.  Wahlén, Steady  water  waves  with  a  critical  layer,  J.  Differ.

Equ. 246 (2009) 2468–2483.

[14]

M.H.  Zaman,  E.  Baddour, Interaction of  waves  with  noncolin-

ear currents, Ocean Eng. 38 (2011) 541–549.

[15]

Y.Y. Chen, H.C. Hsu, H.H. Hwung, Particle trajectories beneath

wave-current interaction in a two-dimensional field, Nonlinear

Process Geophys. 19 (2012) 185–197.

[16]

H.C.  Hsu, Particle trajectories  for  waves  on  a  linear  shear  cur-

rent, Nonlinear Anal.-Real World Appl. 14 (2013) 2013–2021.

[17]

A.Provenzale,  A.R.  Osborne,  G.  Boffetta,  et  al, Particle  orbits

from the  lagrangian  and  the  eulerian  korteweg-de  vries  equa-

tions, Phys. Fluids 2 (1990) 866–869.

[18]

A.F. Da Silva Teles, D.H. Peregrine, Steep, steady surface waves

on  water  of  finite  depth  with  constant  vorticity,  J.  Fluid  Mech.

195 (1988) 281–302.

[19]

J.-M.  Vanden-Broeck, Steep  solitary  waves  in  water  of  finite

depth  with  constant  vorticity,  J.  Fluid  Mech.  274  (1994)

339–348.

[20]

W.  Choi, Nonlinear  surface  waves  interacting  with  a  linear

shear current, Math. Comput. Simul. 80 (2009) 29–36.

[21]

R.  Ribeiro,  P.A.  Milewski,  A.  Nachbin, Flow  structure  beneath

rotational  water  waves  with  stagnation  points,  J.  Fluid  Mech.

812 (2017) 792–814.

[22]

T.  Gao,  Z.  Wang,  P.A.  Milewski, Nonlinear  hydroelastic  waves

on  a  linear  shear  current  at  finite  depth,  J.  Fluid  Mech.  876

(2019) 55–86.

[23]

 

a b

0 5 10 15 20
x

−1.0

−0.8

−0.6

−0.4

−0.2

0

0.2
z

−0.10−0.05 0 0.05
−0.840

−0.835

−0.830

−0.825

−20 200 40 60 80 100
x

−1.0

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

z

 

t = 0
t = tend=2 t = tend

Fig. 4.   Particle trajectories in the still frame. The blue dots and profiles represent the initial positions and profiles at , the red ones and
black ones represent the positions and profiles at  and .

130 X. Guan / Theoretical & Applied Mechanics Letters 10 (2020) 125-131

http://dx.doi.org/10.1016/S0065-2156(08)70087-5
http://dx.doi.org/10.1016/S0065-2156(08)70087-5
http://dx.doi.org/10.1007/s00205-010-0314-x
http://dx.doi.org/10.1007/s00205-010-0314-x
http://dx.doi.org/10.1007/s00205-010-0314-x
http://dx.doi.org/10.1007/s00205-010-0314-x
http://dx.doi.org/10.1007/s00205-010-0314-x
http://dx.doi.org/10.1007/s00205-010-0314-x
http://dx.doi.org/10.1007/s00205-010-0314-x
http://dx.doi.org/10.1007/s00205-010-0314-x
http://dx.doi.org/10.1007/s00222-006-0002-5
http://dx.doi.org/10.1007/s00222-006-0002-5
http://dx.doi.org/10.1016/j.wavemoti.2012.04.007
http://dx.doi.org/10.1016/j.wavemoti.2012.04.007
http://dx.doi.org/10.3934/dcds.2017061
http://dx.doi.org/10.3934/dcds.2017061
http://dx.doi.org/10.1017/S0956792504005777
http://dx.doi.org/10.1017/S0956792504005777
http://dx.doi.org/10.1007/s11511-017-0144-x
http://dx.doi.org/10.1007/s11511-017-0144-x
http://dx.doi.org/10.1007/s11511-017-0144-x
http://dx.doi.org/10.1007/s11511-017-0144-x
http://dx.doi.org/10.1007/s11511-017-0144-x
http://dx.doi.org/10.1007/s11511-017-0144-x
http://dx.doi.org/10.1007/s11511-017-0144-x
http://dx.doi.org/10.1007/s11511-017-0144-x
http://dx.doi.org/10.1090/S0002-9939-1952-0049399-9
http://dx.doi.org/10.1090/S0002-9939-1952-0049399-9
http://dx.doi.org/10.1007/s00021-005-0214-2
http://dx.doi.org/10.1007/s00021-005-0214-2
http://dx.doi.org/10.1016/j.jde.2008.01.012
http://dx.doi.org/10.1016/j.jde.2008.01.012
http://dx.doi.org/10.1016/j.jde.2008.10.005
http://dx.doi.org/10.1016/j.jde.2008.10.005
http://dx.doi.org/10.1016/j.oceaneng.2010.11.015
http://dx.doi.org/10.1016/j.oceaneng.2010.11.015
http://dx.doi.org/10.5194/npg-19-185-2012
http://dx.doi.org/10.5194/npg-19-185-2012
http://dx.doi.org/10.1016/j.nonrwa.2013.02.005
http://dx.doi.org/10.1016/j.nonrwa.2013.02.005
http://dx.doi.org/10.1063/1.857635
http://dx.doi.org/10.1063/1.857635
http://dx.doi.org/10.1017/S0022112088002423
http://dx.doi.org/10.1017/S0022112088002423
http://dx.doi.org/10.1017/S0022112094002144
http://dx.doi.org/10.1017/S0022112094002144
http://dx.doi.org/10.1016/j.matcom.2009.06.021
http://dx.doi.org/10.1016/j.matcom.2009.06.021
http://dx.doi.org/10.1017/jfm.2016.820
http://dx.doi.org/10.1017/jfm.2016.820
http://dx.doi.org/10.1017/jfm.2019.528
http://dx.doi.org/10.1017/jfm.2019.528
http://dx.doi.org/10.1016/S0065-2156(08)70087-5
http://dx.doi.org/10.1016/S0065-2156(08)70087-5
http://dx.doi.org/10.1007/s00205-010-0314-x
http://dx.doi.org/10.1007/s00205-010-0314-x
http://dx.doi.org/10.1007/s00205-010-0314-x
http://dx.doi.org/10.1007/s00205-010-0314-x
http://dx.doi.org/10.1007/s00205-010-0314-x
http://dx.doi.org/10.1007/s00205-010-0314-x
http://dx.doi.org/10.1007/s00205-010-0314-x
http://dx.doi.org/10.1007/s00205-010-0314-x
http://dx.doi.org/10.1007/s00222-006-0002-5
http://dx.doi.org/10.1007/s00222-006-0002-5
http://dx.doi.org/10.1016/j.wavemoti.2012.04.007
http://dx.doi.org/10.1016/j.wavemoti.2012.04.007
http://dx.doi.org/10.3934/dcds.2017061
http://dx.doi.org/10.3934/dcds.2017061
http://dx.doi.org/10.1017/S0956792504005777
http://dx.doi.org/10.1017/S0956792504005777
http://dx.doi.org/10.1007/s11511-017-0144-x
http://dx.doi.org/10.1007/s11511-017-0144-x
http://dx.doi.org/10.1007/s11511-017-0144-x
http://dx.doi.org/10.1007/s11511-017-0144-x
http://dx.doi.org/10.1007/s11511-017-0144-x
http://dx.doi.org/10.1007/s11511-017-0144-x
http://dx.doi.org/10.1007/s11511-017-0144-x
http://dx.doi.org/10.1007/s11511-017-0144-x
http://dx.doi.org/10.1090/S0002-9939-1952-0049399-9
http://dx.doi.org/10.1090/S0002-9939-1952-0049399-9
http://dx.doi.org/10.1007/s00021-005-0214-2
http://dx.doi.org/10.1007/s00021-005-0214-2
http://dx.doi.org/10.1016/j.jde.2008.01.012
http://dx.doi.org/10.1016/j.jde.2008.01.012
http://dx.doi.org/10.1016/j.jde.2008.10.005
http://dx.doi.org/10.1016/j.jde.2008.10.005
http://dx.doi.org/10.1016/j.oceaneng.2010.11.015
http://dx.doi.org/10.1016/j.oceaneng.2010.11.015
http://dx.doi.org/10.5194/npg-19-185-2012
http://dx.doi.org/10.5194/npg-19-185-2012
http://dx.doi.org/10.1016/j.nonrwa.2013.02.005
http://dx.doi.org/10.1016/j.nonrwa.2013.02.005
http://dx.doi.org/10.1063/1.857635
http://dx.doi.org/10.1063/1.857635
http://dx.doi.org/10.1017/S0022112088002423
http://dx.doi.org/10.1017/S0022112088002423
http://dx.doi.org/10.1017/S0022112094002144
http://dx.doi.org/10.1017/S0022112094002144
http://dx.doi.org/10.1016/j.matcom.2009.06.021
http://dx.doi.org/10.1016/j.matcom.2009.06.021
http://dx.doi.org/10.1017/jfm.2016.820
http://dx.doi.org/10.1017/jfm.2016.820
http://dx.doi.org/10.1017/jfm.2019.528
http://dx.doi.org/10.1017/jfm.2019.528


T. Gao, P.A. Milewski, J.-M. Vanden-Broeck, Hydroelastic solit-

ary waves with constant vorticity, Wave Motion 85 (2019) 84–97.

[24]

R.S. Johnson, On the nonlinear critical layer below a nonlinear

unsteady surface wave, J. Fluid Mech. 167 (1986) 327–351.

[25]

W. Choi, Strongly nonlinear long gravity waves in uniform shear

flows, Phys. Rev. E 68 (2003) 026305.

[26]

C.  Kharif,  M.  Abid, Nonlinear  water  waves  in  shallow  water  in

the presence of constant vorticity: A whitham approach, Eur. J.

[27]

Mech./B Fluids 72 (2018) 12–22.

V.  Hur, Shallow  water  models  with  constant  vorticity,  Eur.  J.

Mech./B Fluids 73 (2019) 170–179.

[28]

C.W. Curtis,  J.D. Carter,  H. Kalisch, Particle paths in nonlinear

schrödinger models in the presence of  linear shear currents,  J.

Fluid Mech. 855 (2018) 322–350.

[29]

W.  Appel,  Mathematics  for  Physics  and  Physicists,  Princeton

University Press, Princeton, NJ USA, 2007.

[30]

X. Guan / Theoretical & Applied Mechanics Letters 10 (2020) 125-131 131

http://dx.doi.org/10.1016/j.wavemoti.2018.11.005
http://dx.doi.org/10.1016/j.wavemoti.2018.11.005
http://dx.doi.org/10.1017/S0022112086002847
http://dx.doi.org/10.1017/S0022112086002847
http://dx.doi.org/10.1103/PhysRevE.68.026305
http://dx.doi.org/10.1103/PhysRevE.68.026305
http://dx.doi.org/10.1016/j.euromechflu.2018.04.014
http://dx.doi.org/10.1016/j.euromechflu.2018.04.014
http://dx.doi.org/10.1016/j.euromechflu.2017.06.001
http://dx.doi.org/10.1016/j.euromechflu.2017.06.001
http://dx.doi.org/10.1017/jfm.2018.623
http://dx.doi.org/10.1017/jfm.2018.623
http://dx.doi.org/10.1016/j.wavemoti.2018.11.005
http://dx.doi.org/10.1016/j.wavemoti.2018.11.005
http://dx.doi.org/10.1017/S0022112086002847
http://dx.doi.org/10.1017/S0022112086002847
http://dx.doi.org/10.1103/PhysRevE.68.026305
http://dx.doi.org/10.1103/PhysRevE.68.026305
http://dx.doi.org/10.1016/j.euromechflu.2018.04.014
http://dx.doi.org/10.1016/j.euromechflu.2018.04.014
http://dx.doi.org/10.1016/j.wavemoti.2018.11.005
http://dx.doi.org/10.1016/j.wavemoti.2018.11.005
http://dx.doi.org/10.1017/S0022112086002847
http://dx.doi.org/10.1017/S0022112086002847
http://dx.doi.org/10.1103/PhysRevE.68.026305
http://dx.doi.org/10.1103/PhysRevE.68.026305
http://dx.doi.org/10.1016/j.euromechflu.2018.04.014
http://dx.doi.org/10.1016/j.euromechflu.2018.04.014
http://dx.doi.org/10.1016/j.euromechflu.2017.06.001
http://dx.doi.org/10.1016/j.euromechflu.2017.06.001
http://dx.doi.org/10.1017/jfm.2018.623
http://dx.doi.org/10.1017/jfm.2018.623
http://dx.doi.org/10.1016/j.euromechflu.2017.06.001
http://dx.doi.org/10.1016/j.euromechflu.2017.06.001
http://dx.doi.org/10.1017/jfm.2018.623
http://dx.doi.org/10.1017/jfm.2018.623

	Particle trajectories under interactions between solitary waves and a linearshear current
	Acknowledgement
	References




